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The application of Internet of Things promotes the cooperation among firms, and it also introduces some
information security issues. Due to the vulnerability of the communication network, firms need to invest in
information security technologies to protect their confidential information. In this paper, considering the
multiple-step propagation of a security breach in a fully connected network, an information security investment
game among n firms is investigated. We make meticulous theoretic and experimental analyses on both the Nash
equilibrium solution and the optimal solution. The results show that a larger network size (n) or a larger one-step
propagation probability (q) has a negative effect on the Nash equilibrium investment. The optimal investment
does not necessarily increase in n or q, and its variation trend depends on the concrete conditions. A
compensation mechanism is proposed to encourage firms to coordinate their strategies and invest a higher amount
equal to the optimal investment when they make decisions individually. At last, our model is extended by
considering another direct breach probability function and another network structure, respectively. We find that a
higher connection density of the network will result in a greater expected cost for each firm.
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1. Introduction

In recent years, the rapid development of sensor technology,

RFID technology, wireless transmission technology, and data

processing technology drives the applications of Internet of

Things (IoT). With the wide application of IoT in all walks of

life and ensuing emergence of new services, all related firms

are required to coordinate as well as share confidential

information with each other. The extent of collaboration relies

on information technology (IT) and communication networks.

However, the communication networks also introduce signif-

icant information security issues. Hackers and malicious

entities attack the network firms with various motivations such

as financial goals, peer recognition, or curiosity. These attacks

include attacks on the network as a whole, attacks on selected

end points, undesirable forms of interactions such as spam

e-mail, and annoyances such as Web pages that are unavailable

or defaced (Grossklags et al, 2008). It is well known that

communication networks increase the likelihood of

information security breaches. For better cooperation, a firm

often allows other partnering firms to access information in

their sites directly using trusted interconnections, which also

facilitates the propagation of security breaches (Bandyopad-

hyay et al, 2010). A hacker that has penetrated one firm may be

able to hack other connected firms relatively easily via the

trusted connections (Zhao et al, 2013). As reported by Grance

et al (2002), ‘‘If one of the connected systems is compromised,

the interconnection could be used as a conduit to compromise

the other system and its data.’’ For instance, Walmart and

Proctor & Gamble (P&G) adopt industry standards Electronic

data interchange (EDI) to communicate key business docu-

ments with each other (Grean and Shaw, 2002). Since the EDI

link is a trusted connection, a hacker having breached

Walmart’s information system will break into the information

system of P&G more easily, and vice versa. Therefore, the

attacks launched by hackers may not only cause the attacked

firms, but also the partnering firms in the network a great loss.

As a result, firms in the network will not trust or rely on each

other, and the collaboration among firms will disintegrate at

last.

As the economic benefits brought by IoT-related services

are enormous, maintaining good cooperation relationships

with partnering firms is necessary. Therefore, preventing

attacks and mitigating the damages from computer and
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information security breaches are of great significance, not

only to protect the attacked firm itself, but also the cooperated

firms from a great loss. A high level of information security

contributes to the collaboration of firms in the network. Hence,

firms need to invest in information and network security

technologies to reduce the likelihood of probable damages

caused by information security incidents. However, the cost of

information security is very high, and a completely secure

information system does not exist. Thus, the critical task for a

firm is to determine the right amount of information security

investment, based on the potential loss associated with a

security breach if it does occur, and the information security

environment the firm faces (Huang et al, 2008).

The rest of this paper is organized as follows: Section 2

mainly describes some related works about the information

security investment. A description of our information security

game is given in Section 3. In Section 4, we make Nash

equilibrium analyses on our game. Section 5 analyzes the

optimal investment in our game model. To better illustrate our

theoretical analyses, a simulation experiment is conducted in

Section 6. Finally, the conclusion is presented in Section 7.

2. Literature review

To address information security investment issues, a number of

rigorous analyses have been proposed. Bodin et al (2005) used

the analytic hierarchy process (AHP) to address the allocation of

the fixed information security budget. Based on given data

center network topology, Wang et al (2011) recommended a

probability-based model for calculating the probability of

insecurity of each protected resource and the optimal investment

on each security protection device. Shirtz and Elovici (2011) put

forward a new framework to optimize the information security

investment strategies when facing with various security mea-

sures and found that a higher investment level did not assure a

higher security level. Eisenga et al (2012) made an analysis on

different practices and techniques which were used to calculate

the investments in IT security. Then, they presented some

advisable methods for investing in IT security. Within the

changing corporate business environment, Kong et al (2012)

analyzed the information security investment strategies and

performance from a balanced score card perspective by

considering the characteristics of information security invest-

ment. Bojanc et al (2012) proposed a mathematical model to

optimize the information security investment evaluation and

decision-making processes. The model was on the basis of a

quantitative analysis on the security risks and a digital-assets

assessment. Yasasin et al (2014) improved an existing research

about a fuzzy decision support model for investing in highly

distributed systems. Their proposed model contained uncer-

tainty in regard to the impact of investments on the achieved

security levels of components of the distributed system. In

addition, a heuristic was developed to solve the problem.

Nazareth and Choi (2015) used a system dynamics model to

assess various information security management strategies,

which can provide managers guidance for security decisions.

They found that investing in security detection tools leads to a

better payoff than in deterrence activities. Apart from these

decision-theory-based analyses, economics-based analyses and

game-theory-based analyses were also presented in some

literatures.

Based on economics, some studies involving information

security investment have appeared since 2002. Gordon et al

(2002) first proposed an economic model to optimize the

information security investment. They found that for a given

potential loss, a firm did not always need to focus its

investments on the information sets with the highest vulner-

ability. To protect an information set, Hausken (2006) consid-

ered four kinds of marginal returns to security investment, and

proposed classes of all four kinds. However, the optimal

investment level in his model was no longer capped at 1/e,

which was different from that of Gordon et al (2002). Huang

et al (2008) analyzed the information security investment of a

firm whose decision maker was risk-averse and followed

common economic principles. It was found that the maximum

security investment increased with the potential loss a security

breach brought, but never exceeded it. The results showed that

the announcement of a corporate security breach had an

adverse impact of about 1% of the market value of the firm.

Based on stock market investors’ behavior toward a firm’s IT

security investment announcements, Chai et al (2011) utilized

event methodology to verify the value of information security

investment. Their study supported the hypothesis that infor-

mation security investment had a positive and abnormal effect

on the returns for firms. Huang and Behara (2013) proposed a

model to analyze the information security investment alloca-

tion of a fixed budget. Considering concurrent heterogeneous

attacks with distinct characteristics and deriving the breach

probability functions based on the theory of scale-free

networks, they made analytical and numerical analyses subject

to various boundary conditions to investigate the relationships

among the major variables. Based on economic decision

analysis techniques, Huang et al (2014) modeled the Health-

care Information Exchanges (HIEs) to determine the optimal

information security investment. They found that it was

necessary to prevent the security breach when the potential

loss of a security breach reached the threshold level.

Game theory (Pardalos et al, 2008) was also adopted in

some literatures concerning information security investment.

Lye and Wing (2005) made an analysis on the security of

computer networks. They introduced a two-player stochastic

game between an attacker and the administrator and con-

structed a model for the game. Through using a nonlinear

program, Nash equilibrium strategies for both players were

obtained. Grossklags et al (2008) introduced five game-

theoretic models that contain expenditures in information

security investment and self-insurance technologies to

examine how incentives shifted between investment in a

public good and a private good. Sun et al (2008) made a
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game-theoretic analysis on the information security investment

and proposed some constructive suggestions for the defensive

organization to invest in information security. The relationship

between the strategies chosen by two similar firms in terms to

knowledge sharing, and investment in information security was

analyzed by Liu et al (2011). Their analyses revealed that the

nature of information assets, either complementary or substi-

tutable, had a significant influence on the two firms’ informa-

tion security investment strategies. Gao et al (2013) considered

firms’ information security investment under Cournot and

Bertrand competition and constructed a differential game in

which over time hackers became knowledgeable by propagat-

ing security knowledge and firms could inhibit it by investing

in information security. Their findings showed that higher

effectiveness of inhibiting knowledge dissemination did not

mean a higher investment. Gao et al (2014) analyzed the

information sharing strategies and information security invest-

ing strategies of two firms by assuming that their information

assets were complementary. They acquired the optimal strate-

gies for the two firms and the attacker. The effect of a social

planner on the social total costs was also analyzed.

