
Vol.:(0123456789)

Journal of Revenue and Pricing Management (2019) 18:393–404 
https://doi.org/10.1057/s41272-019-00203-8

RESEARCH ARTICLE

Bullwhip effect in pricing under different supply chain game 
structures

Ziaul Haq Adnan1,2 · Ertunga Özelkan3

Received: 21 April 2018 / Accepted: 12 November 2018 / Published online: 10 July 2019 
© Springer Nature Limited 2019

Abstract
Bullwhip effect in pricing (BP) refers to the amplified variability of prices in a supply chain. This paper analyzes the occur-
rence of BP under three game scenarios (e.g. a simultaneous, a wholesale-leading, and a retail-leading) for three types of 
demand functions (e.g. a log-concave, an isoelastic, and a negative exponential). Cost pass-throughs and BP ratios are cal-
culated analytically for an N-stage supply chain, and then the price fluctuations in various supply chain game structures are 
illustrated through simulations. The results indicate that in the case of optimal markup pricing games, the occurrence of BP 
depends on the demand functions. This study also shows that, BP occurs in varying magnitudes for different types of games. 
Finally, a relation between price variations and corresponding markup profits are also discussed.

Keywords Bullwhip · Price variation · Cost pass-through · Game theory

Introduction

Pricing decision is critical as it is responsible for a signifi-
cant share (e.g. up to 90%) of the final product cost (Daven-
port and Kalagnanam 2001; Noori-daryan et al. 2018). Since 
pricing is directly related to sales, revenues, and profits, it is 
an effective tool to manipulate the demand in the short run 
(Bitran and Caldentey 2003; Lund et al. 2018). Hence, many 
companies (e.g. in airline and hospitality industries) apply 
dynamic pricing strategies to improve customer services and 
to attract strategic customers (Abrate et al. 2012; Bayoumi 
et al. 2013; Lehtimäki et al. 2018; Fiig et al. 2018; Bansal 

and Maglaras 2009). They fluctuate the price to adjust with 
the supply or to cope up with the competition in the market 
(Hönig et al. 2018) that improves social welfare and con-
sumer’s surplus (Chen and Gallego 2018). Thus, it benefits 
both the seller and the buyer (Dugar et al. 2015). However, 
changing prices can be costly as well (Lanquepin-Chesnais 
2014; Kareem Abdul 2018). Moreover, fluctuation of prices 
can lead to a market speculation and an increased uncer-
tainty. It creates information distortions in order quantity 
and inventory (also known as the ‘bullwhip effect (BW)’) 
which adversely affects the supply chain in terms of excess 
inventories, backorders, inefficient use of resources etc. (Lee 
et al. 2004). Therefore, it is necessary to study the fluctua-
tion of price in the supply chain.

Price variation may occur due to internal or external fac-
tors such as managerial decisions, cost changes, scarcity of 
resources, supplier quantity discounts, promotional sales, 
or future market speculations. In this study, we focus on the 
external cost changes and then analyze the impact of the cost 
change on the supply chain optimal pricing. Interestingly, 
the price variation does not remain constant always across 
the various stages of supply chain. It may propagate in an 
increased or decreased fashion towards the downstream (i.e. 
towards the customer side) supply chain depending on the 
demand function, supply chain structure, etc. We name the 
amplified or absorbed variability of prices as the ‘Bullwhip 
effect in Pricing (BP)’. If the variability of price is amplified 
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towards the downstream supply chain, then researchers 
named it as ‘reverse bullwhip effect in pricing (RBP)’ 
(Özelkan and Çakanyıldırım 2009). On the other hand, if 
the variability of price is absorbed towards the downstream 
supply chain, we name it here as ‘Forward Bullwhip effect in 
Pricing (FBP)’. The ‘reverse’ and ‘forward’ directions refer 
to the direction of the classical bullwhip effect in the order 
quantity and the inventory decision. In classical bullwhip 
effect, the variability of the order information towards the 
upstream of a supply chain is higher. Hence, if the vari-
ability of price towards the downstream of a supply chain 
is higher, then the direction is referred as ‘reverse’; on the 
other hand, if the variability of price towards upstream is 
more (i.e. downstream is less), then the direction is referred 
as ‘forward’.

Figure 1 shows several empirical evidences of amplified 
and reduced variations in prices using real market data (from 
USDA and FRED). It shows an amplified variability in the 
case of the U.S. beef market (Fig. 1a), and the potato prices 
in Chicago, IL (Fig. 1b). These are two examples of RBP.

