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Abstract
Traditional revenue management systems are built under the assumption of independent demand per fare. The fare adjustment 
theory is a methodology to adjust fares that allows for the continued use of optimization algorithms and seat inventory control 
methods, even with the shift toward dependent demand. Since accurate demand forecasts are a key input to this methodology, 
it is reasonable to assume that for a scenario with uncertainties it may deliver suboptimal performance. Particularly, during 
and after COVID-19, airlines faced striking challenges in demand forecasting. This study demonstrates, firstly, the theoretical 
dominance of the fare adjustment theory under perfect conditions. Secondly, it lacks robustness to forecast errors. A Monte 
Carlo simulation replicating a revenue management system under mild assumptions indicates that a forecast error of ±20% can 
potentially prompt a necessity to adjust the margin employed in the fare adjustment theory by −10% . Moreover, a tree-based 
machine learning model highlights the forecast error as the predominant factor, with bias playing an even more pivotal role 
than variance. An out-of-sample study indicates that the predictive model steadily outperforms the fare adjustment theory.
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Introduction and motivation

Formerly, most of the traditional airline revenue manage-
ment (ARM) methods assumed independent demand for 
each fare class, meaning that passengers who acquire a spe-
cific fare class are presumed to be willing to purchase solely 
that particular fare class. This assumption was facilitated 
by the fare structures based on sets of restrictions, such as 
minimum stay prerequisites or cancelation charges.

However, the introduction of low-cost carriers led to the 
establishment of restriction-free fares, inducing prevalent 
demand dependencies across booking classes (Vinod 2021). 
Even though independent demand was never a solid assump-
tion, it turned to be almost impracticable. Consequently, 
traditional models assuming only independent demand 
started to overestimate low-fare demand at the expense of 
high-fare demand. This incentivized the systems to account 

for an even greater extent of low-fare demand, inciting a 
higher number of high-fare customers to opt for lower priced 
options, known as spiral down effect (Cooper et al. 2006).

To tackle this issue, novel methodologies emerged to 
account for demand dependencies. In spite of the new fore-
casting methods, the remaining components of the ARM 
system still needed to be adjusted to account for demand 
dependencies. To solve it, Fiig et al. (2010) introduced the 
fare adjustment theory, which allows for the use of previ-
ously developed optimization methods. The fare adjustment 
theory is a theoretical dominant method under perfect con-
ditions. However, in the presence of uncertainty, it might 
fail to be optimal, potentially leading to over-protection and, 
consequently, spoilage.

Due to many uncertainties, it remains challenging to 
achieve high levels of forecast accuracy. Within ARM, there 
is a lack or bad quality of historical booking data, which is 
most of the times adjusted by manual intervention, inaccurate 
demand models, when disregarding key customer decision 
drivers, and possibly inaccurate demand estimates. Beyond 
ARM, there is the inherent demand variability, or even chang-
ing customer behavior. On top of all these aspects, the recent 
global pandemic has brought up unprecedented challenges. 
According to Garrow and Lurkin (2021), the traditional 
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demand forecasting approaches strongly struggled to adapt to 
the high schedule volatility and unstable travel restrictions. 
Thus, it is essential to analyze the performance of the fare 
adjustment theory across diverse scenarios characterized by 
escalating levels of uncertainty.

Forecasting dependent demand

To mitigate the prominent demand dependencies, one of 
the primary methods was Q-forecasting, which proposes to 
forecast demand for the lowest existing fare and scale it to 
higher fares using an exponential sell-up function, which is 
a willingness-to-pay (WTP) estimate (Belobaba 2011). Guo 
(2008) provides an overview of upsell estimation methods. 
Q-forecasting implies fully dependent demand, which is an 
accurate assumption if fare families are built in a way that fare 
products with similar restrictions are clustered into one family, 
following the work by Fiig et al. (2014).

A Poisson arrival process incorporates demand’s stochastic 
nature. For each fare family with booking classes k = 1,… , n , 
sorted by fares in such a way that r1 > r2 > ⋯ > rn , a global 
homogeneous Poisson arrival process with expected value 
� can be considered for the minimum fare ( n ). The Poisson 
arrival process for the lowest available class k is modeled, gen-
erally, as �psupn−k , where psup represents the probability of 
a customer requesting a higher priced booking class if there is 
no availability for the demanded one.