However, all the aforementioned studies do not consider

that communication networks propagate security breaches

from one firm to another. In 2005, considering the propaga-

tion of security breaches, Bandyopadhyay et al investigated

the security investment strategies of N supply chain firms in a

star network. Their analysis concentrated on the difference

between the retailer’s strategy and the vendors’ strategies

when all firms made decisions individually. As to the optimal

investment, they used implicit equation to present the optimal

solution and did not make an analysis on the optimal

investment. In the dissertation of Bandyopadhyay (2006), the

author analyzed the security investment strategies of N supply

chain firms in a concatenated network in Chapter 3.7 and in a

star network in Chapter 3.8, respectively. He made an

experimental analysis on firms’ strategies and did not make

related theoretical analysis. For the concatenated network,

the author gave an expression to represent the optimal

solution and did not analyze the optimal investment. In 2010,

Bandyopadhyay et al took into account the propagation of

security breaches and carefully analyzed firms’ information

security strategies in a two-firm model. Some valuable

insights on firms’ security investments were offered in their

work. Since just considering the two-firm case, they did not

assess the impacts of the network size and network connec-

tion density on firms’ investments. In addition, all the

aforementioned three papers did not consider the multiple-

step propagation of security breaches. The multiple-step

propagation does exist in the communication network. For

instance, in Figure 1, firm A is breached first by a hacker,

firm B is then breached again through the inner link between

A and B, and firm C is breached through the inner link

between B and C. Apparently, firm B is breached through a

one-step propagation, and firm C is breached through a two-

step propagation. Therefore, three-step propagation, four-step

propagation, and other multiple-step propagations can be

deduced by analogy. In consideration of the multiple-step

propagation among firms, this paper conducts a research on

the information security investments for multiple firms in a

fully connected network. Meticulous theoretic and experi-

mental analyses are made on both the Nash equilibrium

solution and the optimal solution.

3. Description of information security investment game

The emergence of various IoT technologies promotes the

development of intelligent logistics, intelligent healthcare, and

so on. These smart services need multiple firms to exchange

and share their information with each other through a

communication network. In this paper, we consider a network

consisting of n (n C 3) firms. The network structure is a

complete graph and is shown in Figure 2, where the ellipsis

represents that some firms have been omitted between the two

nodes. The information systems of n firms are physically

connected through the communication network. In this

network, each firm is vulnerable to direct and indirect security

breaches. A direct breach means a hacker breaches the firm

directly because of the firm’s own security lapse. An indirect

breach on a firm occurs when the security of any other

partnering firm is breached first and the breach spreads to the

first firm because of the vulnerability of the communication

network, which propagates the breach (Bandyopadhyay et al,

2010). The one-step propagation and the multiple-step prop-

agation are both considered in this paper. If a breach on a firm

occurs, then it will cause the firm a great loss, including a

direct financial loss, reputation, and maybe an opportunity to

share the benefits brought by the smart service.

A B C D

Figure 1 Propagation of a security breach.
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For simplicity, we formalize our information security game

with the following assumptions:

1. All the n firms are homogeneous, and the potential loss for

each firm is identical when a breach occurs. L is denoted

as the fixed potential loss of each firm.

2. The probability of a direct breach of firm i (i = 1, 2, …, n)

only depends on the monetary investment xi of firm i on

information security. We refer to the function p(xi, v) of

Gordon and Loeb (2002) as the direct breach probability

function, wherep xi; vð Þ ¼ vaxiþ1. The parameter v represents

the probability of a direct breach without any investment,

and it belongs to the interval (0, 1). The parameter a (a[ 0)

mainly measures the effect of monetary investment on the

direct breach. Thus, if firm i’s security investment is zero,

the probability of its information system being breached

directly by hackers is v. For a firm with a security investment

x, the reduction in the probability of being breached directly

due to the security investment is denoted as v - p(x, v).

3. If a firm has suffered a security breach, then the

probability that an indirect breach of any other firm

occurs through a one-step propagation of the security

breach is a constant value q. We call q as ‘‘one-step

propagation probability.’’

4. All the firms in the network are risk neutral.

5. The initial investment of each firm is 0.

According to the description of our information security

investment game, we first analyze the probability of a security

breach of each firm in the network. Then, we get the following

proposition, which will be used in Sections 4 and 5.

Proposition 1 The probability of a breach of firm

i i ¼ 1; 2; . . .; nð Þ is 1 � 1 � pið ÞAðn; iÞ, where Aðn; iÞ ¼
Qn

j¼1;j 6¼i

Qn�1
k¼1 1 � pjq

k
� �Qk�1

s¼1
ðn�1�sÞ

, pi ¼ p xi; vð Þ, and

pj ¼ p xj; v
� �

.

Proof Firstly, we analyze the probability of an indirect

breach of firm i because of the propagation of firm j. The

probability of an indirect breach of firm i because of a

k-step propagation of firm j is denoted by P k; jð Þ k ¼ 1;ð

2; . . .; n� 1Þ. Then, we have P(1, j) = pjq, and there is

just 1 one-step propagation pathway between i and j. P(2,

j) = pjq
2 can also be obtained, and the number of two-

step propagation pathways between i and j is n - 2. By

analogy, it can be obtained that P(k, j) = pjq
k, and there

exist
Qk�1

s¼1 ðn� 1 � sÞ k-step propagation pathways

between i and j. Therefore, the probability firm i will not

suffer an indirect breach because the propagation of firm j

is
Qn�1

k¼1 1 � pjq
k

� �Qk�1

s¼1
ðn�1�sÞ

. Thus, the probability that

firm i will not suffer an indirect breach is A n; ið Þ ¼
Qn

j¼1;j 6¼i

Qn�1
k¼1 1 � pjq

k
� �Qk�1

s¼1
ðn�1�sÞ

. As the probability of

a direct breach of firm i is pi, we can easily get that the

probability of a breach of firm i (i = 1, 2, …, n) is

1 � 1 � pið ÞAðn; iÞ. h

Proposition 1 presents the probability of a security breach

of each firm in the network. It indicates that the probability

of a firm suffering a security breach is determined not only

by the firm’s own security investment, but also by other

firms’ investments. In the one firm case investigated by

Gordon and Loeb (2002), as they did not consider the

indirect breach, the expected benefit of an investment in

information security for a firm is equal to the reduction in

the firm’s expected loss attributable to the extra security,

i.e., ðv� pðx; vÞÞL. Thus, the expected net benefit of the

investment is ðv� pðx; vÞÞL� x. While in our model, firms

will suffer the indirect breaches, it can be derived that the

expected net benefit of an investment in information security

for firm i is v� p xi; vð Þð ÞAðn; iÞL� xi.

Next, we turn to explore the impact of the network size n and

one-step propagation probability q on the probability of a

security breach of each firm. Since A n; ið Þ ¼
Qn

j¼1;j6¼i

Qn�1
k¼1

1 � pjq
k

� �Qk�1

s¼1
ðn�1�sÞ

, it is easy to conclude that A(n, i)

decreases with the increase of q. As the probability of a breach

of firm i is 1 � 1 � pið ÞAðn; iÞ, we obtain that the probability of a

security breach of each firm increases with the increase of q. As

to the impact of network size, we have the following proposition.

Proposition 2 At the same investment level, an increase in

the number of firms in the network increases the proba-

bility of a breach of any firm.

Proof Since Aðn; iÞ ¼
Qn

j¼1;j 6¼i

Qn�1
k¼1 1 � pjq

k
� �Qk�1

s¼1
ðn�1�sÞ

,

we have A nþ 1; ið Þ ¼
Qnþ1

j¼1;j 6¼i

Qn
k¼1 1 � pjq

k
� �Qk�1

s¼1
ðn�sÞ

.

Then, it can be derived that

A nþ 1; ið Þ
A n; ið Þ ¼

Yn

k¼1

1 � pnþ1q
k

� �
Qk�1

s¼1

n�sð Þ

Yn

j¼1;j 6¼i

1 � pjq
n

� �
Qn�1

s¼1

n�sð ÞYn�1

k¼2

1 � pjq
k

� �n�1
n�k

Figure 2 Fully connected network structure of n firms.
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Since 0\pi\1 i ¼ 1; 2; . . .; nð Þ; 0\q\1, it can be

obtained that
A nþ1;ið Þ
A n;ið Þ \1, which means A(n ? 1,

i)\A(n, i). The probability of a breach of firm i is

1 - (1 - pi)A(n, i); thus, we can get that an increase in

the number of firms (i.e., n) increases the probability of a

breach for any firm. h

Although a newcomer introduces greater information shar-

ing for an existing network and thus brings more benefits,

Proposition 2 shows that a new member’s accession will

increase the probability of being breached of any other firm in

the network. The reason is that a security breach of the

newcomer will spread to other firms. Therefore, firms in the

existing network should balance the advantages and disad-

vantages of the newcomer’s accession.