On the other hand, Borenstein and Cameron (1992) found 
a reduced variability in oil retail prices compared to the ter-
minal prices and spot gasoline prices (e.g. standard devia-
tions are 2.91, 4.12, 5.74 respectively). This is an example 
of the FBP phenomenon. Additional empirical examples 
of FBP are observed in U.S. and German coffee markets. 
Leibtag et al. (2007) show that a 10% increase in coffee cost 
results in a 3% increase in the retail price in US. Similarly, 
Bonnet et al. (2013) show that a reduced variability in coffee 
retail prices occurs in the German Market.

Existing research is centered on the occurrence of RBP, 
but not FBP (Özelkan and Çakanyıldırım 2009; Özelkan and 
Lim 2008; Özelkan et al. 2018). To figure out the required 
conditions for the occurrence of RBP, researchers consid-
ered a game theoretic model of a multi-stage linear supply 

chain, where a leader–follower type ‘Stackelberg’ game was 
considered in which a supplier or an upstream supply chain 
player act as the leader. However, previous research did not 
consider the flipped case of the game where powerful retail-
ers (or downstream supply chain players) may act as lead-
ers too. A simultaneous game structure was not considered 
either. Based on previous studies, research questions that 
we are trying to answer in this paper can be summarized 
as follows:

(1) Can bullwhip effect in pricing propagate in the forward 
direction? Alternately, does FBP occur?

(2) Does bullwhip effect in pricing exist if retailers or 
downstream supply chain players act as leaders in 
‘Stackelberg’ game?

In the next section, we review the related literature in 
more detail. Then, we discuss the conditions for the occur-
rence of BP in “Conditions for the occurrence of BP”. In 
“BP in different game leadership structures”, we provide 
analytical results under different game leadership scenarios. 
In “Simulation results”, we present numerical simulation 
examples and relate the BP to price markups under different 
game leadership scenarios. Then finally, in “A discussion 
on price variations and markup profits”, we summarize and 
conclude the research outcomes, and suggest future research 
directions.

Literature review

In this section, we review several streams of literature related 
to the research presented here, such as the effect of price 
variation on bullwhip effect in order quantity (BW), bull-
whip effect in pricing (BP), and “cost-pass-through”.
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The term ‘Bullwhip effect’ was originally introduced by 
Lee et al. (1997). Lee et al. (2004) identified four sources 
of BW i.e. demand signal processing, rationing game, order 
batching, and price variations. Later, other researchers found 
several other sources of BW (Bhattacharya and Bandyopad-
hyay 2011). Among various causes, Paik and Bagchi (2007) 
emphasized price variations as one of three most significant 
causes of BW. Therefore, reducing or managing price vari-
ations may reduce BW.

In the analytical investigation of price-variation, the 
cost-pass-through coefficient is a useful economic tool 
(Weyl 2008; Fabinger and Weyl 2012). Cost-pass-through 
is defined as the marginal rate of price-changes in cost (e.g. 
dp

dc
,
dw

dc
,
dp

dw
 etc.).1 The cost-pass-through reflects the retailer’s 

optimal pricing response to manufacturer’s price change. 
Tyagi (1999) shows the conditions on demand functions to 
conclude about the cost-pass-through. Based on the cost-
pass-through, Weyl (2008) extracted conclusions about prof-
its and markups in a simultaneous and a wholesale leading 
game in a simple supply chain with two stages. However, he 
did not consider the retail leading game. Some researchers 
related the cost-pass-through with profit margins in a dou-
ble marginalization problem (see e.g. Bresnahan and Reiss 
1985; Adachi and Ebina 2014). Empirical research of cost-
pass-through includes Villas-Boas (2007); Nakamura and 
Zerom (2010); Nakamura et al. (2011); Bonnet et al. (2013) 
etc. To study empirical examples of price variation, public2 
and subscription-based3 database can be accessed as well.

Özelkan and Çakanyıldırım (2009) identified the ampli-
fied fluctuation in prices towards downstream supply chain 
and referred it as ‘reverse bullwhip effect in pricing (RBP)’. 
They considered a wholesale-leading Stackelberg game 
(a.k.a. leader–follower game) framework in the supply chain 
and related the cost-pass-through coefficient to capture the 
ratio of price-variances. They derived the conditions on 
price-sensitive demand function for which price-variation 
may be amplified. Özelkan and Lim (2008) extended the pre-
vious analysis considering a stochastic demand function and 
added some stronger and weaker conditions on the demand 
function. Later, Özelkan et al. (2018) derived additional con-
ditions considering joint replenishment and pricing deci-
sions. They derived conditions for the occurrence of RBP 
under infinite horizon newsvendor model and continuous 
review inventory model.