The forecaster needs to derive the probabilities Pt
k
 that a 

customer requests the lowest available fare product k at each 
point in time t . Then, the booking horizon needs to be discre-
tized in such an extent that, at maximum, one request arrives 
per time interval. For that, the booking period is first divided 
into data collection points (DCPs), each of which encom-
passes a set of requests following the above-mentioned Poisson 
arrival process. Current practices to define the DCP structure 
aim at including an approximately equal proportion of demand 
in each DCP, while assuring a constant arrival rate throughout 
a DCP interval.

Each DCP can then be divided into smaller time intervals of 
equal length, each of which follows a Poisson process with an 
expected number of bookings proportional to its length (Lee 
and Hersh 1993). Hence, the global Poisson process for a cer-
tain DCP is further subdivided into an amount of reduced time 
intervals such that

where x is the random variable representing the number of 
requests that arrive during a time interval. � should be neg-
ligible. Figure 1 computes the impact of the number of time 
intervals on P(x > 1) for the expected demand values that 
are used as input for the simulations in next chapters. Note 
that even though the time intervals division occurs at each 

(1)P(x > 1) < 𝜀,

DCP, under the assumption that demand is equally divided 
per DCP, the plot would be identical.

Bid price control

A bid price control is an origin–destination (OD) control for 
network optimization. A bid price is the shadow price for 
the capacity constraint, meaning the incremental network 
revenue that would be reached if the capacity constraint 
was increased by one unit, ceteris paribus. The idea behind 
the bid price is to establish a threshold to make decisions 
on whether to accept or reject a request: originally, a given 
booking class would only be available in a certain OD if the 
corresponding fare was greater than the sum of the bid prices 
of the comprised legs.

In a twofold work, Gallego and van Ryzin (1997) and Tal-
luri and van Ryzin (2004) proposed a dynamic programming 
(DP) method for bid price determination, which considers 
the possibility of sell-up. Modeling the arrival of passengers 
through a Poisson process, which implies that past bookings 
only relate to future demand by absorbing a seat, allows to 
employ a DP formulation and, thus, the Bellman equation to 
calculate the expected revenue as value function:

where N = {1,… , n} is a set of fare products, S ⊆ N a subset 
of fares, rj the revenues from each product j ∈ N such that 
r1 > r2 > ⋯ > rn , Pj(S) the probabilities of choosing prod-
uct j ∈ S when the fares S are offered ( j = 0 denotes the no 
purchase decision), and Vt(x) the value function (maximum 

(2)
Vt(x) = max

S⊆N

{

∑

j∈S

𝜆 Pj(S)(rj + Vt−1(x − 1))

+(𝜆 P0(S) + 1 − 𝜆)Vt−1(x)
}

,

Fig. 1   Impact of number of time intervals in P(x > 1)



348	 T. Gonçalves, B. Almada‑Lobo 

expected revenue) from periods t, t − 1,… , 1 for seat index 
x . Bid prices can be derived as follows:

Yet, in practice, the network DP is impossible to solve for 
real airline networks due to the curse of dimensionality 
(Rauch et al. 2018). Instead, it is common to apply first a 
heuristic decomposition to reduce the state space, and just 
then apply DP to single legs to consider the stochasticity of 
the demand. This heuristic usually considers a deterministic 
linear program to calculate the displacement costs for each 
leg and decomposes the network, normally by prorating the 
OD fare to the enclosed legs.

Fare adjustment theory

Originally, literature stated that a certain fare should only be 
available if its value exceeded the bid price. However, Fiig 
et al. (2010) introduced the fare adjustment theory, which 
supports that the bid price, considered a marginal oppor-
tunity cost, should be compared to the marginal revenue 
instead. The main goal is to maximize revenue for a variety 
of fare structures, including the case of fully unrestricted 
ones, for which the marginal revenue is modeled with an 
upsell probability psupk for each fare k = 1,… , n , with 
demand Dk and revenues r1 > r2 > ⋯ > rn , as follows:

Basically, the fare is being subtracted by a price elasticity 
cost, to take into consideration the possible risk of buy-down 
under dependent demand. This is why the marginal revenue 
is also designated as buy-down adjusted fare (BDAF). In this 
sense, as the customers’WTP rises, the price elasticity cost 
also rises and, thus, the BDAF decreases. Now, comparing 
this BDAF to a given bid price, it is more likely inferior, 
leading to a faster closing of lower fare classes.

