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Abstract
Specifically addressing different customer segments via revenue management or customer relationship management, lets 
firms optimize their market response. Identifying such segments requires analysing large amounts of transactional data. 
We present a nonparametric approach to estimate the number of customer segments from censored panel data. We evaluate 
several model selection criteria and imputation methods to compensate for censored observations under different demand 
scenarios. We measure estimation performance in a controlled environment via simulated data samples, benchmark it to 
common clustering indices and imputation methods, and analyse an empirical data sample to validate practical applicability.

Keywords Nonparametric statistics · Demand estimation · Demand segmentation · Censored panel data

Introduction

Divulging the demand structure from historical sales data is 
inherently difficult: On the one hand, a multitude of exter-
nal factors, such as competing offers and seasonality, affect 
demand. On the other hand, inventory controls and pric-
ing censor observed sales, so that sales do not reflect actual 
demand. This particularly challenges demand forecasting for 
revenue management and pricing, as reviewed by Azadeh 
(2013).

Nevertheless, accurately identifying customer segments 
provides a crucial foundation for decision-making. It enables 
firms to optimize their market response by targeting specific 
segments based on data rather than intuition.

In one business case, revenue management aims to opti-
mize product offer sets and prices over a fixed sales horizon. 
For air travel, a tourism customer segment may book early 
in the sales horizon, exhibiting low willingness to pay and 
high flexibility with regard to departure times. In contrast, 

a business customer segment may book later, exhibiting 
high willingness to pay and a strong preference for a small 
range of departure times. By catering to different segments, 
revenue optimisation can determine the best number of 
reduced-fare tickets to offer to the tourism segment and the 
best number of high-fare tickets to reserve for the business 
segment (compare Talluri and Van Ryzin (2004), Sect. 11.1). 
In one example of related research, Meissner et al. (2013) 
extend a segment-based deterministic concave programme 
to maximize expected revenues for overlapping customer 
segments. The authors define segments via a consideration 
set of products and assume the number of segments and their 
structure to be given.

In another business case, customer relationship manage-
ment aims to identify potential ‘prospects’, potential custom-
ers that are likely to react positively when being contacted in 
a particular way (see Linoff and Berry (2011), Chapter 4). 
Here, customer segmentation aims to differentiate, for 
instance, a segment of social-media affine customers, who 
are best contacted via social networks, versus a segment of 
more traditional-minded customers, who react best to postal 
mail and phone calls.

In a third example, Müller and Haase (2014) present a 
location planning model for retail facilities based on cus-
tomer segmentation. The authors show that considering 
customer choices within segments improves the planning 
outcomes. They model customer choice with a multinomial 
logit model. The numerical study confirms improvements 
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when considering customer characteristics per segment 
rather than averaging customer characteristics.

Customer segmentation seeks to answer four questions: 1. 
How many segments are there? 2. What is the market share 
per segment with regard to the general population? 3. What 
is the characteristic behaviour per segment? 4. How can an 
individual be identified as belonging to a segment? In this 
paper, we concentrate on the first question. The proposed 
algorithm contributes a way to answer this question based 
on sales observations, supporting further work on all further 
questions that assume a given number of segments.

Existing approaches to demand estimation neglect the 
challenge of estimating the number of segments without 
prior assumptions. For example, Talluri and Van Ryzin 
(2004) state that, whilst customer segmentation is “well 
suited to analytical methods”, it is “still based primarily on 
managerial judgement and intuition” (p. 580).

Assuming the wrong number of customer segments may 
lead to various problems: Underestimation may result in 
aggregating too much information, such that characteristics 
of specific segments are lost. This, in turn, may cause lost 
business opportunities, since any further decision-making 
cannot fully address those characteristics. Overestima-
tion may lead to overfitting. As an extreme example, when 
assuming that each product is bought exclusively by one 
specific customer segment (independent demand), custom-
ers’ substitution behaviour will not be captured accurately.

Furthermore, current application-oriented approaches to 
estimate demand are predominantly parametric. Examples 
include naive heuristics (Weatherford and Pölt 2002; Saleh 
1997), expectation maximisation (Little and Rubin 2014; 
Salch 1997), or projection detruncation (Skwarek 1996). 
However, parametric estimation requires experts to specify 
the underlying distribution. Misspecified distributions may 
inaccurately represent the data and therefore lead to estima-
tion biases or efficiency loss (Härdle and Mammen 1993; 
Agresti et al. 2004; Litière et al. 2008).

Our contribution aims to support and supplement exist-
ing forecasting and optimization procedures that require 
knowledge about the number of customer segments. To this 
end, we present a nonparametric approach to estimate the 
number of customer segments from censored panel data. 
Specifically, we model customer segments via finite mixture 
models. These explain sales observations as compositions 
of several, possibly overlapping mixture components. They 
provide a general framework to implement any type of over-
all distribution that consists of several sub-distributions and 
are therefore fitting to estimate the number of customer seg-
ments. Thus, they can be used to model and approximate any 
arbitrary setting. An introduction to finite mixture models 
can be found in McLachlan and Peel (2000).

Given minimal assumptions and no external knowledge, 
the proposed approach employs sales panel data to abandon 

the need for assuming a specific underlying distribution. It 
requires only panel data of two consecutive buying deci-
sions, which is essentially the most limited type of panel 
data. Thus, it can evaluate markets with scarce panel data, 
such as airline bookings. In addition, we consider situations 
when the firm did not offer a product, thereby censoring the 
sales data. The result provides the basis for further paramet-
ric or nonparametric techniques to estimate the customer 
segment characteristics.

The proposed approach only relies on one unique iden-
tifier, e.g., a customer ID, requiring no further customer 
information. In the light of ongoing discussions concerning 
customer privacy and data storage, using further customer 
specific information for revenue optimisation may meet legal 
restrictions as highlighted by the new European General 
Data Protection Regulation. This motivates methods that 
require comparatively little data, as exemplified here.

As our primary theoretical contribution, we extend a 
nonparametric identification of multivariate mixtures to 
be applicable to censored panel data. Our primary practi-
cal contribution is to evaluate a nonparametric estimation 
approach for censored sales panel data. We perform exten-
sive computational experiments, confronting the proposed 
approach with different demand models and types of panel 
data.

This paper is structured as follows: section “Related 
literature and theoretical background” reviews existing 
research on nonparametric demand estimation, particularly 
in the context of revenue management. Section “Methodol-
ogy” formalizes the proposed approach. Section “Results” 
evaluates the approach on simulated and empirical data sets. 
Finally, Section “Conclusion” discusses our findings and 
addresses managerial implications.

Related literature and theoretical 
background

This section reviews related research on customer segmen-
tation and estimation, particularly in the context of reve-
nue management. We also briefly discuss the more theo-
retical contributions as foundations of the newly proposed 
approach.

With regard to demand estimation for revenue manage-
ment, (Queenan et al. 2007; Ratliff et al. 2008; Azadeh 
2013) review uncensoring methods. Talluri (2009) discusses 
commonly used revenue management demand models and 
their limitations. The author proposes an approach which 
allows for a more flexible way to choose from demand dis-
tributions. Rusmevichientong et al. (2014) focus on improv-
ing expected revenue optimisation by ordering assortments 
according to the products of highest revenue. Kunnumkal 
(2014) proposes a sampling based dynamic programme with 
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randomization to minimize the assumptions on the customer 
choice model.

A promising nonparametric approach to model customer 
choice is presented in Farias et al. (2013). It defines seg-
ments by customers’ preferences over a list of products, 
which are estimated from sales transaction data. The authors 
simulate data for different underlying models such as mul-
tinomial logit, nested logit, and mixed multinomial logit. 
Their approach produces new revenue estimates, which they 
compare to revenue estimates derived from a known under-
lying logit model. However, this nonparametric approach 
models the number of customer segments only implicitly.

Another significant recent contribution to nonparametric 
demand estimation is documented in Van Ryzin and Vul-
cano (2015). The proposed approach requires historical sales 
and availability data as well as an initial set of customer 
segments. Rather than employing common multinomial 
logit or nested logit models, it characterizes customer seg-
ments by preference lists over offered products. An expecta-
tion–maximisation procedure iteratively adds new customer 
segments. However, the authors still rely on assumptions 
about customer segments, e.g., when initially creating one 
segment per product. Haensel and Koole (2011) propose a 
similar approach, but do not address the creation of customer 
segments.