In this research, we primarily follow Özelkan and 
Çakanyıldırım (2009)’s methodology of relating the cost-
pass-through to conjecture the price-variation ratio. We 
extend the analysis by considering different types (retail 
leading and simultaneous) of supply chain pricing games. 
In order to consider simultaneous and retail leading games, 
we follow the markup pricing game model of Wang et al. 
(2013). For the cost-pass-through calculations, we are fol-
lowing the methodology of Tyagi (1999) and Weyl (2008). 
We extend their analysis in the case of a N-stage supply 
chain and relate that to BP.

Conditions for the occurrence of BP

In this section, we discuss the conditions for the occurrence 
of bullwhip effect in Pricing (BP) and relate it with the cost-
pass-through and the concavity coefficient. After that, we 
discuss the occurrence of BP for some common demand 
functions.

Cost‑pass‑throughs and the occurrence of BP

In order to quantify BP, we first check the ratios of standard 
deviations of prices between two stages 

(

�n

�n+1

)

 , referred as BP 
ratios. As shown in Özelkan and Çakanyıldırım (2009), the 
BP ratios are closely related with the cost-pass-through 
coefficients (i.e. rate of change of prices with respect to cost). 
The relation between the cost-pass-through and the BP ratio 
can be explained using a simple example case. Let assume, 
p = ac + b and w = Ac + B , where p denotes the retail price, 
w is the wholesale price, c is the cost, and {a, b,A,B} are 
constants. Hence, dp

dc
= a,

dw

dc
= A, �2

p
= a2 × �

2
c
, �2

w
= A2 × �

2
c
 . 

Therefore, �p
�c

= a and �w
�c

= A . [Here, �2
p
 and �2

w
 are variances, 

and �p and �w are standard deviations of the random retail 
price and wholesale price respectively]. Then, algebraically, 
we can show, �p

�w

=
a

A
 . Thus, we can conjecture the BP ratio 

from the cost-pass-through. (For a formal mathematical proof 
of the relationship, please check the proposition 8 of Özelkan 
and Çakanyıldırım (2009). In their analysis, they assumed p 
and w as random variables and related as p = g(w) . They con-

cluded, if dg(w)
dw

 is greater or equal to a constant (for all w > 0 ), 

then �p
�w

 is also greater or equal to that constant).
Accordingly, if the cost-pass-through is greater than one, 

then the BP ratio is also greater than one, hence ‘Reverse 
Bullwhip effect in Pricing’ (RBP) occurs (Özelkan and 
Çakanyıldırım 2009; Özelkan and Lim 2008). Similarly, if 
the cost-pass-through or BP ratio is less than one, then we 
will conclude that FBP occurs. If the BP ratio equals to one, 
we conclude that “no BP” occurs.

1 Cost-pass-throughs reflect the changes in prices for a unit change in 
cost. We refer dw

dc
 as the cost-pass-through at wholesale price and dp

dc
 as 

the cost-pass-through at retail price.
2 ERS division of USDA, Federal Reserve Economic Data (FRED), 
US Bureau of Labor Statistics (BLS), Dominick’s, ERIM, Bayesm 
etc.
3 IRI dataset, Nielsen, PromoData etc.
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Concavity coefficients and the occurrence of BP

The occurrence of BP can also be identified through check-
ing the value of the concavity coefficient of the demand 
functions. The concavity coefficient is defined as Φ =

qq��

(q�)2
 , 

where q′ is the first order derivative and q′′ is the second 
order derivative of the demand function, q with respect to 
the price, p (Tyagi 1999). It is also referred as the ‘relative 
curvature’ (Cowan 2004). The second order condition on the 
profit function (i.e. profit function to be concave in price) 
ensures that the concavity coefficient, Φ is less than two.4 
However, based on the structure of the demand function, the 
concavity coefficient, Φ can also be greater/less/equal to one. 
The cost-pass-through and the concavity coefficient are 
related such that dp

dw
= (2 − Φ)−1 (Tyagi 1999). Hence, if Φ 

is between 1 and 2, dp
dw

 is greater than one, which results in 
RBP (Özelkan and Çakanyıldırım 2009). Here, in addition, 
we recognize that if Φ is less than one, then, the cost-pass-
through, dp

dw
 and the BP ratio, �p

�w

 are also less than one; thus, 

FBP occurs. Similarly, if Φ = 1 , then, the cost-pass-through, 
dp

dw
 and the BP ratio, �p

�w

 are equals to one which results in the 
“no BP” scenario.