4. Nash equilibrium analyses

In this section, we will study the Nash equilibrium strategies

where each firm chooses its information security investment

unilaterally, in an effort to minimize its own cost. As the

probability of a breach of firm i (i = 1, 2, …, n) is

1 - (1 - pi)A(n, i), the objective function of firm i is:

Min Fi ¼ xi þ 1 � 1 � pið ÞAðn; iÞð ÞL ð1Þ

The strategy variable for each firm is its investment that will

optimize its respective objective. Each firm will dynamically

change its decision variable according to other firms’ strate-

gies until reaching the equilibrium point. In the equilibrium

point, each firm does not want to change its strategy, and any

one changing its strategy will increase its own cost. Each firm

determines its investment in advance as the game evolves, and

eventually each player reaches the equilibrium point. We use

A0 to represent the value of A(n, i) in the initial state (i.e., all

firms have none investment). In regard to the Nash equilibrium

investment, our analysis results are shown in the following

three propositions.

Proposition 3 If aA0Lv ln v�� 1, then the Nash equilibrium

solution is 0; 0; 0; . . .; 0ð Þ. Otherwise, the Nash equilibrium
solution is x�; x�; x�; . . .; x�ð Þ, where x� satisfies the fol-

lowing conditions: vax
�þ1
Qn�1

k¼1 1 � vax
�þ1qk

� �Qk

s¼1
ðn�sÞ ¼

�1
aL ln v

, and d2Fi

dx2
i

jxi¼x� [ 0.

Proof In the initial state, all firms have none investment. Firm i

will not invest unless the amount of investment is less than

the expected reduced loss the investment brings. We need to

consider the first-order condition dFi=dxi ¼ 0 and the

second-order condition d2Fi=dx2
i [ 0. Since pi ¼ vaxiþ1,

we have dFi=dxi ¼ 1 þ aA0Lv
axiþ1 ln v. We can easily get

that d2Fi=dx2
i ¼ a2A0Lv

axiþ1 ln2 v[ 0. If dFi=dxijxi¼0 � 0,

i.e., aA0Lv ln v�� 1, then firm iwill not invest. Therefore,

when we have A0Lv ln v�� 1, every firm will pick the

strategy xi = 0 in the Nash equilibrium point.

If dFi=dxijxi¼0\0, i.e.,aA0Lv ln v\� 1, then firm i will

choose dFi=dxi ¼ 1 þ aA0Lv
axiþ1 ln v ¼ 0. Then, it can be

derived that xi ¼
ln �1= aA0L ln vð Þð Þ

ln v
�1

a . However, this is not a

stable strategy because other firms will also choose the

same strategy. Thus, each firm will change its strategy

endlessly until all firms reach the equilibrium point. In the

Nash equilibrium point, for firm i, the first-order condition

dFi=dxi ¼ 0 should hold, so that

1 þ aA n; ið ÞLvaxiþ1 ln v ¼ 0 ð2Þ

Similarly, for any firm i0 i0 ¼ 1; 2; . . .; n; i0 6¼ ið Þ, we have

1 þ aA n; i0ð ÞLvaxi0 þ1 ln v ¼ 0 ð3Þ

Based on Eqs. (2) and (3), it can be obtained that
Aðn;iÞ
A n;i0ð Þ ¼ vaxi0 þ1

vaxiþ1 ¼ pi0
pi

. Since we have Aðn; iÞ ¼
Qn

j¼1;j6¼i

Qn�1
k¼1

1 � pjq
k

� �Qk�1

s¼1
ðn�1�sÞ

and A n; i0ð Þ ¼
Qn

j¼1;j 6¼i0
Qn�1

k¼1 1�ð

pjq
kÞ
Qk�1

s¼1
ðn�1�sÞ

, it can be easily derived that

Aðn;iÞ
A n;i0ð Þ ¼

Qn�1

k¼1
1�pi0 q

kð Þ
Qk�1

s¼1
n�1�sð Þ

Qn�1

k¼1
1�piqkð Þ

Qk�1

s¼1
n�1�sð Þ

. Then, we get that ln
Aðn;iÞ
A n;i0ð Þ

¼
Pn�1

k¼1

Qk�1
s¼1 n� 1 � sð Þ ln

1�pi0q
k

1�piqk
. Combining with

Aðn;iÞ
A n;i0ð Þ

¼ pi0
pi

, we can obtain

Xn�1

k¼1

Yk�1

s¼1

n� 1 � sð Þ ln
1 � pi0q

k

1 � piqk
¼ ln

pi0

pi
ð4Þ

Apparently, Eq. (4) holds if pi0 ¼ pi. Assuming that

Eq. (4) also holds if pi0 6¼ pi. For the case of pi0 [ pi, we

have 1 � pi0q
k\1 � piq

k. It can be easily derived that the

left-hand side of Eq. (4) is a negative value and the right-

hand side of Eq. (4) is a positive value, which is contra-

dictive. For the case of pi0\pi, we will also obtain a con-

tradiction. Thus, Eq. (4) holds if and only if pi0 ¼ pi. As

pi0 ¼ vaxi0 þ1 and pi ¼ vaxiþ1, it can be easily derived that

xi0 ¼ xi in the equilibrium point. Therefore, we can obtain

that the strategies all firms chose are the same in the Nash

equilibrium. Based on Eq. (2) and pj ¼ vaxjþ1, we can get

that if aA0Lvlnv\� 1, then the Nash equilibrium

solution is x�; x�; x�; . . .; x�ð Þ, where x� satisfies the fol-

lowing conditions: vax
�þ1
Qn�1

k¼1 1 � vax
�þ1qk

� �Qk

s¼1
ðn�sÞ ¼

�1
aL ln v

, and d2Fi

dx2
i

jxi¼x� [ 0. h

Proposition 4 If the Nash equilibrium solution is nonzero

(i.e., aA0Lv ln v\� 1), then the Nash equilibrium solution

x� decreases with the number of firms in the network.
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Proof In the Nash equilibrium, all firm’s strategies are the

same, and the direct breach probability of each firm is

identical, which is denoted by p, where p ¼ vax
�þ1. There-

fore, we have Aðn; iÞ ¼ Aðn; jÞ ¼
Qn�1

k¼1 ð1 � pqkÞ
Qk

s¼1
ðn�sÞ

ð8i; j 2 1; 2; . . .; ngf ; i 6¼ jÞ. Then, we denote
Qn�1

k¼1

1 � pqk
� �Qk

s¼1
ðn�sÞ

byA(n). From Proposition 3, we get that

x� satisfies Eq. (2). Thus, it can be obtained that

1 þ aAðnÞLp ln v ¼ 0. Proposition 2 indicates that A(n)

decreases with the increase of the number of firms.

Therefore, as for firm i, to satisfy the equation

1 þ aAðnÞLpi ln v ¼ 0, the value of pi should become lar-

ger. However, this is not a stable strategy because other

firms will also make the same decision. As all firms choose

to increase the value of p, which makesA(n) decreased, firm

i will increase pi again to satisfy the equation

1 þ aAðnÞLpi ln v ¼ 0. Apparently, this is also an unsta-

ble strategy, and each firm will increase p continually until

reaching the new equilibrium point. Therefore, with the

increase of the number of firms, the new Nash equilibrium

solution will decrease as p ¼ vax
�þ1 increases. h

Proposition 5 If the Nash equilibrium solution is nonzero

(i.e., aA0Lv ln v\� 1), then the Nash equilibrium solution

x� decreases with one-step propagation probability q.

Proof We have AðnÞ ¼
Qn�1

k¼1 1 � pqk
� �Qk

s¼1
ðn�sÞ

. Appar-

ently, A(n) decreases with the increase of one-step prop-

agation probability q. Similar to the proof of Proposition

4, to satisfy the equation 1 þ aAðnÞLp ln v ¼ 0, the Nash

equilibrium solution x� should decrease. h

Proposition 3 presents the zero Nash equilibrium solution and

the nonzero Nash equilibrium solution in corresponding condi-

tions, respectively. Propositions 4 and 5 expose the negative

impact of the communication network. It should be noted that

Proposition 4 is similar to Proposition 1 proposed by Bandy-

opadhyay et al (2010) in the two-firm model, which demonstrate

that the propagation probability decreases firms’ incentive to

invest more in security in both the two-firm case and the multi-

firm case. We have shown that the increase of the numbers of

firms or one-step propagation probability can increase the

probability of being breached. However, aforementioned Nash

equilibrium analyses show that firms will decrease their security

investment instead of increasing investment to mitigate the

higher security risk, which deteriorates the security environment

further. The reason leading to such result is that there exist free-

rider behaviors among firms. The investment of a firm

contributes not only to the security of its own system, but also

the other firms’ systems. With the increase of investment, each

firm’s marginal utility of investment decreases. When the

number of firms or one-step propagation probability increases

(i.e., each firm is easier to suffer an indirect breach), the marginal

utility of investment will be smaller, which leads each firm to

decrease its investment.