Jagabathula and Vulcano (2015) present a general frame-
work for the nonparametric estimation of preferences from 
panel data. The model characterizes demand as a directed 
acyclic graph (DAG). One of the main assumptions is “iner-
tia of choice”, i.e., once a customer bought a product, they 
will be unlikely to consider other alternatives when next 
purchasing a product of this type. “Trigger events”, such 
as the non-availability of a product or product promotions, 
cause customers to reconsider the initial choice. Clustering 
these DAGs creates a predetermined number of segments.

Azadeh et  al. (2015) propose another nonparametric 
approach to estimate customer choice and the resulting rev-
enue. They represent customer choice by a multinomial logit 
model, in which utilities are product-based standalone vari-
ables, to circumvent parameterising utilities. Customer seg-
ments are characterized by their consideration set and prob-
abilities of purchase. The authors validate their method on 
simulated data sets including 24 different demand parameter 
scenarios. They find that their approach is computationally 
efficient whilst still maintaining acceptable approximations. 
An algorithmic comparison between existing solvers and the 
proposed approach can be found in Azadeh et al. (2015). 
However, whilst being applied to a setting similar to the one 
we consider, the approach does not compute the number of 
customer segments.

Our work complements further estimation and forecasting 
steps as presented in Müller and Haase (2014), Van Ryzin 
and Vulcano (2015), and Jagabathula and Vulcano (2015). 

Rather than assuming a given number of segment, e.g., by 
expert intuition, we estimate this number directly from the 
data. The result can inform the initial set of customer seg-
ments or the number of DAG clusters. In addition, we bench-
mark several approaches to determine the best number of 
clusters based on the common k-means clustering algorithm. 
We also consider alternative data imputation approaches and 
suggest ways of choosing model selection criteria.

The estimation approach proposed here extends the work 
of Kasahara and Shimotsu (2014) and applies it to a prac-
tical demand setting. Kasahara and Shimotsu (2014) pre-
sent a method to estimate a lower bound for the number 
of components, i.e., the number of customer segments, for 
a finite mixture model. The method relies on uncensored 
panel data reporting two consecutive choices from alterna-
tives defined by a continuous attribute. It aggregates panel 
data into a probability matrix and gives a decomposition of 
it. The authors use the idea that the non-negative rank of 
the matrix is equal to the number of components (as shown 
in Cohen and Rothblum (1993)). To identify the rank, they 
apply sequential hypothesis testing based on a rank statistic 
and compare it to an Akaike and a Baysian information cri-
terion for different random variable sets.

In this paper, we present and discuss the approach for 
choices from discrete alternatives rather than alternatives 
characterized by a common continuous attribute. To apply 
sequential hypothesis testing in our setting, we apply the 
rank statistic by Robin and Smith (2000), which is based on 
the characteristic roots of a sample matrix. Here, the idea 
is that the rank of a matrix is equal to the non-zero char-
acteristic roots. We also propose imputation rules to make 
the estimation approach applicable to censored sales panel 
data. We compare estimation performance given sequential 
hypothesis testing, the Akaike, and the Baysian information 
criterion.

Methodology

The proposed approach combines rank estimation of panel 
data as introduced by Kasahara and Shimotsu (2014), a 
characteristic root statistic by Robin and Smith (2000), 
and imputation rules to incorporate censoring. We extend 
(Kasahara and Shimotsu 2014) to study choices from dis-
crete products.

The section first introduces the basics of finite mixture 
models. Subsequently, we present the rank estimation 
approach for data where observed choices considered dis-
crete attributes and explain the estimation procedure, includ-
ing the rank statistic and model selection. Finally, we extend 
the approach to account for censored observations of discrete 
attributes by introducing possible data imputation rules.
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Finite mixture models

Finite mixture models provide a flexible way of modelling 
arbitrary distributions. They assume that the overall popula-
tion, which underlies the observations, consists of smaller 
sub-populations. This assumption frequently applies in the 
real world, e.g., when modelling height of female and male 
persons, purchase behaviour of customers in a retail store, or 
observations of different, overlapping light sources in deep 
space astronomy. Employing finite mixture models lets us 
estimate properties of sub-populations from observations of 
the whole population.

Consider an observation set of N random vectors 
� = (��,… ,��) , where each T-dimensional vector �� is 
composed of random variables Xi

1
,… ,Xi

T
 . Each vector can 

represent the sales data for customer i over all observed 
decisions T. Observations may consist of discrete attributes, 
such as the product bought, or continuous attributes, such 
as the price paid or the product’s quality. In this setting, we 
focus on discrete attributes.

Let p(��) be the probability mass function of the ran-
dom vector �� . For M so-called components, p(��) can be 
expressed as

In our context, M is the number of customer segments. 
Here, pm(��) are component masses and �m ∈ [0, 1] for 
m ∈ {1,… ,M} are mixture weights with

This ensures that observations consist of exactly M compo-
nents. Since pm(��) are densities, it follows that p(��) also 
defines a density. It is called M-component finite mixture 
density. pm are distributions over the attributes of observed 
sales depending on the customer segment m.

Note that the proposed estimation approach relies on 
the formulation given by (1). Therefore, it does not rely 
on any distributional assumptions, as the densities pm are 
arbitrarily chosen. The formula can easily be used to model 
popular choice models, such as the multinomial logit mod-
els, by choosing the densities pm(��) accordingly, but is not 
restricted to such models.

Estimation from observations with discrete 
attributes

Kasahara and Shimotsu (2014) show that using their rank 
estimation procedure on panel data yields a lower bound for 

(1)p
(
�
�
)
=

M∑
m=1

�mpm
(
�
�
)
.

M∑
m=1

�m = 1.

the number of segments. However, the authors focus mainly 
on observed choices based on continuous attributes. To esti-
mate the number of customer segments based on choices 
between discrete products, we adjust the approach as pre-
sented in the following.

We consider sales panel data including two consecutive 
observations xi

t
 , t ∈ {1, 2} , per N uniquely identified custom-

ers i. Observations xi
t
 take values in a finite discrete set S, 

which represents all offered products, and S1 and S2 represent 
the offer set of products for observations t ∈ {1, 2}.

In our context, segments represent groups of individual 
customers, with similar buying behaviours. We model this 
by a consideration set of the form {s1,… , sk} ⊂ S1 ∪ S2 
including k products. All customers in one segment exclu-
sively buy products from this consideration set.

By definition, panel data refers to repeated observations 
of the same customer’s purchase decisions. For instance, the 
IRI Academic Data Set (Bronnenberg et al. 2008) contains 
panel data of different grocery categories over the course 
of several years. For this data set, Jagabathula and Vul-
cano (2015) report that in almost all considered categories, 
the ratio of customers with more than a single transaction 
exceeds 50%. In these categories, the average transactions 
of customers with more than one transaction is higher than 
3.07 and may even be as high as 19.81.

To model repeated customer choices, we suggest a finite 
mixture model following the form of (1). We assume that 
both choice probabilities pm,1 and pm,2 are independent and 
thus factorize,

such that 
∑

m �m = 1 . P(x1, x2) denotes the probability to 
observe a sample (x1, x2) ∈ S1 × S2.

The model is composed of a mixture of M segments with 
mixture weights �m and a product of time-dependent and 
segment-dependent masses pm,t(xt) . In the computational 
study, we assume that pm,1 and pm,2 are constant over time. 
Nevertheless, the model can also account for customer 
behaviour that evolves over time. Causes for this may 
include new market innovations, economic cycles, or a shift 
in market structures.

Example Let customers from two customer segments 
m1 and m2 make two consecutive choices from ten products 
S = {1, 2, 3,… , 10} . At the time of the first choice, the firm 
offers products 1 to 6; at the time of the second choice, it 
offers products 2 to 9. Customers from segment m1 choose 
products from the consideration set {1,… , 7} with uniform 
probability, whereas customers from segment m2 consider 
products {8, 9, 10} . The two customer segments have the 
following market shares: �1 = 0.75 and �2 = 0.25 . Table 1 
illustrates this example of panel data of eight customers. 

(2)P(x1, x2) =

M∑
m=1

�mpm,1(x1)pm,2(x2),
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For instance, x4
2
= 3 describes that customer 4, belonging 

to segment m1 , bought product 3 at the second observation. 
Note that the empirical data does not assign customers to 
segments – this is the task of the further estimation steps 
once the number of segments has been computed.