Proposition 1 For a linear supply chain with one retailer 
and one wholesaler in a wholesale leading game framework,

• if Φ =
qq��

(q�)2
< 1, then, dp

dw
< 1 and 𝜎p

𝜎w

< 1; thus, FBP 
occurs.

• if Φ =
qq��

(q�)2
= 1, then, dp

dw
= 1 and �p

�w

= 1; thus, no BP 
occur.

Here, q′ is the first order derivative and q′′ is the second 
order derivative of the demand function, q with respect to 
the price, p.

Proof The proof of Proposition 1 is omitted since the result 
directly follows from previous results cited above.

Occurrence of BP for some common demand 
functions

Concavity coefficients, cost-pass-throughs and occurrence of 
BP for some commonly used demand functions are shown 
in Table 1. It is to be mentioned, some of the results are 
adapted from Özelkan and Çakanyıldırım (2009) and Adachi 
and Ebina (2014).5 Özelkan and Çakanyıldırım (2009) dis-
cussed that for isoelastic demand, RBP always occur; for 
logarithmic demand, RBP occurs if ue−b−1 < p < ue−1 ; 
for linear and logit demands, RBP do not occur. However, 
they didn’t focus on the occurrence of FBP or no BP cases, 

Table 1  BP in some common demand functions

a Alternate representation: a 1

1+exp (p−u)
 (logistic demand). See example in Adachi and Ebina (2014)

b See examples in Cowan (2012) and Adachi and Ebina (2014); 1 − e
−ea−p ∈ (0, 1);a > p > 0 . Type I extreme value distribution is also known as 

Gumbel distribution

Demand functions Concavity coefficients, Φ =
qq��

(q�)2
Cost-pass-through, dp

dw
= (2 − Φ)−1 Occurrence of BP

Log-concave, (a − bp)1∕v

0 < a, b

1 − v < 1 1

1+v
< 1 FBP

Linear, a − bp 0 1/2 FBP

Logita, a eu−p

1+eu−p

0 < a;p < u

1 − exp (u − p) < 1 1

1+exp (u−p)
< 1 FBP

Type I extreme value  distributionb, 
1 − e−e

a−p

;a > p > 0
−e−a

(

−1 + ee
a−p)

(ea − ep) 1

2+e−a(−1+eea−p )(ea−ep)
< 1 FBP

Isoelastic, ap−b
0 < a;1 < b

1 <
b+1

b
< 2 1 <

b

b−1
RBP

Logarithmic, 
a
(

− ln
p

u

)b

0 < a, b;p < u

1 −
1+ln

p

u

b

(

1 +
1+ln

p

u

b

)−1 RBP, FBP, No BP

Negative exponential, 
a exp

(

−p

b

)

1 1 No BP

4 Let, p = retail price, w = wholesale price, and π = retail profit. The 
demand q is a decreasing function in price, therefore, q′ < 0 . The 
retail profit, � = (p − w)q . The first order condition follows: 
d�

dp
= 0 ⇒ (p − w) =

−q

q�
 . Then, the second order condition follows: 

d
2
𝜋

dp2
< 0 ⇒

qq��

(q�)2
< 2.

5 Adachi and Ebina (2014) discussed the amplifying and absorbing 
cost-pass-throughs at retail and wholesale stages.
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which are included in the Table 1 along with some additional 
demand functions.

Proposition 2 Occurrence of BP for some common demand 
functions are as follows

• For a log-concave, linear, logit, and Type I extreme value 
distribution type demand functions, FBP occurs.

• For an isoelastic demand function, RBP occurs
• For a logarithmic demand function, RBP occurs if 

ue−b−1 < p∗ < ue−1; FBP occurs if ue−1 < p∗; and no 
BP occurs if p∗ = ue−1

• For a negative exponential demand function, no BP 
occurs.

Proof Based on the values of the concavity coefficients and 
cost-pass-throughs in Table 1, the conclusions in this propo-
sition are obtained.

BP in different game leadership structures

In this section, we consider a simple linear supply chain 
with centralized demand. Note that a similar setting has been 
considered in previous studies as well (Chen et al. 2000). We 
consider a game theoretical model to identify the optimal 
markup pricing. If the associated manufacturing/procure-
ment cost changes due to external reasons (e.g. tax incre-
ment, change of exchange rate, scarcity of resources etc.), 
then the optimal prices will also change accordingly. Thus, 
both the retail and wholesale prices will fluctuate because 
of the cost changes. We analyze the fluctuation of prices 
and conclude whether RBP or FBP occur in different game 
structures.