5. The optimal investment

To eliminate the negative impact of the network and minimize

the costs of all firms, a social planner is needed to make

decisions for all the firms in the network. The objective

function is:

Min F ¼
Xn

i¼1

xi þ 1 � 1 � pið ÞA n; ið Þð ÞL ð5Þ

Because of the homogeneity and symmetry, the optimal

investment of each firm will be the same. We use x to denote

the investment of each firm. Thus, the direct breach proba-

bility of each firm is p ¼ vaxþ1. Since AðnÞ ¼
Qn�1

k¼1 1�ð

pqkÞ
Qk

s¼1
ðn�sÞ

, the objective function can be transformed into

the following form:

MinF ¼ nxþ nð1 � ð1 � pÞAðnÞÞL ð6Þ

By analyzing the relationship between the optimal investment

of each firm and the investment in Nash equilibrium point, the

following proposition is obtained.

Proposition 6 If the Nash equilibrium solution is nonzero

(i.e., aA0Lv ln v\� 1), then the optimal investment of

each firm is greater than the investment in the Nash

equilibrium point.

Proof As for the optimal investment, the first-order condition

should satisfy dF=dx ¼ nþ nL aAðnÞvaxþ1 ln v� 1�ðð

vaxþ1Þ oAðnÞ
ox

Þ ¼ 0. We use Q to denote
Pn�1

k¼1

qk
Qk

s¼1
ðn�sÞ

1�vaxþ1qk
,

then we have
dAðnÞ
dx

¼ �QaAðnÞvaxþ1 ln v. Based on

dAðnÞ
dx

¼ �QaAðnÞvaxþ1 ln v, it can be derived that dF=dx ¼
nþ nLaAðnÞvaxþ1 ln v 1 þ 1 � vaxþ1ð ÞQð Þ ¼ 0. The opti-

mal investment of each firm is denoted by xo. The value

of A(n) and the value of Q when x ¼ xo are denoted by

A nð Þo and Qo, respectively. Then, xo should satisfy
d2F

dx2
jx¼xo

[ 0 and dF=dxjx¼xo
¼ nþ nLaAðnÞovaxoþ1 ln v

1 þ 1 � vaxoþ1ð ÞQoð Þ ¼ 0, i.e.,

1 þ 1 � vaxoþ1
� �

Qo

� �
vaxoþ1AðnÞo ¼

�1

aL ln v
ð7Þ

We use xN to denote the investment of each firm in the

Nash equilibrium point, the value of A(n), and the value of

Q when x = xN is denoted by A(n)N and QN, respectively.

From Proposition 3, we get that xN satisfies

vaxNþ1AðnÞN ¼ �1
aL ln v

. Therefore, it can be obtained that

1 þ 1 � vaxoþ1ð ÞQoð Þvaxoþ1AðnÞo ¼ vaxNþ1AðnÞN . Since

1 þ 1 � vaxoþ1ð ÞQoð Þ[ 1, then we have vaxoþ1AðnÞo\
vaxNþ1AðnÞN . As aA0Lv ln v\� 1, based on Eq. (7), it

can be obtained that 1þ 1�vaxoþ1ð ÞQoð Þvaxoþ1¼ �1
aLlnvA nð Þo

\
�1

aLlnvA0
\aLvlnvA0

aLlnvA0
¼v\1. Then, we get that ðvaxoþ1Qo�1Þ

1�vaxoþ1ð Þ\0. Since 1�vaxoþ1[0, we have vaxoþ1Qo\1.
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Define f ðxÞ¼vaxþ1AðnÞ. Then it can be easily obtained

that
of ðxÞ
ox

¼ avaxþ1ln vAðnÞ þ vaxþ1 oAðnÞ
ox

¼ avaxþ1 ln vAðnÞ
1 � vaxþ1Qð Þ, which means that f(x) is a decreasing

function of x when x satisfies vaxþ1Q\1. Assume that

xN � xo. It is easy to prove that vaxþ1Q is a decreasing

function of x. Hence, we have vaxNþ1QN � vaxoþ1Qo. Since

we have proved that vaxoþ1Qo\1, it can be derived that

vaxNþ1QN � vaxoþ1Qo\1, which means that both xN and xo

satisfy vaxþ1Q\1. As f(x) is a decreasing function, we can

get that vaxNþ1AðnÞN � vaxoþ1AðnÞo, which is contradictive

to previous conclusion vaxoþ1AðnÞo\vaxNþ1AðnÞN . There-

fore, the assumption xN � xo is untenable, and we can

obtain that xo[ xN, i.e., the optimal investment of each

firm is greater than the investment in the Nash equilibrium

point. h

Proposition 6 indicates that each firm invests more when

they make decisions jointly compared to the situation when

they make decisions individually, which is similar to Propo-

sition 2 proposed by Bandyopadhyay et al (2010). Bandy-

opadhyay et al (2010) assumed that the breach of being

breached when making decisions jointly is less than 0.5. We

release this assumption and prove that Proposition 6 still holds.

The reason causing the outcome in Proposition 6 is that when

decisions are determined individually, each firm is selfish and

just considers its own benefit. Any firm in the network does

not care about whether its direct breach will propagate to other

firms and cause loss to the others. Thus, the firm does not have

the incentive to invest more to decrease other firms’ loss. If all

firms coordinate their strategies, their objective is to minimize

the total cost. Each firm is responsible for other firms’ loss,

which encourages firms to invest more to decrease the total

cost. Therefore, to eliminate the negative impact of the

communication network and minimize the total costs of all

firms, we need a social planner to determine the optimal

investments for all firms.

The variation trends of the optimal investment with the

increase of q in different conditions are investigated, and the

results are shown in the following two propositions.

Proposition 7 If the Nash equilibrium solution is nonzero

(i.e., aA0Lv ln v\� 1) for any q 2 0; 1½ �, then the optimal

security investment of each firm increases with q.

Proof We define f ðx; qÞ ¼ 1 þ 1 � vaxþ1ð ÞQð Þvaxþ1AðnÞ.
From the proof of Proposition 6, we get that the

optimal investment x satisfies f ðx; qÞ ¼ �1
aL ln v

, and
of ðx;qÞ
ox

¼
d2F=dx2

naL ln v
\0. Then, we have vaxþ1ð1 þ ð1 � vaxþ1ÞQÞ ¼

�1
aLAðnÞ ln v

, and it can be derived that 1 � vaxþ1Q ¼

1 þ 1
aLA nð Þ ln v

� �
= 1 � vaxþ1ð Þ.

The first partial derivative of f(x, q) with respects to q

is:

Since 1 � vaxþ1Q ¼ 1 þ 1
aLAðnÞ ln v

� �
= 1 � vaxþ1ð Þ, we

can obtain that

of ðx; qÞ
oq

¼ vaxþ1AðnÞ 1 � vaxþ1
� �Xn�1

k¼1

kqk
Qk

s¼1 n� sð Þ
1 � vaxþ1qkð Þ2

þ 1 þ 1 � vaxþ1
� �

Q
� �

vaxþ1AðnÞ �
Xn�1

k¼1

kvaxþ1qk�1
Qk

s¼1 n� sð Þ
1 � vaxþ1qk

 !

¼ vaxþ1AðnÞ
Xn�1

k¼1

1 � vaxþ1ð Þ � 1 þ 1 � vaxþ1ð ÞQð Þvaxþ1 1 � vaxþ1qk
� �� �

kqk�1
Qk

s¼1 n� sð Þ
1 � vaxþ1qkð Þ2

¼ vaxþ1AðnÞ
Xn�1

k¼1

vaxþ1qk � vaxþ1
� �

þ 1 � vaxþ1ð Þ 1 � vaxþ1qk
� �

1 � vaxþ1Qð Þ
� �

kqk�1
Qk

s¼1 n� sð Þ
1 � vaxþ1qkð Þ2

of ðx; qÞ
oq

¼ vaxþ1AðnÞ
Xn�1

k¼1

vaxþ1qk � vaxþ1
� �

þ 1 � vaxþ1qk
� �

1 þ 1
aLAðnÞ ln v

� �h i
kqk�1

Qk
s¼1 n� sð Þ

1 � vaxþ1qkð Þ2

¼ vaxþ1AðnÞ
Xn�1

k¼1

1 � vaxþ1 þ 1
aLAðnÞ ln v

� vaxþ1qk

aLAðnÞ ln v

h i
kqk�1

Qk
s¼1 n� sð Þ

1 � vaxþ1qkð Þ2
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Define gðq; kÞ ¼ 1 � vaxþ1 þ 1
aLAðnÞ ln v

� vaxþ1qk

aLAðnÞ ln v
.