When customer x1 , from segment m1 , purchases first prod-
uct 6 and subsequently product 2, the resulting panel data is 
(x1

1
, x1

2
) = (6, 2) . The finite mixture model represents this as 

a single event (x1 = 6, x2 = 2) . The complete probability of 
observing event (x1 = 6, x2 = 2) is given by

For simplicity, we assume without loss of generality that 
S1 = {1,… , p} , S2 = {1,… , q} , and p ≥ q , which means 
that we can enumerate products for each consecutive choice. 
We characterize (2) by the following (p × q)-matrix

Let �X(⋅) denote the indicator function on X defined by

From observations, we create an empirical version of matrix 
P

P̂(x1, x2) counts how often a specific observation (xi
1
, xi

2
) 

occurred and divides the result by the total number of obser-
vations N. This corresponds to an empirical probability 
matrix, in which each of the entries Pxi,xj

 indicates the empir-
ical probability of an occurrence of an observation (xi, xj).

The estimation approach proposed here aims to assess 
the number of segments M.It assumes that this number is 
given by the lower bound derived from the rank of P. The 
approach estimates the rank of P using the rank statistic by 

f (x1 = 6, x2 = 2) =

2∑
m=1

�mfm(x1 = 6, x2 = 2)

= �1 ⋅
1

7
⋅
1

7
+ �2 ⋅ 0 =

1

98
≈ 1%

(3)P =

⎛⎜⎜⎝

P(X1 = 1,X2 = 1) ⋯ P(X1 = 1,X2 = q)

⋮ ⋱ ⋮

P(X1 = p,X2 = 1) ⋯ P(X1 = p,X2 = q)

⎞⎟⎟⎠
.

�X(x) =

{
1, if x ∈ X,

0, else.

(4)P̂(x1, x2) =
1

N

N∑
i=1

�(x1,x2)
(xi

1
, xi

2
).

Robin and Smith (2000) on the empirical matrix P̂ . The rank 
of a given matrix is equal to the number of non-zero eigen-
values or characteristic roots. Thus, the so-called character-
istic root test statistic (CRT ) is based on the sorted eigenval-
ues �̂�1 ≥ �̂�2 ≥ ⋯ ≥ �̂�p of the Gram matrix P̂P̂T , where P̂T 
denotes the transpose of P̂ . Note that, for real matrices P̂ , 
the rank (rk) does not change when multiplying them with 
their transpose, i.e., rk(P̂) = rk(P̂P̂T ) = rk(P̂T P̂) . Therefore, 
�̂�q+1 = ⋯ = �̂�p = 0 since q ≤ p . CRT  is defined as

If the real rank of matrix P̂ is M, for m < M follows 
CRT(m) → ∞ , as N → ∞ , since at least one eigenvalue in 
(5) is non-zero. For m = M , CRT (m) has an asymptotic dis-
tribution given by a weighted sum of squared independent 
standard normal variables.

The rank of P̂ has an upper bound of min{|S1|, |S2|} . 
Therefore, this approach can identify at most as many seg-
ments as there are distinct products. Circumventing this 
limitation requires observing more purchase decisions per 
individual. For instance, for four observed decisions with 
product assortments S1, S2, S3, and S4 , an equivalent to (3) 
results when grouping products of two decisions together, 
e.g., creating a (|S1| ⋅ |S2| × |S3| ⋅ |S4|)-matrix.

The proposed approach merely estimates the number of 
customer segments in a market, it does not estimate their 
proportion or their choice behaviour. Therefore, it does not 
assign customers to segments or track shifts in the number 
of customers per segment. The approach only indicates a 
change in the number of segments when it is applied to a 
new set of observations and a whole customer segment dis-
sipated over time without being replaced by a new segment.

Model selection

We consider three alternative ways of estimating the matrix 
rank M using the rank statistic CRT . First, we describe a 
sequential hypothesis testing (SHT). Subsequently, we adapt 
the Akaike (AIC) and Baysian information criteria (BIC) to 
the nonparametric setting.

(5)CRT(m) = N

q∑
i=m+1

�̂�i.

Table 1  Example of panel data 
describing two consecutive 
observations of eight customers 
choosing from ten offered 
products

Customer i 1 2 3 4 5 6 7 8

Observation xi
1

6 4 1 4 8 5 10 1
Observation xi

2
2 6 2 3 9 5 9 3

Customer segment m1 m1 m1 m1 m2 m1 m2 m1
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From the empirical matrix P̂ , F̂CRT
M

 can consistently esti-
mate the asymptotic distribution function of CRT (M). Here, 
F̂CRT
M

 is the distribution function of∑(p−M)(q−M)

i=1
�̂�iZ

2
i
 , where �̂�i are eigenvalues of an auxil-

iary matrix (see the results of Robin and Smith (2000 in 
Appendix A.1) and Zi are standard normally distributed 
random variables.

Based on this, we can formulate a hypothesis testing 
procedure. Let H0 denote the null hypothesis, stating that 
the rank of matrix P is m. Let H1 denote the alternative 
hypothesis, stating that the rank of P is larger than m. 
Therefore, with H0 ∶ rk(P) = m versus H1 ∶ rk(P) > m , 
sequentially performing one-sided tests of H0 against H1 
for m = 0, 1,… , q , starting at m = 0 , estimates rank M.

The first m for which H0 is not rejected is the rank 
estimate M̂:

Here, q̂m
1−𝛼

 denotes the 1 − �-quantile of the cumulative dis-
tribution function F̂CRT

m
 . These quantiles define critical val-

ues, against which the test statistic is measured. If the statis-
tic CRT (m) lies within the region defined by the quantiles, 
m is considered as a candidate for the rank of the corre-
sponding matrix. The minimum M̂ therefore chooses the 
rank m for which the CRT (m) statistic falls below the quan-
tile q̂m

1−𝛼N
 for the first time. � hereby indicates the probability 

of rejecting the true hypothesis H0 ∶ rk(P) = m . Asymptoti-
cally, Robin and Smith (2000) have shown that M̂ is a 
weakly consistent estimator for M, i.e., under fitting condi-
tions for �N , M̂ converges to M. Note that the estimated rank 
is bounded by the smallest dimension, here q, of matrix P̂.

Thus, we established a sequential hypothesis testing 
procedure that enables us to reject estimates of m that are 
too small. The proposed approach relies on the assump-
tion that this lower bound yields the number of segments.

In the nonparametric setting, the original formulations 
of AIC and BIC are not applicable: They involve likeli-
hood functions, but the underlying distributions are not 
known. Therefore, we adapt these criteria as follows:

Here, �̄�(m) is the average of the characteristic roots �̂�i . The 
estimated rank M̂ is then chosen via

M̂ = min
m∈{0,…,q}

{m ∶ CRT(m) ≥ q̂i
1−𝛼N

, i = 0,… ,m − 1, and CRT(m) < q̂m
1−𝛼N

}.

AIC = CRT(m) − 2(p − m)(q − m)�̄�(m),

BIC = CRT(m) − log(N)(p − m)(q − m)�̄�(m),

with �̄�(m) =
1

(p − m)(q − m)

(p−m)(q−m)∑
i=1

�̂�i.

M̂AIC = min
m∈{0,…,q}

AIC(m), M̂BIC = min
m∈{0,…,q}

BIC(m).

“Technical details” section in Appendix states a proposition 
concerning the asymptotic behaviour of the information cri-
teria as introduced in Kasahara and Shimotsu (2014).

Imputing censored sales data

Given scarce capacity or revenue maximising inventory 
controls, a firm may not offer every product at all times. 
The resulting limited offer sets censor observed customer 
choices. Thus, sales observations may not reflect the cus-
tomers’ preferred choice. In the following, we assume that 
censoring causes missing data, where customers choose to 
not purchase any of the offered products.

Furthermore, we assume that the existence of missing 
data is reported as a non-purchase decision, following, 
e.g., assumptions established in Van Ryzin and Vulcano 

(2015). The resulting data distinguishes a period without 
customer arrival from a period with a customer arrival that 
did not lead to a purchase. In a practical setting, non-pur-
chases can be observed, e.g., by analysing click-streams. 
We therefore assume that a customer visits a retailer with 
the intention of buying a product, not just to browse prod-
ucts. This assumption seems reasonable when consider-
ing frequently bought products, such as groceries. For 
products such as cars or airline tickets, click-stream data 
requires additional analysis to differentiate buying and 
browsing behaviour, as discussed for instance in Moe and 
Fader (2004). Furthermore, the proposed approach consid-
ers panel data, which can only be reported for identified 
customers. Any log-in process supporting this identifica-
tion may also support the documentation of non-purchase 
decisions.

We recommend to impute missing data, as a complete 
data set leads to a better estimation of the underlying cus-
tomer choices. When assuming that limited offer sets lead 
to non-purchase decisions and that a good imputation rule 
can yield approximate customer choices reasonably closely, 
imputation increases sample size compared to dropping 
censored observations. Therefore, imputing data enhances 
segmentation performance.