We are interested in a price-setting game, where supply 
chain firms (e.g. wholesaler, retailer etc.) decide on their 
prices to maximize their profit. In the next section, we dis-
cuss the game theoretic model.

Markup pricing game description

The wholesaler and the retailer decide on their per-unit 
markups uw and ur , respectively. Both the retailer and 
wholesaler intend to maximize their own profit ΠW and ΠR , 
respectively, by charging higher markups. On the other hand, 
higher markups result to higher prices that adversely affect 
the demand quantity and eventually affect the earned profit. 
Moreover, each of their decisions affect their profits. There-
fore, both the wholesaler and the retailer need to consider 
the reaction functions of each other’s decision.

We consider three types of game scenarios, namely simul-
taneous, wholesale leading and retail leading games between 
the wholesaler and the retailer. In a simultaneous game, we 

solve for the Nash equilibrium where both wholesaler and 
retailer decide on their optimal markups considering another 
player’s markup as unknown. In a sequential game, we solve 
for the Stackelberg equilibrium, considering one player (i.e. 
either the wholesaler or the retailer) as the leader and the 
other as the follower in the decision-making. The leadership 
role (e.g. wholesale-leading, or retail-leading) is externally 
determined by the market type. In the case of a wholesale 
leading game, the wholesaler declares its markup first then 
the retailer decides on its markup. In the case of a retail lead-
ing game, the retailer announces its markup first, and then 
the wholesaler sets its markup. We assume the manufactur-
ing cost, c to be a common knowledge.

The game is solved through backward induction. In the 
case of a wholesale leading game, the wholesaler anticipates 
the retailer’s best action assuming a given wholesale per-unit 
markup. Further considering this anticipated retailer’s action 
(i.e. retail per-unit markup), the wholesaler decides on its 
own profit maximization, and calculates the optimal whole-
sale markup. Finally, for the optimal wholesale markup, the 
retailer decides on the optimal retail markup that maximizes 
the retail profit. Thus, optimal actions are determined for the 
wholesale leading case. Similarly, the retail leading game is 
solved. For the simultaneous game, a response function need 
not be calculated. Rather, optimal actions are calculated by 
solving the system of equations where both the wholesaler 
and retailer have no knowledge of the other party’s actions. 
The games are illustrated in Fig. 2. The detailed formulation 
including objective functions, optimal actions, cost-pass-
throughs etc. are summarized in Table 2.

Analytical results of the cost-pass-throughs and BP ratios 
for 2-stage and N-stage supply chains are discussed in the 
following sections.

Two‑stage supply chain

First, we will consider a two-stage supply chain (i.e. one 
retailer and one wholesaler) and solve the game theoretic 
model for specific demand functions (i.e. log-concave, isoe-
lastic and negative exponential) considering three different 
game scenarios (i.e. simultaneous, wholesale leading and 
retail leading). Table  3 shows the resulting cost pass-
throughs (i.e. dw

dc
 and dp

dc
 ) and the BP ratios (i.e. �p

�w

).
As seen from Table 3, for a log-concave type demand 

function6 [i.e. q = (a − bp)1∕v ], the cost-pass-throughs are 
less than one, and their interrelation can be expressed as 
dp

dc
<

dw

dc
< 1 . In the case of a wholesale-leading and a retail-

leading games, the cost-pass-through of the retail price is 
0.25 for a linear demand; for a convex demand, it is between 

6 For a log-concave demand function, the concavity coefficient 
(

Φ =
qq��

(q�)2

)

 is less than one. For a linear demand, Φ is zero.
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0.25 and 1, and for a concave demand, it is less than 0.25. 
That means, for $1 change in cost, the retail price will be 
changed by $0.25 for a linear demand (or less than $0.25 
for a concave demand). In the case of a simultaneous game, 
the cost-pass-through of the retail price is 1/3 for a linear 
demand. Similarly, for a convex demand, it is between 1/3 
and 1 and for concave demand, it is less than 1/3.

For an isoelastic demand function, the cost-pass-throughs 
are greater than one, and the interrelation can be expressed 
as 1 <

dw

dc
<

dp

dc
 . In the case of wholesale leading and retail 

leading games, the cost-pass-through of the retail price is 
(

l

l−1

)2

 for an isoelastic demand, which is greater than one, 
but the value varies based on the elasticity, l. That means, if 
l = 3, then for $1 change in cost, the retail price will be 
changed by $2.25 . In the case of a simultaneous game, the 
cost-pass-through of the retail price is l

l−2
 . If l = 3 , then for 

$1 increase/decrease in cost, the retail price will be 
increased/decreased by $3.