Then, we have

As 1
aL ln v

\0, apparently, we can get that g(q, k)

is a decreasing function of q. Thus, we have gðq;kÞ¼
1�vaxþ1þ 1�vaxþ1qk

aLAðnÞlnv
�g 1;kð Þ¼ 1�vaxþ1ð Þ 1þ 1

aLAðnÞjq¼1 lnv

� �
.

Since aA0Lvlnv\�1 is valid for any 2 0;1½ �, we can

get that 1þ 1
aLAðnÞjq¼1 lnv

[1þ 1
aLA0 lnv

[1þ 1
aA0Lvlnv

[0. As

1�vaxþ1[0, we obtain that g 1;kð Þ[0. Then. we have

gðq;kÞ¼1�vaxþ1þ 1
aLAðnÞlnv

� vaxþ1qk

aLAðnÞlnv
�gð1;kÞ[0. Since

kqk�1
Qk

s¼1 n�sð Þ[0, it can be derived that
of x;qð Þ
oq

¼

vaxþ1AðnÞ
Pn�1

k¼1

1�vaxþ1þ 1
aLAðnÞlnv

� vaxþ1qk

aLAðnÞlnv

h i
kqk�1

Qk

s¼1
n�sð Þ

1�vaxþ1qkð Þ2 [0.

As
of x;qð Þ
oq

[ 0 and
of x;qð Þ
ox

\0, x should increase with the

increase of q to satisfy the condition f ðx; qÞ ¼ �1
aL ln v

.

Therefore, the optimal security investment of each firm

increases with the one-step propagation probability q. h

Proposition 8 If the optimal security investment of each firm is

nonzero for any q 2 0; q0ð Þ, where q0 2 0; 1ð � and the

optimal investment is precisely zero when q ¼ q0, then

different properties can be obtained according to the value

of v:

(i) When v takes a very small value, the optimal

investment increases with q.

(ii) When v takes a very large value, the optimal

investment decreases with q.

(iii) When v takes a moderate value, there exists a qs 2
0; q0ð Þ satisfying

of x;qð Þ
oq

jq¼qs
¼ 0. The optimal

investment increases with q when q 2 0; qs½ �, and
decreases with q when q 2 qs; q0½ �, where x rep-

resents the optimal security investment of each

firm, f ðx; qÞ ¼ 1 þ 1 � vaxþ1ð ÞQð Þvaxþ1AðnÞ.

Proof As the proof of Proposition 7, we have
of ðx;qÞ
ox

¼ d2F=dx2

naL ln v
\0 and

of ðx;qÞ
oq

¼ vaxþ1AðnÞ
Pn�1

k¼1

1�vaxþ1þ 1
aLAðnÞ ln v

� vaxþ1qk

aLAðnÞ ln v

h i
kqk�1

Qk

s¼1
n�sð Þ

1�vaxþ1qkð Þ2 . Define gðq; k; vÞ ¼

1 � vaxþ1 þ 1
aLAðnÞ ln v

� vaxþ1qk

aLAðnÞ ln v
. In the proof of Proposition 7,

we get that g(q, k, v) is a decreasing function of q, and it is

easy to prove that g(q, k, v) is also a decreasing function of k

and v. If v ! 0, then gðq; k; vÞ ! 1 � vaxþ1 [ 0. And if v ! 1,

then g q; k; vð Þ ! �1. Therefore, we have the following

conclusions:

(1) When v takes a smaller value, for any q, we have

g q; 1; vð Þ[ g q; n� 1; vð Þ[ 0, then
of x;qð Þ
oq

[ 0, ox
oq
¼

�
of x;qð Þ
oq

of x;qð Þ
ox

[ 0. Thus, the optimal investment increases

with q.

(2) When v takes a larger value, for any q, we have

g q; n� 1; vð Þ\g q; 1; vð Þ\0, then
of x;qð Þ
oq

\0, ox
oq
¼

�
of x;qð Þ
oq

of x;qð Þ
ox

\0. Hence, the optimal investment decreases

with q.

(3) When v takes a moderate value, there must exist a qs 2
0; q0ð Þ satisfying g qs; 1; vð Þ[ 0[ g qs; n� 1; vð Þ and

of x;qð Þ
oq

jq¼qs
¼ 0. Based on g qs; 1; vð Þ ¼ 1 � vaxþ1þ

1�vaxþ1qs
aLA nð Þjq¼qs lnv

[ 0, and g qs; n� 1; vð Þ ¼ 1 � vaxþ1þ
1�vaxþ1qn�1

s
aLAðnÞjq¼qs ln v

\0, we can obtain that � 1�vaxþ1

1�vaxþ1qs
\

1
aLAðnÞjq¼qs ln v

\� 1�vaxþ1

1�vaxþ1qn�1
s

\� 1 � vaxþ1ð Þ. It can be

derived that

o2f ðx; qÞ
oq2

¼ vaxþ1
Xn�1

k¼1

kqk�1AðnÞ
Qk

s¼1 n � sð Þ
1 � vaxþ1qkð Þ2

1�ð½

vaxþ1Þ k � 1ð Þq�1 þ k þ 1ð Þvaxþ1qk�1
�

� 1 � vaxþ1ð

qkÞ
Pn�1

k0¼1

k0vaxþ1q
k0�1

Qk0

s¼1
n�sð Þ

1�vaxþ1qk
0 � þ 1�vaxþ1qk

aLAðnÞ ln v
k � 1ð Þq�1þ½

vaxþ1qk�1��

Define

gðq; kÞ ¼ 1 � vaxþ1 þ 1

aL ln v
� 1 � vaxþ1qk

AðnÞ

¼ 1 � vaxþ1 þ 1

aL ln v
� 1 � vaxþ1qk

Qn�1
k0¼1 1 � vaxþ1qk

0ð Þ
Qk0

s¼1

n�1ð Þ!
n�1�sð Þ!

¼ 1 � vaxþ1 þ 1

aL ln v
� 1

1 � vaxþ1qkð Þ
Qk

s¼1

n�1ð Þ!
n�1�sð Þ!�1Qn�1

k0¼1;k0 6¼k 1 � vaxþ1qk
0ð Þ
Qk0

s¼1

n�1ð Þ!
n�1�sð Þ!
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h q; kð Þ ¼ 1 � vaxþ1
� �

�

k � 1ð Þq�1 þ k þ 1ð Þvaxþ1qk�1

� 1 � vaxþ1qk
� �Xn�1

k0¼1

k0vaxþ1qk
0�1
Qk0

s¼1
n�sð Þ

1 � vaxþ1qk
0

3

5

þ 1 � vaxþ1qk

aLA nð Þ ln v
k � 1ð Þq�1 þ vaxþ1qk�10

� �

As we have proved that 1
aLAðnÞjq¼qs ln v

\� 1 � vaxþ1ð Þ, it

can be obtained that

Since n� 3, we have 2kvaxþ1qk�1
s \ 1 � vaxþ1qks

� �

Pn�1
k0¼1

k0vaxþ1q
k0�1

Qk0

s¼1
n�sð Þ

s

1�vaxþ1qk
0
s

. Then, it can be obtained that

h qs; kð Þ\0. Hence, we can get that
o2f ðx;qÞ
oq2 \0. As

of ðx;qÞ
oq

jq¼qs
¼ 0 and

o2f ðx;qÞ
oq2 \0, it is easy to conclude that

of ðx;qÞ
oq

� 0 q� qsð Þ and
of ðx;qÞ
oq

[ 0ðq\qsÞ. Thus, we have

that ox
oq
¼ �

of x;qð Þ
oq

of x;qð Þ
ox

[ 0 when 2 0; qs½ Þ and ox
oq
¼ �

of x;qð Þ
oq

of x;qð Þ
ox

\0

when q 2 qs; q0ð �. Therefore, the optimal investment

increases with q when q 2 0; qs½ � and decreases with q

when q 2 qs; q0½ �. h

Proposition 7 demonstrates that for all q 2 0; 1½ �, if the

Nash equilibrium solution is nonzero, then the level of

optimal investment will be higher if q increases, which is

contrary to the variation trend of the Nash equilibrium

solution. Proposition 8 reveals that the variation trend of

optimal investment with q depends on the value v takes.