Assuming an exponential sell-up, if the interval between 
fare levels is constant, the upsell probability is also constant, 
and the BDAF can be formulated, generally, as rk − margin , 
where margin is a constant.

Simulation framework

The fare adjustment theory is theoretically dominant under 
perfect conditions. However, there are many uncertainties 
in ARM, which might result in a suboptimal performance. 
It might cause over-protection for high-fare customers, ulti-
mately leading to a lack of opportunities for low-fare cus-
tomers and subsequent revenue loss. To investigate this, a 

(3)ΔVt(x) = Vt(x) − Vt(x − 1).

(4)r�k =
rk Dk − rk−1 Dk−1

Dk − Dk−1

=
rk psupk − rk−1 psupk−1

psupk − psupk−1
.

Monte Carlo simulation aims to study the relevance of the 
margin on the calculation of the BDAF, by computing dif-
ferent scenarios for both a psychic and distorted forecasts, 
where margin is adjusted by a factor �:

The simulation starts by calculating the number of time steps 
given the expected demand. With that and the upsell prob-
ability, the forecaster derives the request probabilities for 
each booking class and time step. Then, considering this, the 
capacity and fare structure, the optimization step produces 
the bid price vectors. From there on, simulation runs are 
generated, by creating a set of requests and proceeding to 
the availability control with the comparison of bid prices 
and BDAFs. Resulting expected revenues are gathered until 
a certain confidence level is reached. In this case, the half-
length of the 100(1 − �)% confidence interval (CI) needs to 
fall below a sufficiently small value �:

where the sample mean of the random variable expected 
revenue is assumed to tend toward a normal distribution 
according to the Central Limit Theorem, since thousands 
of independent and identically distributed simulation runs 
are executed.

This simulation relies on a series of underlying assump-
tions. Similar hypothesis can be found, among others, in 
Bitran (2003), Rauch et al. (2018), Fiig et al. (2010), Fiig 
et al. (2012), and Lee and Hersh (1993), and is as follows:

•	 There are no explicit costs associated with the production 
of the final product.

•	 The seller is risk-neutral. The goal is to maximize rev-
enue without considering the variance of the expected 
revenue.

•	 Each compartment is treated as a separate flight with 
fixed capacity.

•	 A n  ex p o n e n t i a l  s e l l - u p  i s  c o n s i d e r e d : 
Dk = Dn psupk = Dn exp(−�(rk − rn)) , according to the 
notation in Equation (4). This means that for a set of fares 
arranged in equal increments, the margin in Equation (5) 
is the same for every fare product.

•	 Cancelations, no-shows, upgrades, multiple seat book-
ings, competition, and cross-price elasticity of demand 
are ignored for the sake of simplicity.

In order to test and evaluate the scenarios, it is essential to 
establish a set of parameters that govern the interactions 
within the simulated environment. Table 1 summarizes the 
base input values that are used in the simulation. It is note-
worthy that, even though the upsell probability may vary 

(5)r�k = rk − margin × (1 + �).

(6)z
�

𝛼

2

�

×
𝜎

√

N
< 𝛾 ,
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along the booking horizon, it is treated as a constant here, 
since the goal is just to test different magnitudes. Regarding 
availability control alternatives, 100 equally spaced scenar-
ios from 50% up to 150% of the original margin are com-
pared. After analyzing Fig. 1, � = 0.01 was selected since it 
indicates a cutoff point where the additional returns in terms 
of P(x > 1) are not worth the additional computational cost. 
For � , the reasoning was similar.