Here, we introduce four rules that impute missing data 
based on availability data. Additionally, we introduce two 
more sophisticated data imputation methods from the lit-
erature, k-nearest neighbours and multiple imputation with 
additive regression.

The four proposed imputation rules assume that products 
are ranked by an ordinal value, such as price or quality, so 
that product 1 has the lowest rank. The offer set at time 
t is characterized by the lowest-ranked product included, 
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at ∈ St , such that xt = at and all higher-ranked products are 
also included. When every product is offered, i.e., at = 1 , no 
censoring results, as every customer can purchase a product 
from their consideration set.

When there is no natural order between products, apply-
ing the basic imputation rules presented in the following 
calls for creating an auxiliary ranking value from product 
attributes. When this is not feasible, other imputation meth-
ods are required. As examples for such more complex mul-
tiple imputation methods, we propose the k-nearest neigh-
bours algorithm or multiple imputation methods.

The most basic rule, none, does not fill in missing obser-
vations. Instead, it introduces a new “no purchase” product, 
such that the dimension of matrix P̂ increases by one. Now, 
each segment has a probability of non-purchase. Increasing 
the dimension of the matrix increases both computational 
effort and the number of potential segments.

The rule lowest replaces every no-purchase observation 
with a sale of the lowest-ranked product regardless whether 
this product was offered at the time of the observation. This 
rule may be applied when assuming that every customer 
would have at least bought the lowest product. Note that 
there is no missing data if all products were offered.

nextLower replaces missing data xi
t
 with the next lower-

ranked product compared to what the lowest-ranked product 
in the offer set, at ∈ St:

This assumes that customers were just barely not willing to 
purchase a product, e.g., given lacking willingness to pay.

The last two rules are based on the mean of the availabil-
ity at time t and the lowest class. meanFloor defines

whereas meanCeiling defines

meanFloor and meanCeiling represent a compromize 
between lowest and nextLower. They only differ if the arith-
metic mean at−1

2
 is not integer. Both assume that the customer 

would buy a product that is ranked roughly between the 
lowest-ranked product in the given offer set and the overall 
lowest-ranked product.

xi
t
= at − 1.

xi
t
= at −

⌊
at − 1

2

⌋
,

xi
t
= at −

⌈
at − 1

2

⌉
.

Finally, the rule deleteObs discards all observations 
which include missing data.

Table 2 exemplifies each rule. Here, the initial observa-
tion is (7,−) , where “−” indicates a non-purchase. For the 
first observed decision t = 1 , a1 = 7 was the lowest-ranked 
offered product, whilst at t = 2 , it was a2 = 8 . As none does 
not account for the idea that customer choices depend on the 
offer set, it does not replace the observation. lowest replaces 
xi
2
 with the lowest-ranked product 1, whilst nextLower fills 

the gap with a2 − 1 = 7 . meanFloor and meanCeiling 
replace it by 8 − ⌊3.5⌋ = 5 and 8 − ⌈3.5⌉ = 4 , respectively. 
deleteObs discards the observation entirely and is therefore 
not represented in the table.

As an alternative to these simple rules, we also consider a 
k-nearest neighbours algorithm. k-nearest neighbours (k-NN) 
is a nonparametric approach to imputing missing data. It 
searches for the k nearest neighbouring data points accord-
ing to a chosen metric. In our setting, we use the Euclidean 
metric and choose k = ⌊

√
N̄⌋ , where N̄  is the number of 

observations that are not non-purchases.
As another more sophisticated approach, we implement 

a multiple imputation (MI) method as described in Van 
Buuren (2012). Multiple imputation relies on three main 
steps: imputing missing data, analysing the completed data 
set, and aggregating results to form a final result. As the 
algorithm itself is relatively involved, we only describe it in 
outline and refer to Van Buuren (2012) for a comprehensive 
overview of multiple imputation.

The idea is to take several samples of the data set with 
missing values, predict those missing values, and finally 
combine the predictions for a final imputation. We imple-
ment the first step via bootstrapping the data set with miss-
ing values: For each variable with missing values, we create 
a sample with replacements from those observations where 
the variable is not missing. Then, we fit an additive model 
to the data set. This model is used to obtain predictions for 
the missing values in the original data set. We draw imputa-
tions from a multinomial distribution whose parameters are 
derived from the fitted models. These steps are done multi-
ple times to account for uncertainty in the models. The final 
step combines the imputed values of the results into a final 
completed data set. To this end, we average over all results 
and take this mean, rounded to the next integer if necessary, 
as the imputed value.

Table 2  Example for missing 
data imputation

Observation None Lowest NextLower MeanFloor MeanCeiling

x
i

1
= 7 a1 = 7 7 7 7 7 7

x
i

2
= − a2 = 8 − 1 7 5 4
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Results

As our primary practical contribution, we evaluate the per-
formance of several variants of the proposed approach in 
practice-oriented settings. To evaluate segmentation accu-
racy, we simulate customer segments where customers 
choose between discrete products. For simulated data, the 
actual number of customer segments is known. This lets us 
assess the estimation accuracy of different model selection 
criteria and imputation methods by comparing the estimated 
rank to the actual number of segments.

We test different numbers of customer segments and 
different sample sizes. First, we analyse observations of 
discrete attributes and compare them to clustering indi-
ces. These results motivate a sensitivity analysis in section 
“Performance sensitivity to degrees of segment similarity”, 
where we vary the overlap between two customers segments 
to analyse the performance sensitivity given structurally 
similar segments. Section “Performance on censored sales 
panel data” presents results from censored simulated sales 
panel data. Finally, we demonstrate the proposed approach’s 
practical applicability on an empirical panel data set of air-
line bookings in section “Analysing an Empirical Data Sam-
ple of Airline Bookings”.

If not stated otherwise, we report findings for 1000 sto-
chastic samples of simulated data for an �-level of 0.05. Esti-
mator performance is measured by the selection ratio of the 
correct number of segments, where we take M̂ as the rank 
estimate of the corresponding model selection:

We processed all analyses in the statistics software R on a 
Quad-Core Intel Xeon CPU E3-1231 v3 3.40GHz with 8GB 
RAM and Windows 10. We employed the package doParal-
lel by Revolution and Weston (2015) to use three out of four 
cores for computations. Depending on the number of obser-
vations per sample and dimension of the observed attributes, 
estimation over 1,000 stochastic samples took between 15 
and 40 minutes. Full results with �-levels of {0.01, 0.05, 0.1} 
are documented in “Supplementary results on estimation 
performance” section in Appendix.

Creating simulated observations

To evaluate the approach for observations of customer 
choice from ten discrete products D, we generate simulated 
observations as follows. First, we define M customer seg-
ments via their consideration set Di ⊂ D . Consideration set 
Di ⊂ D indicates the subset of products segment i would be 
willing to buy. Next, we define the component weight vector 

Selection ratio =
#{M̂ = actual number of segments}

#{stochastic samples}

� = (�1,… ,�M) , which reflects the distribution of custom-
ers over segments. In addition, we set a total number N of 
individual customers to be observed.

The data creation process starts by drawing N realisations 
k of a random variable with distribution � , which represent 
the allocations of the current individual customer to a seg-
ment. Then, each observation is created by uniformly sam-
pling two products with replacement from the consideration 
set Dk.

We define scenarios including three to six customer seg-
ments. Each segment’s consideration set contains more than 
one product, i.e., |Di| > 1 . We identify products with the 
numbers 1 to 10. Segments are specified as follows:

In addition, we generate a scenario with six segments, 
each buying a single product, i.e., |Di| = 1 . Each of the six 
segments considers exactly one of the six products on offer.

Example When creating observations for a market com-
posed of equal parts of customers from segments D1 , D2, 
and D3 , �1 = �2 = �3 =

1

3
 ensures that each customer seg-

ment is equally likely to be selected. Allocation k is drawn 
from a uniform distribution and may turn out to be k = 2 . 
Then, an observation from customer segment D2 is created 
by uniformly drawing two samples from its consideration 
set D2 = {3, 4, 5, 6} with replacement. The result can be 
(x1, x2) = (5, 3) . This process is repeated until the desired 
number of observations has been created.

Estimation performance

For the first analysis, we consider three segments D1,D2, and 
D3 . We follow up by subsequently adding D4,D5, and D6 . 
We refer to the resulting demand scenarios by their highest 
index, D∗

3
 to D∗

6
 . Demand scenario D′

6
 includes six segments, 

where each consideration set includes exactly one product 
so that Di = {i} . An overview of analysed scenarios is given 
in Table 3.