When v is small, the optimal investment increases with the

increase of q, and when v takes a large value, the optimal

investment decreases with the increase of q. When v takes a

moderate value, the optimal investment of each firm

increases with the increase of q until q reaches the

threshold, and decreases when q exceeds the threshold.

This is an interesting and explainable phenomenon. Appar-

ently, an increase of q leads firms to suffer indirect breaches

more easily. When q does not reach the threshold, with the

increase of q, an augment in security investment can lead to

the reduction of the total security costs. However, when

q exceeds the threshold, with the increase of q, it is not

economical to increase security investment level because

any increase in security investment will be greater than the

expected reduced loss it brings.

6. Compensation mechanism

As firms will invest less than the optimal amount when they

make decisions individually, we need a social planner to

coordinate the strategies for all firms in the network. However,

if each firm is selfish and just wants to minimize its own cost,

then the optimal investment will be an unstable strategy. Thus,

we need to design a compensation mechanism to encourage

firms to increase their security investments to the optimal

level. A compensation mechanism which coordinates all firms’

investments is proposed in the following proposition.

Proposition 9 If firm i suffers a direct breach and is

responsible for an indirect breach of firm j ðj 6¼ iÞ, then i

needs to pay
ffiffiffiffiffiffiffi
1�pi

p
ffiffiffiffiffiffiffi
1�pj

p L to j; similarly, if firm i suffers an

indirect breach due to the propagation of firm j’s direct

breach, then firm i will acquire a compensation of

ffiffiffiffiffiffiffi
1�pj

p
ffiffiffiffiffiffiffi
1�pi

p L

from firm j ðj 6¼ iÞ. Under this mechanism, firms will

invest the optimal amount when they make decisions

individually.

Proof It should be noted that firm i will pay the compensa-

tion for firm j if and only if: (1) firm j does not suffer a

direct breach and just suffers an indirect breach; (2) firm

j’s indirect breach is just caused by the propagation of

firm i’s direct breach, and any other firm l

(l ¼ 1; 2; . . .; n; l 6¼ i; j) is not responsible for j’s indirect

h qs; kð Þ\ 1 � vaxþ1
� �

k � 1ð Þq�1
s þ k þ 1ð Þvaxþ1qk�1

s � 1 � vaxþ1qks
� �Xn�1

k0¼1

k0vaxþ1q
k0�1
Qk0

s¼1
n�sð Þ

s

1 � vaxþ1qk
0
s

2

6
4

3

7
5

� 1 � vaxþ1
� �

1 � vaxþ1qks
� �

k � 1ð Þq�1
s þ vaxþ1qk�1

s

� �

¼ 1 � vaxþ1
� �

2kvaxþ1qk�1
s � 1 � vaxþ1qks

� �Xn�1

k0¼1

k0vaxþ1q
k0�1
Qk0

s¼1
n�sð Þ

s

1 � vaxþ1qk
0
s

2

6
4

� 1 � vaxþ1qks
� �

vaxþ1qk�1
s

#
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breach. Thus, under the proposed mechanism, firm i’s

objective function is

MinFi ¼ xi þ 1 � 1 � pið ÞAðn; iÞð ÞL

þ
Xn

j¼1;j 6¼i

1 � pj
� � Yn

l¼1;l 6¼i;j

Yn�1

k¼1

1 � plq
k

� �
Qk�1

s¼1

n�1�sð Þ

1 �
Yn�1

k¼1

1 � piq
k

� �
Qk�1

s¼1

n�1�sð Þ
0

@

1

A
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � pi

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � pj

p L

�
Xn

j¼1;j 6¼i

1 � pið Þ
Yn

l¼1;l 6¼i;j

Yn�1

k¼1

1 � plq
k

� �
Qk�1

s¼1

n�1�sð Þ

1 �
Yn�1

k¼1

1 � pjq
k

� �
Qk�1

s¼1

n�1�sð Þ
0

@

1

A

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � pj

p

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � pi

p L

ð8Þ

The first term in the right-hand side of Eq. (8) is firm

i’s investment. The second term refers to the expected

loss. The third term is the total compensations firm that i

needs to pay, and the forth term represents the total

compensation firm that i will acquire. Denote

Qn�1
k¼1 1 � piq

k
� �

Qk�1

s¼1

n�1�sð Þ
by B(i); then, we have

Aðn; iÞ ¼
Qn

j¼1;j 6¼i BðjÞ. Simplify Eq. (8), we yield

MinFi ¼ xiþ 1� 1�pið ÞA n; ið Þð ÞL

þ
Xn

j¼1;j 6¼i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�pið Þ 1�pj

� �q Yn

l¼1;l 6¼i;j

BðlÞ BðjÞ�BðiÞ½ �L

ð9Þ

When making decisions individually, to satisfy the

first-order condition, it should be

dFi

dxi
¼1þAðn; iÞLdpi

dxi
�
Xn

j¼1;j 6¼i

ffiffiffiffiffiffiffiffiffiffiffi
1�pj

p

ffiffiffiffiffiffiffiffiffiffiffi
1�pi

p
Yn

l¼1;l6¼i;j

BðlÞ BðjÞ�BðiÞ½ �Ldpi

dxi

þ
Xn

j¼1;j 6¼i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�pið Þ 1�pj

� �q Yn

l¼1;l 6¼i;j

BðlÞ

Xn�1

k¼1

qk
Qk�1

s¼1 n�1�sð Þ
1�piqk

BðiÞLdpi

dxi
¼0 ð10Þ

Due to the symmetry, we have xi ¼
xj j ¼ 1; 2; . . .; n; j 6¼ ið Þ in the equilibrium point. Then, it

can be obtained that pi = pj and B(i) = B(j). As all firms’

investments are the same, we omit the subscript. Based on

Eq. (10), it can be derived that

1 þ AðnÞL dp

dx
þ ð1 � pÞ

Xn�1

k¼1

qk
Qk�1

s¼1 n� sð Þ
1 � pqk

AðnÞL dp

dx
¼ 0

ð11Þ

In the proof of Proposition 6, we have

Q ¼
Pn�1

k¼1

qk
Qk�1

s¼1
n�sð Þ

1�pqk
. As dp

dx
¼ avaxþ1 ln v, combining

with Eq. (11), we can obtain

1 þ 1 � vaxþ1
� �

Q
� �

vaxþ1AðnÞ ¼ �1

aL ln v
ð12Þ

Equation (12) and Eq. (7) have the identical form, thus,

the new Nash equilibrium investment under the mecha-

nism equals to the optimal investment. h

The mechanism presented in Proposition 9 shows that the

firm responsible for the indirect breach of another firm should

compensate for the other firm’s loss, which is rational and

encourages firms to invest more in information security.
ffiffiffiffiffiffiffi
1�pi

p
ffiffiffiffiffiffiffi
1�pj

p L decreases, and

ffiffiffiffiffiffiffi
1�pj

p
ffiffiffiffiffiffiffi
1�pi

p L increases in pi, respectively; it

means that firm i pays less to other firms and acquires more

compensation from others if firm i cuts down its investment.

Thus, at first sight, the mechanism seems to reduce each firm’s

investing incentive. However, one should note that if firm

i reduces its investment, then the probability firm i suffers a

direct breach will increase, which increases the probability

firm i pays compensation to other firms and decreases the

probability firm i acquires compensation from others. More-

over, the impact of the change in the probabilities of paying

and acquiring compensation on the total cost is larger than that

of the change in the compensation amounts. Therefore, under

the mechanism, firms will increase their investments when

making decisions individually.

7. Simulation experiment

A simulation experiment is conducted to illustrate the above-

mentioned theoretical analyses. The purpose of this simulation

experiment is to assess the impact of one-step propagation

probability and network size on the information security

investment level of each firm in both Nash equilibrium point

and optimal solution. As the number of firms varies from 3 to

infinite, it is impossible to enumerate all cases. We just

consider three simple cases: n = 3, n = 4, and n = 5. For the

similar reason, the value of v is chosen in the following five

cases: v = 0.1, v = 0.3, v = 0.5, v = 0.7, and v = 0.9. L and

a should not be too small in case that aA0Lvlnv �� 1 for any

q 2 0; 1½ �. Here, we set L = 200, and a = 0.1.