Psychic forecast

Since demand is modeled artificially in the simulation, a 
psychic forecast can be derived by encompassing known 
information regarding the Poisson arrival distribution, vol-
ume of demand, and upsell probability. Figure 2 displays the 
expected revenue for each margin correction. As anticipated, 
the fare adjustment theory retrieves optimal results. Negative 

margin corrections lead to under-protection, resulting in a 
high share of low-yield customers, and vice versa.

Assessing it from a different angle, Pang et al. (2015) 
demonstrate that, for optimal controls, bid prices do not 
exhibit a trend throughout the booking horizon. Figure 3 
plots the average bid price across all simulation runs for each 
time step before departure, and shows that, from a bid price 
quality standpoint, the margin obtained from the fare adjust-
ment theory appears to be the most suitable. It also supports 
the conclusions previously reached, since lower margins dis-
play an evident upward trend due to negligence of upsell 
potential, resulting in premature overselling, while higher 
margins exhibit a downward trend due to over-protecting.

As input parameters are ad-hoc, there is a higher degree of 
uncertainty and, thus, it is of utmost importance to perform 
a sensitivity analysis on them. Figure 4 deep dives into the 
upsell probability parameter and shows that the fare adjust-
ment theory is robust to different levels of upsell potential. 

Table 1   Parametrization of the 
simulation

Parameter Value

Expected demand 250
Capacity 175
Fare structure [500, 400, 

300, 200, 
100]

Upsell probability 0.2
� [−0.50, −

0.51, −
0.52,..., 
0.49, 
0.50]

� 0.01
� 0.05
� 0.2

Fig. 2   Expected revenue by margin correction for psychic forecast

Fig. 3   Bid price development according to margin correction

Fig. 4   Sensitivity analysis on upsell probability for psychic forecast
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Moreover, similar studies for both expected demand and 
capacity lead to identical conclusions.

Distorted forecast

Assuming the psychic forecast as given tends to artificially 
enhance forecast accuracy and diverge from reality (Frank 
et al. 2008). The main objective is, therefore, to analyze the 
performance of the fare adjustment theory under adverse 
conditions.

Hence, a simple forecasting process is considered since 
the main goal is to include the inherent variability of the 
demand (distorted forecast). For that, 1000 flights and the 
corresponding set of requests across the booking horizon are 
created from the same demand process. The same amount 
of random availabilities is generated, and from there a sim-
ple ratio of demand per availability counts is calculated for 
each booking class. This simply disregards the censored 
data, meaning the time steps where booking classes are not 
available, which is a Naïve technique.

Preserving the remaining parameters, Fig. 5 provides 
the results of the simulation and proves that the fare adjust-
ment theory may lack robustness to forecast errors. Now, 
the optimal margin is the one with a −13% correction. Even 
though the delta to the new optimal margin is relatively low 
(approximately 8 units), for a network that operates thou-
sands of flights a year, and for higher yield fares, it might 
have a significant impact. Besides that, poorer forecast accu-
racies might affect it even further.

For a concrete view of the impact of forecast error on the 
optimal margin correction, a sensitivity analysis must be 
performed. However, the introduction of forecast error with 
an average of previous flights makes it harder to quantify it. 
Hence, a new method to induct and quantify forecast error is 
employed: the request probabilities are adjusted by Δ , which 

is composed by random values between a lower and upper 
bounds for the forecast error:

Figure 6 plots the results for three levels of forecast error, 
and suggests that poorer forecast accuracies tend to lower 
optimal margins: forecast errors of ±10% , ±20% , and ±30% 
tend to, respectively, optimal margin corrections of −4% , 
−10% , and −17%.

Even though the variation of input parameters does not 
have an impact in a psychic forecast scenario, as previously 
concluded, it is important to test it under a distorted sce-
nario. In fact, Fig. 7 indicates that varying ranges of upsell 
probability can influence the optimal margin correction. 
Similar studies for expected demand and capacity confirm 
that both variables can also influence the optimal margin. 
Yet, these relationships seem highly complex. Next section 
explores nonparametric models, which offer the flexibility 

(7)�� = � × Δ.

Fig. 5   Expected revenue by margin correction for distorted forecast

Fig. 6   Sensitivity analysis on forecast error for distorted forecast

Fig. 7   Sensitivity analysis on upsell probability for distorted forecast
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required to uncover hidden patterns and nonlinear interac-
tions that may exist among the variables.