For a negative exponential demand function (i.e. 
q = a exp (−p∕b) ), the cost-pass-throughs of the whole-
sale and the retail prices are equal to one in all game sce-
narios, which means for $1 change in cost, the wholesale 
and retail prices will be changed by $1. Note that, for a 
negative exponential demand, the concavity coefficient 
equals to one, which means the optimal markup for both 
parties (the wholesaler and retailer) is constant (i.e. $b ) 
as well (Fabinger and Weyl 2012). Thus, for this demand 
function, optimal markup pricing is equivalent to the fixed 
dollar ( $b ) markup pricing. Hence, no RBP or FBP occur.

From the quantitative values of dw
dc

 and dp
dc

 in Table 3, we 

can conjecture the values of �w
�c

 and �p
�c

 . Then, algebraically, 

we can calculate the value of �p
�w

 (see the bottom part of 
Table 3). The BP ratios are less, greater or equal to one for 
a linear, an isoelastic, or a negative exponential demand 
functions, respectively.

For a linear demand, the retail price fluctuates less than 
the wholesale price (Table 3). In the case of a simultane-
ous and a wholesale leading game, the BP ratio, �p

�w

 is 1
2
 . We 

interpret this result as the retail price fluctuates less (i.e. 
50%) compared to the wholesale price. In the case of a 
retail leading game, the BP ratio is 1

3
 ; that means, the retail 

price’s fluctuation is one-third of the fluctuation of the 
wholesale price.

For an isoelastic demand, the retail price fluctuates 
more than the wholesale price. In the case of a simultane-
ous and a wholesale leading game, the BP ratio, �p

�w

 is l

l−1
 , 

where l is the price-elasticity of the demand function. In 
the case of a retail leading game, the BP ratio is l2

l2−(l−1)
 , 

which is also greater than one.
For a negative exponential demand, the retail price fluc-

tuates at the same rate with respect to the wholesale price 
(i.e. �p

�w

= 1).

N‑stage supply chain

In this section, we extend the results for an N-stage supply 
chain (Table 4). N refers the total number of supply chain 

Fig. 2  Game description (2-stage supply chain with markup pricing)
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stages, and n refers to a specific stage in the supply chain. 
Here, we assume that under the wholesale-leading game of 
N-stages, the top most stage commits its action first; lower 
stages react accordingly one by one, and each stage consid-
ers it upper stage’s action as an input. On the other hand, 
under the retailer-leading game, the bottom most stage com-
mits its action first and the upper stages react accordingly. In 
this latter case, each stage considers it lower stage’s action 
as an input. Under the simultaneous game, all stages take 
decision independently.

For a log-concave type demand function (or a linear 
demand as a special case), the cost pass-through at any stage, 
dpn

dc
 is less than one and decreasing towards the downstream. 

In the case of a wholesale leading and a retail leading game, 
the cost-pass-through of the retail price, dp1

dc
 is 1

(v+1)N
 (or, 1

2N
 

for a linear demand). In the case of a simultaneous game, the 
cost-pass-through of the retail price, dp1

dc
 is 1

1+Nv
 (or, 1

1+N
 for a 

linear demand).

For an isoelastic demand function, in the case of a whole-
sale-leading and a retail-leading game, the cost-pass-through 

at the retail price, dp1
dc

 is 
(

l

l−1

)N

 . In the case of a simultaneous 

game, it is l

l−N
 . As an example, if we assume an elasticity of 

l = 5 and the total number of stages in the supply chain as 

N = 4 , then, dp1
dc

 would be 
(

5

4

)4

= 2.44 , in the case of whole-
sale-leading and retail-leading games. In the case of a simul-
taneous game, it would be 5

5−4
= 5 . That means, $1 increase 

in cost will result $2.44 increase in the retail price in the case 
of wholesale-leading and retail-leading games. But in the 
case of a simultaneous game, the retail price will be 
increased by $5 for $1 increase in cost.