When v varies from 0.1 to 0.9, the relationships between

each firm’s investment x and one-step propagation probability

q in both Nash equilibrium solution and optimal solution are

shown in Figures 3, 4, 5, 6 and 7, respectively.
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In Figures 3, 4, 5, 6 and 7, we get that in the condition of

Nash equilibrium, each firm will reduce its investment level

with the increase of q until q reaches a specific value, suppose

q0, and when q exceeds q0, each firm will not invest. This is

because for any q 2 q0; 1½ �, aA0Lvlnv �� 1, which means that

each firm will not invest according to Proposition 3. Taking

the case of n = 5, and v = 0.1 as an example, we have

aA0Lvlnv�� 1 when q� 0:6004, which means each firm will

not invest when q exceeds 0.6004. Apparently, this conclusion

accords with Figure 3. In Figures 3, 4, 5, 6 and 7, it is easy to

find that when other parameters are the same, the Nash

equilibrium solution decreases with the increase of n from 3 to

5, which meet with Proposition 4. Obviously, Figures 3, 4, 5, 6

and 7 show that if the Nash equilibrium solution is nonzero,

then the optimal investment of each firm is greater than the

investment in the Nash equilibrium point, which accords with

Proposition 6. In the case of n = 3, and v = 0.1, any q from 0

to 1 satisfies aA0Lvlnv\� 1, and Figure 3 shows that in this

case, the optimal solution increases with the increase of q from

0 to 1, which meets with Proposition 7. In Figure 7, we find

that in any case of n = 3, n = 4, and n = 5, the optimal

investment increases with the increase of q from 0 to a specific

value and then decreases when q exceeds the specific value,

which accords with Proposition 8.

The simulation experiment has verified our aforementioned

theoretical analyses. Besides, it also inspires us to find some

properties which have not been analyzed in above sections.

Figures 3, 4, 5 and 6 show that the optimal investment

increases with the increase of n from 3 to 5 for any q 2 0; 1½ �,
whereas in Figure 7, the variation trend of optimal investment

with the increase of n depends on q. If q takes a small value,

then the optimal investment increases with the increase of

Figure 3 Impact of q on each firm’s investment level in Nash
equilibrium point and optimal solution (v = 0.1).

Figure 4 Impact of q on each firm’s investment level in Nash
equilibrium point and optimal solution (v = 0.3).

Figure 5 Impact of q on each firm’s investment level in Nash
equilibrium point and optimal solution (v = 0.5).

Figure 6 Impact of q on each firm’s investment level in Nash
equilibrium point and optimal solution (v = 0.7).
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n from 3 to 5. And if q takes a large value, then the contrary

result will be obtained. Hence, the variation trend of optimal

investment with the increase of n depends on multiple

influence factors, and it is very difficult using theoretical

analysis to find out the exact variation trend of optimal

investment with the increase of n. Nevertheless, based on the

simulation result, we can still find some properties in regard to

the variation trend of optimal investment with the increase of

n. Firstly, when both v and q take small values, the optimal

investment will increase with the increase of n until n reaches

the threshold and will decrease with the increase of n if

n exceeds the threshold. An increase of n will lead each firm to

be more vulnerable to a security breach. When n does not

reach the threshold, the probability of each firm being

breached is small. It is cost-efficient to increase security

investment because the increased security investment will be

less than the expected reduced loss it brings. Whereas, when

n is larger than the threshold, any increased investment in

information security will be greater than the expected reduced

loss, in some extreme cases, when n takes a very large value,

the probability of a breach of each firm is close to 1, and it will

be unnecessary to invest in information security. Secondly,

when v and q take sufficiently large values, the probability of

each firm being breached is very large. The increase of n will

lead each firm to reduce its investment because it will be not

cost-efficient to increase security investment. Due to the

limited values of n in this experiment, Figures 3, 4, 5 and 6

have not completely presented aforementioned properties,

while in Figure 7, these properties have been demonstrated.

In addition, we examine the Price of Anarchy (PoA) by

using numerical examples to assess the impact of one-step

propagation probability and network size on the social costs of

the Nash equilibrium solution and the optimal solution. The

PoA is defined as the ratio between the social value of the

Nash equilibrium and the optimal social value. In this paper,

we have PoA ¼
Pn

i¼1
Fijxi¼xNPn

i¼1
Fijxi¼xo

. The network size is selected as:

n = 3, n = 4, and n = 5. In Figures 4, 5, 6 and 7, we can get

that when v and q take larger values, the Nash equilibrium

investment will be zero. To ensure that the Nash equilibrium

investment is nonzero, we set the values of v and q as: v = 0.1,

q = 0.1, q = 0.2, q = 0.3, q = 0.4, and q = 0.5. The values

of other parameters are chosen as follows: L = 200, and

a = 0.1. Table 1 presents the values of PoA in different cases.

From Table 1, we find that the PoA value increases with the

increase of q from 0.1 to 0.5 and the increase of n from 3 to 5.

Thus, we can conjecture that when v takes relatively small

value, the PoA value will increase with q and n provided that

the values of q and n are not too large, which means that the

free-rider behaviors are more serious when the one-step

propagation probability and the network size are relatively

larger.

8. Extension of the model

In this section, we extend our model in regard to the direct

breach probability function and the network structure, respec-

tively. Due to the limited space of this paper, the theoretical

analyses are omitted and we just conduct some simulation

experiments.

8.1. Direct breach probability function

Ceteris paribus, we extend the model from the previous direct

breach probability function p x; vð Þ ¼ vaxþ1 to the other func-

tion pðx; vÞ ¼ v

cxþ1ð Þb of Gordon and Loeb (2002), where c[ 0

and b C 1 are used to measure the effect of monetary

investment on the direct breach. A simulation experiment is

conducted to verify the robustness of some main results

obtained in above sections. As to the network size, we also

consider 3 simple cases: n = 3, n = 4, and n = 5. The value

of v is chosen as follows: v = 0.1, v = 0.3, v = 0.5, v = 0.7,

and v = 0.9. We set L = 200, b = 1, and c = 0.1. The

simulation results which present the relationships between

each firm’s investment x and one-step propagation probability

q in different cases are shown in Figures 8, 9, 10, 11 and 12,

respectively.

Figures 8, 9, 10, 11 and 12 show that the Nash equilibrium

investment decreases in q and n, which consists with

Propositions 4 and 5. We find that the Nash equilibrium

Figure 7 Impact of q on each firm’s investment level in Nash
equilibrium point and optimal solution (v = 0.9).

Table 1 Impact of q and n on PoA value

n = 3 n = 4 n = 5

q = 0.1 POA = 1.0075 POA = 1.0186 POA = 1.0367
q = 0.3 POA = 1.0652 POA = 1.1875 POA = 1.4489
q = 0.5 POA = 1.1720 POA = 1.5645 POA = 2.7132
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investment is smaller than the optimal investment for all cases

in Figures 8, 9, 10, 11 and 12, which corresponds to

Proposition 6. In Figures 8, 9, 10, 11 and 12, when the Nash

equilibrium investment is nonzero, the optimal investment

increases with q, which conforms with Proposition 7. In

accordance with Proposition 8, Figures 9, 10, 11 and 12

present that when n = 5, the optimal investment first increases

and then decreases with q. Hence, the simulation fig-

ures demonstrate that our previous theoretical analyses results

are robust and not just applicable for the specific direct breach

probability function p x; vð Þ ¼ vaxþ1.

8.2. Network structure

The breach probability of a firm varies with different network

structures. In a fully connected network, the connection

density is very high since any two firms are connected with

each other. In order to examine the effect of connection

density on firms’ strategies, this section makes an analysis on

firms’ investments in the ring network, the connection density

of which is relatively low. The ring network structure of n

firms is shown in Figure 13. There exist two firms whose

direct breaches need k (k = 1, 2, …, n - 1) steps to propagate

Figure 8 Impact of q on each firm’s investment level in Nash

equilibrium point and optimal solution v ¼ 0:1; p ¼ v

cxþ1ð Þb

� �
.

Figure 9 Impact of q on each firm’s investment level in Nash

equilibrium point and optimal solution v ¼ 0:3; p ¼ v

cxþ1ð Þb

� �
.

Figure 10 Impact of q on each firm’s investment level in Nash

equilibrium point and optimal solution v ¼ 0:5; p ¼ v

cxþ1ð Þb

� �
.