D1 = {1, 2, 3, 4}, D4 = {5, 6, 7, 8},

D2 = {3, 4, 5, 6}, D5 = {2, 3, 4, 5},

D3 = {8, 9, 10}, D6 = {8, 9}.

Table 3  Overview of scenarios with discrete attributes

Scenario Customer segments

D
∗
3

D1,D2,D3

D
∗
4

D1,D2,D3,D4

D
∗
5

D1,D2,D3,D4,D5

D
∗
6

D1,D2,D3,D4,D5,D6

D
′
6

{1}, {2}, {3}, {4}, {5}, {6}
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The component weights are uniformly distributed across 
all segments, so that for M segments � = (1∕M,… , 1∕M) . 
To assess estimation performance, we vary the sample size 
dependent on the number of segments. We report our find-
ings for D∗

3
,D∗

6
, and D′

6
 , as results for D∗

4
 and D∗

5
 are roughly 

similar. All further results can be found in “Supplementary 
results on estimation performance” section in Appendix.

Figure 1 shows the selection ratio of the correct number 
of segments for different sample sizes. Different line patterns 
mark the performance of the three model selection criteria, 
AIC, BIC, and SHT. The x-axis shows the sample size. Note 
that the gaps between data points are not equidistant for D∗

3
 

and D∗
6
 . The y-axis displays the selection ratio. In the follow-

ing, if a model selection criterion overestimates the number 
of segments, we speak of overfitting.

Figure 1a displays the performance of AIC, BIC, and SHT 
for D∗

3
 . Sample sizes include {100; 500; 1000; 5000; 10, 000} . 

AIC performs comparatively well for small samples. How-
ever, it tends to overfit for large samples because it does 
not correct for the sample size. BIC outperforms SHT for 
all sample sizes up to 5000. Given 5000 or more observa-
tions, BIC and SHT both accurately estimate the number of 
segments.

Figure 1b displays the results for D∗
6
 . Sample sizes include 

{500; 1000; 5000; 10, 000;  20, 000;  50, 000} . Again, AIC 
performs well for small samples but overfits for 5000 and 

more observations. BIC and SHT behave as observed for 
D∗

3
 in that both require larger sample sizes. BIC selects the 

correct number of segments in 95% of the cases for 20,000 
observations. SHT needs more than 20,000 observations to 
reach a selection ratio higher than 90%.

In demand scenario D′
6
 , the model selection crite-

ria behave slightly differently. Sample sizes include 
{25; 50; 75; 100} . Across all methods, about 75 observations 
suffice to achieve a selection ratio of over 90% . Figure 1c 
shows that AIC performs best, as its tendency to overfit is 
beneficial in this case. Since the sample includes six prod-
ucts, the probability matrix P̂ can at most have rank six. 
Hence, all estimates have an upper bound of six. Again, BIC 
outperforms SHT for small samples, but the gap closes at 
75 observations.

To benchmark this approach, we evaluate four internal 
cluster validation measures with the common k-means clus-
tering algorithm using the Euklidean metric: the Calinski-
Harabasz index, the Silhouette index, the modified Hubert 
Γ statistic, and the SDbw validity index. When applied to the 
results of k-means given number of clusters k, each of these 
indices claims to point out the best number of clusters. In 
our terms, these correspond to the number of customer seg-
ments in the data.

The validation indices are based on two or three main 
properties of the data set: cluster compactness, cluster 

(a) (b)

(c)

Fig. 1  Discrete attributes—selection ratios for D∗
3
 (a), D∗

6
 (b), and D′

6
 (c)
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separation, and cluster density. The Calinski-Harabasz index 
measures the ratio between separation and compactness with 
a normalization factor including the number of data points 
and the number of clusters (Caliński and Harabasz 1974). 
The Silhouette index is also based on compactness and sepa-
ration, but averages these values over all single data points 
and the normalization is done via the maximum of com-
pactness and separation (Rousseeuw 1987). The SDbw  index 
evaluates clusters by compactness and density and uses 
the maximum of the density of clusters as normalization 
(Halkidi and Vazirgiannis 2001). The modified Hubert  Γ  
statistic is a graphical method (‘knee’ or ’elbow criterion’), 
which calculates the distance between two data points and 
the corresponding cluster centres (Hubert and Arabie 1985).

Liu et al. (2010) discuss advantages and disadvantages 
of the individual indices. As the authors report, only SDbw 
performs well across all tested performance scenarios. Still, 
the remaining indices may perform well in suitable settings 
and are computationally faster than the SDbw index.

We limit the number of considered segments to the inter-
val from two to eight. Applying these indices to the same 
data sets showed that only the Calinski–Harabasz index 
results in a non-zero selection ratio of the true underlying 
number of segments, as shown in Tables 4 and 5. Regard-
less of the number of underlying segments, the SDbw  index 
chooses between six and eight segments with a high selec-
tion ratio of eight, the Silhouette index and the modified 
Hubert  Γ  statistic both always choose two segments.

Even though the Calinski–Harabasz index sometimes 
chooses the correct number of customer segments in sce-
nario D∗

3
 , the selection ratio actually decreases with increas-

ing sample size. This indicates that this index systematically 
underestimates the number of customer segments. With an 
increasing number of customer segments, the index performs 
even worse, differentiating only two segments. This is not 
surprising, as the customer segments partly overlap. This 
overlap lets the resulting observations form fewer distinct 

clusters than there are segments. k-means clustering cannot 
distinguish clusters that are not distinct. Since the cluster 
indices are based on the k-means clustering results, they 
also underestimate the number of segments. We conclude 
that traditional clustering with k-means does not yield good 
results in settings with overlapping customer segments. 
However, the proposed approach performs far better in these 
situations. In the following, we omit results from clustering 
indices when comparing selection ratios for different model 
selection criteria in Fig. 1.

These results motivate a sensitivity analysis to test how 
the proposed estimation algorithm performs when customer 
segments are more or less similar. We present results for 
such an analysis in the next section.

Performance sensitivity to degrees of segment 
similarity

 We assess the performance sensitivity of the estimation 
approach when employing SHT to the similarity of customer 
segments by evaluating overlapping consideration sets. To 
that end, we simulate observations for two customer seg-
ments with varying degrees of overlap in their consideration 
sets. Again, we consider ten products S = {1, 2, 3,… , 10} . 
In the most different case, for overlap 0, customer segment 
D1 considers the first five products D1 = {1, 2, 3, 4, 5} , 
whilst customer segment D2 considers the last five products 
D2 = {6, 7, 8, 9, 10} . We increase the overlap by alternately 
adding a product to each of the segments’ consideration sets, 
i.e., overlap 1 adds product 6 to D1 , overlap 2 adds product 
5 to D2 and so on.

Figure  2 reports the selection ratios for M̂ = 2 and 
� = 0.05 . The x-axis shows the number of overlapping 
products; the y-axis shows the sample size. Darker shades 

Table 4  Selection ratios for Calinski–Harabasz index for D∗
3

M̂ Sample size

100 500 1000 5000 10,000

2 0.49 0.61 0.59 0.6 0.65
3 0.50 0.39 0.41 0.4 0.35
8 0.01 0 0 0 0

Table 5  Selection ratios for 
Calinski–Harabasz index for D∗

6

M̂ Sample size

500 1000 5000 10,000

2 0.94 0.99 1 1
3 0.06 0.01 0 0 Fig. 2  Sensitivity analysis for two segments with increasingly over-

lapping consideration sets
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indicate a low selection ratio, whereas lighter shades indi-
cate a high selection ratio. Additional results can be found 
in “Discrete attributes” section in Appendix.

With increasing sample size, the estimation approach fre-
quently differentiates the two segments, even when the over-
lap increases. Overlaps of 7 and more strongly increase the 
required sample size, as the probability matrix (3) becomes 
more and more homogeneous. Therefore, the estimation 
approach has a higher chance of estimating that there is a 
linear dependency within the matrix and thus it decreases 
the number of estimated segments to one. As expected, a full 
overlap of ten products renders D1 and D2 identical; for this 
case, the proposed approach should and does only identify a 
single customer segment. In “Continuous attributes” section 
in Appendix, we present a supplementary sensitivity analy-
sis, focusing on the approach by Kasahara and Shimotsu 
(2014), which considers choices from alternatives defined 
by a common continuous product.