Based on the value of the cost-pass-through, dpn
dc

 , the BP 
ratio between two consecutive stages, �n

�n+1

 is also calculated 
in Table 4. As seen in this table, for a linear demand func-
tion, BP ratios are less than one; but for an isoelastic demand 
function, BP ratios are greater than one. In the case of a 

Table 2  Game description

Wholesaler leading game Retail leading game

Leader anticipates the follower’s 
reaction

The retailer considers the wholesale markup, uw as given 
and decides on its own markup, ur

max
ur

∏

R = ur ∗ q
�

w, ur
�

= ur ∗ q
�

c, uw, ur
�

s.t. ur > 0, q > 0

⇒ ur
|

|

�ΠR
�ur

=0
=

−q(c,uw,ur)
�q(c,uw,ur)

�ur

The wholesaler considers the retail markup, 
ur as given and decides on its own markup, 
uw.

max
uw

∏

W = uw ∗ q
�

c, uw, ur
�

s.t. uw > 0, q > 0

⇒ uw
|

|

�ΠW
�uw

=0
=

−q(c,uw,ur)
�q(c,uw,ur)

�uw

Leader’s objective max
uw

ΠW = uwq
(

c, uw, ur
(

uw
))

s.t. uw > 0, q > 0

max
ur

ΠR = urq
(

c, uw, ur
)

s.t. ur > 0, q > 0

Leader’s decision
u∗
w
|

|

�ΠW
�uw

=0
=

−q(c,uw,ur(w))
�q(c,uw,ur (w))

�uw

u∗
r
|

|

�ΠR
�ur

=0
=

−q(c,uw,ur)
�q(c,uw,ur)

�ur

Follower’s decision
u∗
r
=

−q(c,u∗w,u
∗
r )

�q(c,u∗w,u∗r )
�u∗r

u∗
w
=

−q(c,u∗w,u
∗
r )

�q(c,u∗w,u∗r )
�u∗w

Optimal price w(c) = c + u∗
w
(c)

p(c) = w(c) + u∗
w
(c)

w(c) = c + u∗
w

(

c, u∗
r
(c)

)

p(c) = c + u∗
w

(

c, u∗
r
(c)

)

+ u∗
r
(c)

Cost-pass-through dw

dc
,
dp

dc
,
dp

dw

dw

dc
,
dp

dc

Simultaneous game

Wholesaler’s decision Retailer’s decision

Objective max
uw

ΠW = uw ∗ q
(

c, uw, ur
)

s.t., uw > 0, q > 0

max
ur

ΠR = ur ∗ q
(

w, ur
)

s.t., ur > 0, q > 0.
Decision

uw
|

|

�ΠW
�uw

=0
=

−q(c,uw,ur)
�q(c,uw,ur)

�uw

ur
|

|

�ΠR
�ur

=0
=

−q(w,ur)
�q(w,ur)

�ur

=
−q(c,uw,ur)
�q(c,uw,ur)

�ur

Solving the system of equations u∗
r

u∗
w

=
�q(c,u∗w,u

∗
r )

�u∗
w

/

�q(c,u∗w,u
∗
r )

�u∗
r

= 1

Optimal price w = c + u∗
w
(c) p = c + u∗

w
(c) + u∗

r
(c)

Cost-pass-through dw

dc

dp

dc
,
dp

dw
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wholesale-leading game, BP ratios are constant. For the lin-
ear demand function, it is ½ and for the isoelastic demand 
function, it is l

l−1
 . In the case of a simultaneous and a retail 

leading game, the ratio is decreasing in n. In the case of a 
simultaneous game, the BP ratio does not depend on the 

number of total supply chain stages. That means, in the case 
of a simultaneous game, irrespective of the total number of 
stages, the BP ratio between the retail and the wholesale 
price (i.e. between the bottom two stages, �1

�2

 or �p
�w

 ) will be 
the same. Figure 3 illustrates the BP ratios for a 4-stage 

Table 3  Cost-pass-through and BP ratio (2-stage supply chain)

Demand functions Cost-pass-throughs Relation RBP or FBP?

Simultaneous game Wholesale leading 
game

Retail leading game

dw

dc

dp

dc

dw

dc

dp

dc

dw

dc

dp

dc

Log-concave, q = (a − bp)1∕v

 Linear (v = 1) 2

3

1

3

1

2

1

4

3

4

1

4

dp

dc
<

dw

dc
< 1 FBP

 Convex (v < 1) >
2

3
>

1

3
>

1

2
>

1

4
>

3

4
>

1

4

 Concave (v > 1) <
2

3
<

1

3
<

1

2
<

1

4
<

3

4
<

1

4

Iso-elastic, q = ap−l, (l > 2) l−1

l−2

l

l−2

l

l−1

(

l

l−1

)2 l2−l+1

(l−1)2

(

l

l−1

)2
1 <

dw

dc
<

dp

dc
RBP

Negative exponential 
q = a exp

(

−p

b

)

1 1 =
dw

dc
=

dp

dc
No RBP/FBP

Demand functions BP ratio, �p
�w

Relation RBP or FBP

Simultaneous 
game

Wholesale leading 
game

Retail leading 
game

Linear, q = (a − bp) 1

2

1

2

1

3

𝜎p

𝜎w

< 1 FBP

Iso-elastic, q = ap−l, (l > 2) l

l−1

l

l−1

l2

l2−(l−1)

𝜎p

𝜎w

> 1 RBP

Negative exponential, 
q = a exp

(

−p

b

)

1 �p

�w

= 1 No RBP/FBP

Table 4  Cost pass-through and BP ratio (N-stage supply chain; Total stage N, any stage n, top stage n = N, bottom stage n = 1)

Demand functions Cost pass-through, dpn
dc

Relation RBP or 
FBP?