Figure 11 Impact of q on each firm’s investment level in Nash

equilibrium point and optimal solution v ¼ 0:7; p ¼ v

cxþ1ð Þb

� �
.
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to firm i, and the two firms are denoted by k1 and k2. Similar to

the case of fully connected network, it can be easily obtained

that the breach probability of firm i in the ring network

is 1 � 1 � pið ÞB n; ið Þ, where Bðn; iÞ ¼
Qn�1

k¼1 1 � pk1q
k

� �

1 � pk2q
k

� �
. The objective function of firm i is

MinFi ¼ xi þ 1 � 1 � pið ÞB n; ið Þð ÞL ð13Þ

We assume aLv ln v
Qn�1

k¼1 1 � vqk
� �2\� 1 to ensure that each

firm’s investment will be nonzero when making decisions

individually. It can be easily derived that the Nash equilibrium

investment xNr and the optimal investment xor satisfy the

following two equations, respectively (the derivation process

is omitted).

vaxNrþ1
Yn�1

k¼1

1 � vaxNrþ1qk
� �2¼ �1

aL ln v
ð14Þ

1þ2 1�vaxorþ1
� �Xn�1

k¼1

qk

1�vaxorþ1qk

 !

vaxorþ1
Yn�1

k¼1

1�vaxorþ1qk
� �2

¼ �1

aLlnv
ð15Þ

Some numerical examples are employed to give an insight into

how a firms’ investment changes when n and q increase in the

ring network, as well as to explore the effect of connection

density on a firm’s investment and expected cost. In the case

of n = 3, the ring network is also the fully connected network.

Hence, we just consider two simple cases: n = 4 and n = 5.

To guarantee that each firm will invest a nonzero amount

when making decisions individually in both network struc-

tures, we set the values of v and q as: v = 0.1, v = 0.3,

v = 0.5, q = 0.1, q = 0.2 and q = 0.3. The other parameters

are selected as follows: L = 200 and a = 0.1. Tables 2 and 3

present the experiment results. We find that similar to the case

of fully connected network, when v and q take relatively small

values, firms in the ring network will also invest less when

making decisions individually and invest more when making

decisions jointly with the increase of n and q. Thus, based on

the results of Tables 2 and 3, we can conjecture that the

properties we get in the fully connected network will also

apply to the circumstance of ring network. Apart from the

Figure 12 Impact of q on each firm’s investment level in Nash

equilibrium point and optimal solution v ¼ 0:9; p ¼ v

cxþ1ð Þb

� �
.

Figure 13 Ring network structure of n firms.

Table 2 Experiment results for the case of n = 4

v q Fully connected network Ring network

Individual decisions Joint decisions Individual decisions Joint decisions

Investment Expected cost Investment Expected cost Investment Expected cost Investment Expected cost

0.1 0.1 6.59763 12.5379 7.94425 12.3086 6.6114 11.9218 7.47303 11.8311
0.1 0.2 6.54691 14.7910 9.32697 13.7029 6.58508 13.0979 8.33244 12.7002
0.1 0.3 6.47546 17.9192 10.7082 15.0900 6.55213 14.5604 9.20471 13.5787
0.3 0.1 16.2954 27.6702 18.8564 27.2418 16.3464 26.5083 17.9779 26.3397
0.3 0.2 16.1045 31.9534 21.4589 29.8878 16.2485 28.7327 19.5866 27.9847
0.3 0.3 15.8274 37.9911 24.0784 32.5301 16.1241 31.5198 21.2319 29.6537
0.5 0.1 27.5390 47.3354 31.9465 46.6190 27.6960 45.3628 30.4845 45.0829
0.5 0.2 26.9358 54.7021 36.3465 51.1578 27.3924 49.1568 33.1798 47.8927
0.5 0.3 26.0110 65.3673 40.8321 55.7172 26.9970 53.9694 35.9717 50.7605
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similarity, in Tables 2 and 3, we find that when firms make

decisions individually, a firm will invest more in the ring

network than in the fully connected network. This is because

the connection density is lower in the ring network, which

means that a firm is less vulnerable to the propagation of other

firms’ breaches and thus the firm’s security investment will be

more favorable to itself. Consequently, when making its own

decision, a firm’s investment will be larger in the ring network

than in the fully connected network. However, Tables 2 and 3

show that if firms make decisions jointly, then each firm will

invest less in the ring network compared to in the fully

connected network. The reason for this less investment is that

in the ring network, the breach probability of each firm is

smaller due to the lower connection density and firms do not

need to invest the same level as in the fully connected network.

Hence, we can infer that a higher connection density decreases

firms’ incentives to invest in security when they make their

own decisions and encourages firms to invest more if they

make decisions jointly. Furthermore, we find that whether the

decisions are made individually or jointly, each firm’s

expected cost is smaller in the ring network, which consists

with intuition and implies that a higher connection density has

a negative effect on a firm’s expected cost. Therefore, under

the premise of satisfying the need for business, firms should

try their best to reduce the network connection density in the

network structure designing practice.

9. Conclusion

Internet of Things is conducive to improving efficiency and

can bring a great amount of convenience to firms, which drives

the emergence of some IoT-related services and the collabo-

ration of relevant enterprises. Besides enabling the communi-

cation among cooperative firms, communication network also

introduces some information security issues.

In consideration of the multiple-step propagation of a

security breach in the network, this paper studies the informa-

tion security investment strategies in both Nash equilibrium

point and optimal solution for all firms. We find that firms will

invest less when determining strategies individually compared

to when making decisions jointly. The increase of n and q will

make each firm more liable to suffer a security breach, whereas

firms will cut down their investment instead of increasing if

they make decisions individually, which will further increase

the information security risk. If all firms in the network

coordinate their strategies, and the Nash equilibrium solution is

nonzero for any q 2 0; 1½ �, then each firm’s investment level

will be higher with the increase of q. Our analyses and

simulation experiment results demonstrate that: (1) When

v takes a small value, the optimal investment increases with the

increase of q. (2) When v takes a moderate value, the optimal

investment increases with the increase of q from 0 to a specific

value, and decreases when q exceeds the specific value. (3)

When v takes a large value, the optimal investment even

decreases with the increase of q. The simulation experiment

also shows that the number of firms (i.e., n) is another factor

which affects the optimal investment. In order to verify the

robustness of our research results, an extension study is

conducted by considering another direct breach probability

function and another network structure.

Based on the theoretic and experimental results, we attain

the following policy implications into firms’ information

security management. First, the optimal investment does not

always increase in q and n. Instead of blindly increasing or

decreasing their information security investments with the

increase of some parameters, firms should determine their

optimal investments according to the concrete conditions.

Second, though a newcomer brings greater knowledge sharing

and more benefits for an existing network, the increase of the

network size increases each firm’s breach probability. Firms in

the existing network should make a trade-off between the

advantages and disadvantages of enabling the newcomer’s

entry. Third, our findings inspire all firms to coordinate their

strategies. A compensation mechanism should be designed to

encourage firms to increase their investments to the optimal

level when they make decisions individually. Fourth, the

network should be configured properly to reduce the one-step

Table 3 Experiment results for the case of n = 5

v q Fully connected network Ring network

Individual decisions Joint decisions Individual decisions Joint decisions

Investment Expected cost Investment Expected cost Investment Expected cost Investment Expected cost

0.1 0.1 6.58026 13.3125 8.47168 12.8417 6.61138 11.9226 7.47372 11.8318
0.1 0.2 6.4849 17.5091 10.5518 14.9340 6.58477 13.1117 8.34152 12.7093
0.1 0.3 6.31511 24.7514 12.6960 17.0832 6.55054 14.6305 9.2423 3.6166
0.3 0.1 16.2306 29.1354 19.8445 28.2513 16.3463 26.5099 17.9792 26.3410
0.3 0.2 15.8651 37.1823 23.7779 32.2311 16.2473 28.7587 19.6036 28.002
0.3 0.3 15.1661 51.5767 27.8604 36.3326 16.1180 31.6535 21.3027 29.7257
0.5 0.1 27.3374 49.8348 33.6041 48.3444 27.6958 45.3656 30.4866 45.0851
0.5 0.2 26.1436 63.8834 40.3064 55.1958 27.3888 49.2012 33.2084 47.9224
0.5 0.3 23.4712 91.0873 47.3436 62.2948 26.9778 54.2004 36.0916 50.8840
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propagation probability q to cut down the total expected cost.

An appropriate connection density of the network should be

determined to satisfy the business need among firms with the

minimal connections.

Some extended studies can be conducted in the future. First,

this model just considers the disadvantage of increasing the

network size. Whereas a larger network size can bring more

business benefits, one can extend our model by taking into

account the benefit of increasing the network size. Second, the

cooperation among firms needs the information sharing of all

firms. Information sharing mechanism can be incorporated

with this model. In addition, some other direct breach

probability functions and other network topologies can be

considered to verify the conclusions in this paper.
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