Performance on censored sales panel data

To assess estimation performance on censored sales panel 
data, we adapt the process of creating simulated obser-
vations. As before, we consider ten products and a uni-
form distribution of customers over M segments, i.e., 
� = (1∕M,… , 1∕M) . Products are ranked on an ordinal 
scale, i.e., product 1 is the lowest-ranked and product 10 
is the highest ranked product. The lowest-ranked product 
offered at time t, at ∈ {1,… , 10} defines the offer set, where 
all higher-ranked products are available. For each sales 
observation, we draw a lowest-ranked offered product from 
a uniform distribution across all products. Subsequently, 
observations are censored: If the observation includes only 
purchases of products ranked equal to or higher than that of 
the lowest-ranked offer, it is not modified. If the observation 
includes lower-ranked products than the lowest-ranked offer, 
the corresponding entry is deleted to create missing data, 
a.k.a. a non-purchase. This procedure censors approximately 
71% of observations.

In the following, we report the results for censored ver-
sions of scenarios D∗

3
 and D∗

6
 (three and six customer seg-

ments). The rules none, nextLower, meanFloor, and delete-
Obs introduced in 3.4 and k-NN, MI are compared by their 
selection ratio given different sample sizes. The remaining 
results for are reported in “Supplementary results on perfor-
mance on censored panel data” Appendix, as lowest yields 
results that are almost identical to the results of none and 
meanCeiling performs worse than meanFloor.

Figure 3 shows the selection ratio of the correct num-
ber of segments given different sample sizes. The selection 
ratios for BIC and SHT are shown in separate rows. We did 
not test AIC due to its overfitting behaviour in the previous 
results. The x-axis shows the estimated number of segments. 

The y-axis displays the selection ratio. The sample size is 
indicated by the shading of the bars.

Figure 3a shows the results for D∗
3
 . SHT and BIC per-

form comparably for up to 5000 samples. Whilst BIC 
accurately estimates the number of segments when using 
rules none and lowest, it underestimates for almost all 
other rules and sample sizes. Note that none essentially 
introduces a new “no purchase” product into the estima-
tion procedure. Therefore, the resulting estimated numbers 
of segments are of questionable quality. We advise against 
not imputing censored data, but still report the correspond-
ing findings by including the none rule.

Notably, deleteObs induces inconsistent results for BIC. 
BIC overfits the number of segments for more than 5000 
observations. This can be explained by the process of cre-
ating simulated data. Since observations from customer 
segments that choose low ranked products are more prone 
to be censored, the estimation may recognize observations 
from these segments as belonging to additional segments. 
For example, when xi

1
= 3 , the observation is censored by 

a1 > 3 in 70% of all cases, whereas xi
1
= 8 is only censored 

by a1 ∈ {9, 10} in only 20% of all cases. Thus, segments 
that choose from low ranked products suffer more censor-
ing, such that a linear dependence within the segment may 
disappear. The larger the sample, the clearer the segment’s 
perceived differences become. Therefore, the number of 
segments is overestimated for large samples.

For SHT, the best selection ratios for large samples can 
be achieved by meanFloor. Analysing the simulated data 
showed that this approach reflects the choice of products 
in this data set, thus the rule performed best here. Whilst 
deleteObs performs worse in terms of selection ratio, it is 
still superior to the remaining rules with regard to large 
samples, especially given 71% censored observations. In 
this setting, censoring seems to be slightly detrimental 
to SHT with none and lowest, as the estimation approach 
tends to overfit for large samples. For smaller samples, 
rules none or lowest yield the best results.

The results show that k-NN is not suitable for the data 
set considered here, as it performs very poorly. Varying 
the weight to favour observations over availabilities does 
not significantly improve the performance of the k-nearest 
neighbours algorithm.

Both k-NN and MI overestimate the number of customer 
segments with increasing sample sizes. k-NN almost uni-
formly imputes observations over all products since it 
weights availability data, which is uniformly generated, 
equally to non-missing observations. This causes the 
algorithm to find those newly imputed customer segments 
and increase the estimated number of segments. It may be 
possible to find optimal weights for each demand setting 
but this would have to depend on the actual underlying 
segments. MI better represents customer segments, as it 
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does not uniformly impute data. Still, since approximately 
71% of all observations are censored, the bootstrapping 
procedure finds little variation in the data sets. Therefore, 
the predicted parameters are of questionable quality. This 
again causes flawed estimates.

Figure 3b depicts the selection ratios for D∗
6
 . In contrast 

to the results for uncensored observations, SHT outper-
forms BIC for all sample sizes and imputation rules. This 
is because BIC underestimates the number of segments, 
whereas SHT shows very promising results. rules none, 
lowest and meanFloor exhibit the best selection ratios with 
more than 80% for 50,000 observations. Again, nextLower 
causes underestimation, whilst deleteObs induces more 
varying results.

k-NN and MI produce similar results for D∗
6
 as for D∗

3
 . 

Both imputation methods do not correctly represent the 
underlying segments and overestimate of their number.

Additionally, we apply each imputation method 1000 
times on different sample sizes to assess the computation 

(a)

(b)

Fig. 3  Selection ratios when imputing censored panel data

Table 6  Median of the computation time for data imputation methods 
in milliseconds

Method N = 500 N = 5, 000 N = 20, 000 N = 50, 000

nextLower 2.05 2.87 4.95 4.97
meanFloor 2.06 2.84 5.03 5.26
deleteObs 0.87 1.17 2.15 3.30
k-NN 7.94 92.62 1366.13 7559.17
MI 153.77 1450.63 14470.60 68175.76
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time. We report the median in milliseconds in Table 6. 
Computation times increase slightly for the proposed rules, 
whilst increasing exponentially for k-NN and the multiple 
imputation method. Thus, we conclude that simple rules may 
be very beneficial to keep the computational effort low on 
larger data sets or practical settings with repeated forecasting 
or optimisation procedures.

Concluding, the estimation approach continues to per-
form well when sales data is censored. The sample size 
required to obtain good performance is similar to that for 
uncensored data. Surprisingly, in contrast to the results for 
uncensored data, BIC only rarely outperforms SHT. Gener-
ally, if customer behaviour can be replicated truthfully by 
imputation, both BIC and SHT are well-suited model selec-
tion criteria. Here, the rule meanFloor showed the best over-
all results. Given no assumptions about customer behaviour, 
none performed unexpectedly well.

Analysing an empirical data sample of airline 
bookings

To demonstrate practical applicability, we apply the estima-
tion approach to an empirical sales panel data set of airline 
booking data. These data were collected via a frequent flier 
programme and was anonymized via replacing customer 
names by a unique identifier. The goal is to assess the num-
ber of segments within the domestic market based on the 
purchased booking classes per customer. In current practice, 
expert knowledge is used to estimate the number of customer 
segments in a market. The proposed approach increases reli-
ance on empirical data, thereby contributing to circumvent 
subjective biases.

The empirical data set considered here contains a total of 
approximately 32,700 flight bookings. The sample includes 
the following attributes: customer identifier, date of pur-
chase, date of departure, origin, destination, and booking 
class. It contains all bookings of domestic flights observed 
during one month in 2015. As opposed to groceries or drug 
stores, airline booking data is an example of scarce panel 
data.

As a preprocessing step, we remove all customers with 
less than two purchases. For odd numbers of purchases, one 
is randomly removed, for more than three purchases, we 
split the observed purchases into pairs. This creates a panel 
data set with 6733 individual observations of two purchase 
decisions. Even though the ratio of repeated purchases to 
total purchases is low, the proposed approach performs well.

The desired level of detail, at which the demand structure 
should be analysed, has to be considered when selecting the 
data set: The estimation approach strictly limits the analysis 
to the considered purchase decisions. For example, questions 
such as, “How many customer segments does the market 
of early morning (6–9 AM) flights between Frankfurt and 

Munich on weekdays in summer contain?”, can be answered 
by limiting the analysed data set accordingly, considering 
only ticket-purchases for flights that travelled from 6 to 9 
AM between Frankfurt and Munich and during the summer.

In total, the data shows that customers booked one of 20 
products are represented by booking classes. Thus, the upper 
bound for the number of segments is 20. Since empirical 
data is noisy, we expect more variance in estimation results 
than on simulated data.

Figure 4 visualizes the data set in terms of purchase 
events. The x-axis and y-axis show the booked class at time 
1 and 2, respectively. Darker shades indicate fewer events, 
whereas lighter shades indicate more events. Deliberate 
blanks indicate there was no event at all. E.g., no customer 
was observed first booking product 12 and subsequently any 
product from 2 to 11 or 13 to 20. Supplementary results 
can be found “Supplementary results for the empirical data 
sample of airline bookings” section in Appendix.