Improving robustness to forecast errors

Leveraging the proposed Monte Carlo simulation, it is pos-
sible to generate a representative dataset of optimal margin 
corrections for the combination of parameters exhibited in 
Table 2. It is important to note that expected demand seeks 
higher values than the available capacities in order to ana-
lyze the problem with significant bid prices. Otherwise, the 
margin correction would not pose significant differences 
(only for cases where the BDAF gets negative) and, thus, it 
would not be relevant for this study.

An exhaustive combination of the parameters is done and, 
therefore, a synthetic set with 1440 data points is gathered. 
For each combination, the margin correction that maximizes 
revenue is collected. If two or more margin corrections result 
in the maximum expected revenue, the one with the nar-
rower confidence interval is selected. With this dataset, the 
goal is to employ tree-based machine learning (ML) mod-
els to analyze the interaction between input variables and 
optimal margin corrections. These are effective in capturing 
complex relationships with remarkable performance.

First of all, it is necessary to define the features to use as 
input for the models. Expected demand, capacity, and upsell 
probability are equivalent to their parameter values. Regard-
ing the fare structure, the minimum fare and step between 
fares are considered. Lastly, the forecast error is subdivided 
in a bias (middle point of the interval) and variance (ampli-
tude of the interval) indicators.

To track the bias-variance trade-off, 80% of the dataset 
is allocated for training, and 20% for testing. The training 
data are then further divided into 4 subsets for k-fold cross-
validation, in order to tune the hyperparameters. For tuning, 
a Tree-Structured Parzen Estimator with 100 iterations is 
applied. For model performance evaluation, two metrics are 
analyzed: mean absolute error (MAE) and root mean squared 
error (RMSE)—for hyperparameter tuning and model selec-
tion, RMSE carries more significance, since the curves of 
expected revenue are somewhat flat and, thus, it is worth to 

penalize more larger errors, since smaller errors might not 
imply a significant loss of revenue most of the times.

A random forest (RF) and gradient boosting machine 
(GBM) algorithms are employed. Table 3 indicates that 
whereas the GBM model shows a proper fitting with the 
default hyperparameter values, the RF model is suffering 
from overfitting. The optimization of the number of esti-
mators, maximum depth, maximum number of features in 
each split (only for RF), and learning rate (only for GBM) 
mitigated the overfitting of the RF model and, consequently, 
enhanced the testing performance, while for the GBM the 
improvements were not significant.

Even though the models are very similar, moving forward 
only the RF model is considered, since it has a slightly better 
performance. Now, in order to understand the relevance of 
each input feature in predicting the optimal margin correc-
tion, it is possible to retrieve their importance scores. By 
inspecting the decrease in the sum of squared errors after 
the splits made using a specific feature, the RF model is able 
to depict the most important variables. Accordingly, Fig. 8 
indicates that the forecast error variables are unequivocally 
the most significant ones, especially the bias indicator. These 
are followed by the upsell probability, expected demand, 
capacity, and fare structure related variables, in this order. 
However, their importance scores are substantially lower.

After recognizing the forecast error variables as highly 
important, it is crucial to unravel their specific impact 
on the dependent variable. Partial dependence plots are 
universal methods to illustrate the marginal effect of a 
certain feature on the predicted outcome, after remov-
ing the influence of the other features. Figure 9 imple-
ments it for both the bias and the variance indicators. The 

Table 2   Range of parameters for data generation

Parameter Range of values

Forecast error [−0.4,0.4], [ −0.3,0.3], [ −0.2,0.2], [ −0.1,0.1], [ −0.3,0.1], [ −0.1,0.3], [ −0.2,0.1], [ −0.1,0.2]
Expected demand 200, 250, 300
Capacity 150, 175, 200
Fare structure [300, 250, 200, 150, 100], [500, 400, 300, 200, 100], [700, 550, 400, 250, 100], [600, 

500, 400, 300, 200], [700, 600, 500, 400, 300]
Upsell probability 0.1, 0.2, 0.3, 0.4