Several factors influence the quality of empirical data. In 
the real world, customer choices are affected by many inter-
nal factors, such as willingness to pay and the reasons for 
travelling, and to external factors, such as product availabil-
ity or competing offers. Therefore, the empirical data set is 
already censored by those factors. However, as data on such 
factors is not included in the data set, we do not know the 
actual degree of censoring. Additionally, different booking 
classes differ in price and product properties, such as being 
refundable, rebookable or offering a particular service level. 
Also, booking classes are not statically tied to a single price.

We do not know the actual number of customer segments 
that underlie the empirical data, precisely because it was not 
generated artificially. Therefore, analysing this data set can 
only demonstrate applicability in terms of computational 

Fig. 4  Observation count of the empirical data sample
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effort and interpretable results. Since the empirical data 
does not contain any information about inherent censoring, 
such as, offer sets at the time of purchase, we do not know 
the extent of the censoring. Still, we expect most empirical 
observations to be already censored in some way. Never-
theless, we deliberately censor the data further to test the 
effect of imputation as described in section “Imputing cen-
sored sales data”. Without information about offer sets, we 
would not be able to test the imputation rules. We apply the 
same censoring process as in section “Performance on cen-
sored sales panel data”. The censored data set contains 4372 
observations of which 1712 are uncensored by the drawn 
availabilities. Thus, we have a censoring rate of approxi-
mately 74% , which is comparable to the simulated data sets.

To create robust estimates, we used bootstrapping:1 We 
resampled the data set 1000 times and report the selection 
ratios of BIC and SHT for �-level 0.05 in Fig. 5. Again, we 
did not test AIC due to its overfitting behaviour. Since the 

previous results showed that the proposed method outper-
formed segmentation via clustering indices, and that simple 
rules outperform sophisticated imputation methods, we do 
not apply these alternatives to the empirical data set. The 
x-axes show the estimated number of segments. The y-axes 
display the selection ratio. Lighter grey bars indicate the 
performance of BIC, whilst darker grey bars show the per-
formance of SHT.

Figure 5a depicts the selection ratios for 6,733 obser-
vations. BIC and SHT both exhibit the highest accurate 
selection ratio at five customer segments with 82% or 61% , 
respectively. The same effect can be seen in Fig. 5b with 
heuristic none and lowest. With none, BIC identifies five 
segments in 81% , whilst SHT does so in 60% of the cases. 
With lowest BIC identifies five segments in 84% , whilst 
SHT does so in 62% of the cases. The only difference in 
the highest selection ratio of BIC and SHT appears with 
nextLower. Here, SHT estimates four segments, whilst BIC 
estimates at five. For meanFloor and meanCeiling, both 
approaches estimate four customer segments. In contrast to 
the simulated data sets, the estimation performance using 
both heuristics is comparable. As before, deleteObs induces 
inconsistent results as its peaks are at a ratio less than 50% 

(a)

(b)

Fig. 5  Selection ratios for the empirical data sample without (a) and with (b) artificial censoring

1 The concept of bootstraps was developed by Efron et al. (1979). It 
refers to increasing limited data sets by sampling new data sets from 
the original one. This is done via resampling with replacement.
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and the number of estimated segments spans from 4 to 10 
for BIC and from 6 to 12 for SHT.

Overall, the results exhibit more variance compared 
to the theoretical scenarios. This confirms our expecta-
tions for empirical data. Still, most approaches select four 
or five customer segments with high ratio, such that the 
estimation yields conclusive results for a given model 
selection criterion and heuristic.

Conclusion

This contribution proposed a nonparametric approach 
to estimate the number of segments from censored sales 
panel data of discrete products. We benchmarked three 
model selection criteria, sequential hypothesis testing 
(SHT), Akaike (AIC), and Baysian information criteria 
(BIC). In addition, we proposed and evaluated several 
approaches for imputing censored data.

The estimation approach employs a rank estimation of 
a probability matrix derived from sales panel data over 
two purchase decisions. The rank yields a lower bound 
for the number of customer segments present in a market, 
where segments were defined over their consideration sets 
of products.

An extensive benchmarking study based on simulated 
data sets helped to assess the performance of the approach 
in a controlled environment. We conclude that the algo-
rithm outperforms estimating the number of segments by 

cluster quality indices calculated for the common k-means 
algorithm.

With regard to selecting the best model selection 
criterion, we found that BIC is best applied to discrete 
attributes, such as product purchases and booking classes, 
whilst SHT performs well for continuous attributes (see 
“Estimation performance for choices characterized by 
continuous attributes” section), such as prices. AIC over-
fitted the models for larger samples across data sets. We 
also analysed the sensitivity of estimation performance 
given different degrees of segment similarity.

As sales data can be expected to be censored, we 
presented four simple rules to impute missing observa-
tions. The numerical study highlights that these simple 
rules outperform more sophisticated imputation meth-
ods not only just in terms of computational effort, but 
also in terms of improving the segmentation algorithm’s 
accuracy.

Finally, we applied the approach to an empirical airline 
booking data set and discussed its practical applicability.

Further research on this subject may consider a more 
sophisticated customer choice model to simulate the sim-
ulated data sets. Furthermore, the handling of availability 
data could be combined with more elaborate uncensoring 
methods to account for missing data points. An empiri-
cal data set with more consistent observations and non-
artificial availability data could be employed to further 
assess the estimation performance in practical settings.

Appendix

Technical details

This appendix adds some technical results for the meth-
odology presented in section “Methodology”. Theorem 1 
describes the asymptotic distribution of critical root statis-
tic CRT .

Let C = (c1,… , cp) be a p × p matrix, where ci is the 
eigenvector of matrix PPT  that belongs to the i-th larg-
est eigenvalue �i and let D = (d1,… , dq) be the q × q 
matrix, where di is the eigenvector of matrix PTP that 
belongs to its i-th largest eigenvalue. Partition both C and 
D such that C = (Cr,Cp−r) = (c1,… , cr, cr+1,… , cp) and 
D = (Dr,Dq−r) = (d1,… , dr, dr+1,… , dq).

Theorem 1 (Robin and Smith (2000)) Assume that

If r0 < q , then statistic CRT(r0) (5) has an asymp-
totic distribution described by 

∑t

i=1
�iZ

2
i
 ,  where 

t ≤ min{s, (p − r0)(q − r0)} ,  a n d  �1 ≥ … ≥ �t  a r e 
the non-zero ordered eigenvalues of the matrix 
(Dq−r0

⊗ Cp−r0
)TΩ(Dq−r0

⊗ Cp−r0
) , and {Zi}ti=1 are independ-

ent standard normal random variables.

Here, d
⟶

 indicates the convergence in distribution and 
A⊗ B denotes the outer or tensor product of matrix A with 
matrix B.

Proposition 1 establishes the convergence properties of 
the information criteria in section “Model selection”.

Proposition 1 (Kasahara and Shimotsu (2014), Proposition 
6) Let

(i)
√
n vec(P̂ − P)

d
⟶ N(0,Ω), where Ω is finite and of rank s, 0 < s ≤ pq,

(ii) If r0 < q ≤ p, the matrix (Dq−r0
⊗ Cp−r0

)TΩ(Dq−r0
⊗ Cp−r0

) is non-zero.

r̃ = arg min1≤r≤q (CRT(r) − f (N)g(r))
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be the selected rank for an information criterion. If 
f (N) → ∞ , f (N)∕N → 0 and P(g(r) − g(r0) < 0) → 1 for 
all r > r0 as N → ∞ , then r̃

p
→ r0.

Here, p
⟶ indicates the convergence in probability.

Now, g(r) = (p − r)(q − r) satisfies these conditions, if 
either (dr ⊗ cr)

TΩ(dr ⊗ cr) > 0 for 1 ≤ r ≤ q or if there 
exists a pair (i,  j) such that (di ⊗ cj)

TΩ(di ⊗ cj) > 0 with 
r + 1 ≤ i ≤ p and r + 1 ≤ j ≤ q for any 1 ≤ r ≤ q . Thus, 
for g(r) = (p − r)(q − r) and f (N) = 2 or f (N) = log(N) , 
respectively, we have AIC or BIC, respectively. Note that the 
assumption f (N) → ∞ is not satisfied by the AIC and there-
fore AIC does not estimate the right rank asymptotically.

Estimation from observations with continuous attributes

If we are interested in segmenting demand when observing 
continuous attributes, we may apply the original continuous 
version of Kasahara and Shimotsu (2014). To do so, we need 
to slightly change the way we count observations. In this 
setting, segments may be interpreted as groups of customers 
that purchase products in similar price categories or products 
with similar quality. Let xi

t
 be observations with continuous 

attributes at time t ∈ {1, 2} . Since attributes are continuous, 
we cannot count the respective observations as individual 
elements, as in (4). To arrange observations into a matrix, 
we create partitions I1

1
, I1

2
,… , I1

n1
 and I2

1
, I2

2
,… , I2

n2
 with 

n1, n2 ∈ ℕ
+ such that 

 denotes the union of disjoint sets. Without loss of general-
ity, choose n1 > n2 . For example, when observing product 
prices, we may create non-overlapping price intervals, in 
which we count observations.