Table 3   Models evaluation before and after hyperparameter tuning

Dataset Metric Before tuning After tuning

RF GBM RF GBM

Train MAE 0.0217 0.0497 0.0451 0.0490
RMSE 0.0307 0.0683 0.0613 0.0671

Test MAE 0.0514 0.0502 0.0497 0.0499
RMSE 0.0734 0.0704 0.0699 0.0702
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findings are coherent: for the bias indicator, negative val-
ues mean that the forecasted values are lower than the real 
demand. Thus, the logical outcome is a trend to increase 
the margins, leading to lower BDAFs and, consequently, 
more strict availabilities. On the other hand, positive val-
ues imply over-forecasting, and the natural result is to 
decrease margins, causing more liberal availabilities. As 
for the variance indicator, as it increases, the margins 
need to be lower—the worse the forecast accuracy is, the 
less robust the fare adjustment theory is.

Validation study

This section performs an out-of-sample validation with 100 
generated flights to verify if the optimal margin correction 
being predicted really yields a superior performance when 
compared to the standard fare adjustment theory.

For the upsell probability, expected demand, capacity, and 
fare-related features, the ranges are simply the ones con-
sidered for the training data of the model. However, here, a 
random value between the lower and upper bounds is used 
for each feature. Regarding the forecast error variables, three 
distinct scenarios with increasing inaccuracy are evaluated. 
Scenario A accounts only for variance, with the forecast 
error ranging from ±10 to ±20% . Scenario B is similar, but 
allows the forecast error to range from ±10 to ±40% . Sce-
nario C, besides this level of variance, also considers the 
possibility for bias in the forecast, ranging from −10 to 10%.

Table 4 proves that, in fact, a margin correction over the 
fare adjustment theory produces improved results, although 
with different magnitudes. As expected, the positive impact 
increases from scenario A to C, since the forecast accu-
racy is decreasing and, thus, it is more crucial to correct 
the margins in availability control. Focusing solely on the 
expected values, in scenario A, the margin correction strat-
egy yields an expected revenue 0.0034% higher than the one 
for no margin correction; in scenario B, the difference rises 
to 0.0093% ; and in scenario C, to 0.0144% . Furthermore, 
when inspecting Table 5, it is also possible to assess that 
the margin correction strategy provides enhanced results 

Fig. 8   Feature importance scores

Fig. 9   Partial dependence plots for bias (left) and variance (right) indicators
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regarding the number of passengers, which might represent 
a competitive edge for market share.

Conclusion and recommendations

This article studies the performance of the fare adjustment 
theory under distinct scenarios. Firstly, the Monte Carlo 
simulation validates that this methodology is a dominant 
methodology under a psychic forecast. Moreover, it is robust 
to variations in upsell probability, expected demand, and 
capacity.

Secondly, it proves that the fare adjustment theory lacks 
some robustness to forecast errors. Furthermore, it is clear 
that the greater the inaccuracy, the more the margin needs 
to be adjusted down. Additionally, for each level of forecast 
error, other variables might influence the optimal margin 
correction.

Thirdly, the variables that impact the most the optimal 
margin correction are, in this order, the bias indicator, vari-
ance indicator, upsell probability, expected demand, capac-
ity, and fare-related variables. The forecast error variables 
are markedly the most essential ones, with importance 
scores of 0.47 for the bias indicator, and 0.23 for the vari-
ance indicator. When the bias indicator conveys positive 
values, the standard margins need to be reduced, leading to 
more permissive availabilities (and vice versa); for the vari-
ance indicator, the higher the forecast inaccuracy, the less 
robust the fare adjustment theory is.

For further validation, an out-of-sample study demon-
strates that the strategy with the optimal margin correc-
tion from the predictive model steadily outperforms the 
fare adjustment theory in terms of expected revenue. Even 
though these are low differences, for an airline with thou-
sands of flights a year it can have a significant impact.

As a final point, it is argued that, even though measuring 
forecast accuracy for dependent demand is far from trivial, 
there needs to be a standardized method to compute the 
forecast errors, as the one proposed by Fiig et al. (2014), to 

ensure the accurate functionality of the predictive model for 
optimal margin correction.
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