Similar to (4), we define the empirical probability as

Here, we use sample quantiles of observations to partition 
the continuous attribute space. The remaining estimation 
procedure is then performed identically to the discrete case.

Supplementary results on estimation performance

Here, we show a complete recollection of the results. All 
figures contain diagrams for �-levels 0.01, 0.05,  and 0.1.

We report the full results for observations of discrete 
attributes complementing Fig. 1 in the main text. The dia-
grams show the performance of the three model selection 
approaches AIC (dashed line), BIC (dotted line), and SHT 
(solid line). The x-axes show the sample size. Note that sam-
ple sizes vary depending on the number of segments and 
the gaps between data points are not equidistant. The y-axis 
displays the selection ratio of the correct number of seg-
ments (Figs. 6, 7, 8).  

(6)

P̂(x1 ∈ I
1

k
, x2 ∈ I

2

l
) =

1

N

N∑
i=1

�(I1
k
,I2
l
)(x

i

1
, xi

2
),

∀k ∈ {1,… , n1}, l ∈ {1,… , n2}.

Fig. 6  Discrete attributes—selection ratio of M̂ = 3 for D∗
3



409Nonparametric estimation of customer segments from censored sales panel data  

Supplementary results on sensitivity to segment 
similarity

Discrete attributes

This appendix reports results for different degrees of seg-
ment similarity complementing Fig. 2 in the main text. The 
results show selection ratios for M̂ = 2 . The x-axis shows 
the overlap of the two customer segments, the y-axis shows 
the sample size. Darker shades indicate a low selection 
ratio, whereas lighter shades indicate a high selection ratio 
(Fig. 9).

Continuous attributes

This appendix reports results for different degrees of seg-
ment similarity complementing the discussion of continu-
ous attributes “Estimation performance for choices charac-
terized by continuous attributes” section in Appendix. The 
results show selection ratios for M̂ = 2 . The x-axis shows the 
expected value �1

2
 , the y-axis shows the expected value �2

2
 . 

Values towards the lower left corner are closer to �1 = (0, 0) . 
Darker shades indicate a low selection ratio, whereas lighter 
shades indicate a high selection ratio (Fig. 10).

(a)

(b)

Fig. 7  Discrete attributes—selection ratios for D∗
4
 (a) and D∗

5
 (b)
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(a)

(b)

Fig. 8  Discrete attributes—selection ratios for D∗
6
 (a) and D′

6
 (b)

Fig. 9  Selection ratios for two segments with increasingly overlapping consideration sets
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Supplementary results on performance on censored 
panel data

This appendix reports results for censored sales panel data 
of discrete attributes complementing Fig. 3 in the main 
text. The diagrams show the performance of the two model 
selection approaches BIC and SHT. The x-axes show the 
estimated number of segments. The y-axis displays the 
selection ratio. The sample size is indicated by the shading 
of the bars (Figs. 11, 12).

Estimation performance for choices characterized 
by continuous attributes

This appendix assesses estimation performance for obser-
vations differentiated by common continuous attributes C. 
In this case, we define customer segments through bivari-
ate normal distributions, e.g., creating segments with a 
normally distributed willingness to pay. To validate the 
performance in other settings, we also analysed data sets 
with exponentially distributed random variables. On these, 

the approach yields similar results to the results shown in 
this section.

Again, we consider scenarios with up to six segments, 
where the basic approach to generating simulated observa-
tions is similar to that for discrete attributes. We first draw 
the allocation to a segment and then a realisation of a bivari-
ate, normally distributed random variable X ∼ N2(�,Σ) , 
with segment-specific expected value � and covariance 
matrix Σ . Here, we assume uncorrelated random variables 
with variance 1, i.e., Σ = I2 , where I2 denotes the two-dimen-
sional identity matrix. This variable defines the allocated 
segment. The segments are specified as follows:

Note that �2
3
= �2

6
 , such that these two segments generate 

similar data for the second purchase decision. This is delib-
erately chosen to assess the behaviour of the estimation 

Xi ∼ N2

(
(�1

i
,�2

i
),Σi

)
with Σi = I2 and

�1 = (0, 0), �4 = (5, 6),

�2 = (2, 1), �5 = (−2,−3),

�3 = (4, 3), �6 = (−1, 3).

Fig. 10  Selection ratios for bivariate, normally distributed random variables
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Fig. 11  Selection ratios for heuristics with censored panel data and three customer segments

Fig. 12  Selection ratios for heuristics with censored panel data and six customer segments
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approach in such a case. We create data sets from scenar-
ios including three to six customer segments and refer to 
these scenarios by C3 to C6 . Table 7 lists all analysed sce-
narios. Again, the number of observations varies per data 
set, depending on the scenario. As previously, we report our 
findings only for C3 and C6 . We omit any further discussion 
of the results from the benchmarked cluster indices as given 
in section “Estimation performance”, limiting ourselves to 
the conclusion that the findings from applying these indices 
to continuous data are similar to those from applying them 
to discrete data.

Figure 13 shows the selection ratio of the correct num-
ber of segments for different sample sizes. Different line 
patterns mark the performance of the model selection cri-
teria AIC, BIC, and SHT. The x-axis shows the sample 
size. Note that the gaps between data points are not equi-
distant. The y-axis displays the selection ratio.

Figure 13a shows the selection ratio of M̂ = 3 for C3 . 
Sample sizes include {100; 500; 1000; 5000; 10, 000} . AIC 

performs relatively well for small samples, but exhibits 
its known overfitting for larger samples. SHT outperforms 
BIC for smaller samples and is slightly less accurate for 
larger samples. Overall, we can deduce that for three cus-
tomer segments, 1000 individual observations suffice to 
accurately estimate the number of segments with both BIC 
and SHT. At this point, the selection ratio for SHT is 91% , 
whilst BIC selects three segments in 86% of cases.

Because �2
3
 and �2

6
 are identical in C6 , the empirical 

probability matrix P̂ (6) counts these observations in the 
same row or column. This results in a linear dependence 
within the matrix and a decreasing rank. Thus, segments 3 
and 6 are expressed as a single segment in the finite mix-
ture model. Therefore, Fig. 13b shows the selection ratio of 
M̂ = 5 for C6 . Sample sizes include {100; 500; 1000; 5000; 
10, 000; 20, 000}.

Again, AIC performs comparatively well for small sam-
ples, but overfits the number of segments for more than 
5000 observations. Similar to C3 , SHT slightly outper-
forms BIC for smaller samples and is slightly less accurate 
for larger samples. Overall, their performance is compa-
rable for these settings. The analysis suggests that for five 
segments, 5000 observations suffice to obtain reasonable 
estimates. For that sample size, SHT selects five segments 
in 98% of the samples, whereas BIC exhibits a selection 
ratio of 95%.

Table 7  Overview of scenarios 
with continuous attributes

Scenario Customer segments

C3 �1,�2,�3

C4 �1,�2,�3,�4

C5 �1,�2,�3,�4,�5

C6 �1,�2,�3,�4,�5,�6

(a) (b)

Fig. 13  Continuous attributes—selection ratios for C3 (a) and C6 (b)
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In the following, we also report the results for the remain-
ing �-values. Figures 14 and 15 show the performance of 
the three model selection approaches AIC (dashed line), 
BIC (dotted line), and SHT (solid line). The x-axes show 

the sample size. Note that sample sizes vary depending on 
the number of segments and the gaps between data points 
are not equidistant. The y-axis displays the selection ratio of 
the correct number of segments.

(a)

(b)

Fig. 14  Continuous attributes—selection ratios for C∗
3
 (a) and C∗

4
 (b)
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(a)

(b)

Fig. 15  Continuous attributes—selection ratios for C∗
5
 (a) and C∗

6
 (b)

Supplementary results for the empirical data 
sample of airline bookings

This appendix reports results for the empirical data set 
complementing Fig. 5 in the main text. We resampled 
the data set 1000 times and report the selection ratios 

of BIC and SHT. The x-axes show the estimated number 
of segments. The y-axes display the selection ratio. The 
lighter grey bars indicate the performance of BIC, whilst 
the darker grey bars show the performance of SHT. AIC is 
not represented due to its overfitting behaviour (Figs. 16, 
17).
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