Simultaneous game Wholesale leading Retail leading

Log-concave, q = (a − bp)1∕v 1+(n−1)v

1+Nv

1

(v+1)N−n+1
1 −

∑

i=n…N

v

(v+1)i
dp1

dc
< … <

dpN

dc
< 1 FBP

Linear, q = (a − bp) n

1+N
1

2N−n+1
1 −

∑

i=n…N

1

2i

Isoelastic, q = ap−l, (l > 2) l−(n−1)

l−N
; l > N

(

l

l−1

)N−n+1

; l > 1 1 +
∑

i=n…N

1

l−1

�

l

l−1

�i−1

; l > 1 1 <
dpN

dc
< … <

dp1

dc
RBP

Negative exponential, 

q = a exp
(

−p

b

)

1 dpN

dc
= ⋯ =

dp1

dc
= 1 No BP

Demand functions BP ratio, �n

�n+1

Relation RBP or FBP?

Simultaneous game Wholesale leading Retail leading

Linear, q = (a − bp) n

n+1
1

2

1+2N−2N−n+1

1+2N−2N−n

𝜎n

𝜎n+1

< 1 ; increasing in n FBP

Isoelastic, q = ap−l, (l > 2) l−(n+1)

l−n

l

l−1
lN−(l−1)N−n+1(ln−1−(l−1)n−1)

lN−(l−1)N−n(ln−(l−1)n)

𝜎n

𝜎n+1

> 1 ; increasing in n RBP

Negative exponential, 
q = a exp

(

−p

b

)

1 �n

�n+1

= 1 No BP
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supply chain, where �1,… , �4 are the standard deviation of 
prices at various stages [1 is the bottom stage; 4 is the top 
supplier stage], and �c is the standard deviation of the top 
supplier’s procurement cost.

Simulation results

In this section, we run simulations to illustrate the analytical 
results presented in “BP in different game leadership 
structures”. For illustration purposes, we will consider a 
two-stage supply chain (with a retailer and a wholesaler). 
For the simulations, we randomly fluctuate the cost, 
calculate the optimal wholesale and retail price for each 
random cost. The parameters (e.g. the distribution function, 
the demand function parameters, the upper or lower limit 
of costs, number of stages etc.) for the simulation are also 
chosen randomly (but within the limit of the constraints) 
for illustration purposes. Similar results can be obtained for 
other parameters as well.

In this simulation, the cost is uniformly distributed 
between $8 and $10. The demand functions are q = 20 − p 
(linear), q = ap−2.5 (isoelastic), and q = a exp (−p∕8) (neg-
ative exponential). We run the simulation for 300 times. 
Then, finally compare the standard deviation of the costs, 
the wholesale prices and the retail prices. Here, we consider 
nine scenarios (as a combination of three demand functions 
and three game structures). The results of this simulation 
are summarized in Table 5 and illustrated in Figs. 4 and 5.

For a linear demand, the standard deviation of the retail 
price is less than the standard deviation of the wholesale 
price and the cost. Hence, the price variation is absorbed. In 
the case of a simultaneous, a wholesale-leading, and a retail-
leading game, the ratio of standard deviations of the retail 
price and the wholesale price are 0.202

0.403
= 0.501 , 0.151

0.302
= 0.5 , 

and 0.151
0.454

= 0.33 respectively. These ratios match very closely 

with the BP ratio mentioned in Table 3 as expected.
For an isoelastic demand, the standard deviation of the 

retail price is greater than the standard deviation of the 
wholesale price and the cost. Hence, the price variation is 
amplified. In the case of a simultaneous, a wholesale- 
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Fig. 3  BP ratios (4-stage) [1 is the bottom stage; 4 is the top supplier stage]

Table 5  Results of simulation 
(markup pricing game)

Demand functions Simultaneous Wholesale leading Retail leading

�c �w �p �w �
p

�w �p

Linear, q = 20 − p 0.605 0.403 > 0.202 0.302 > 0.151 0.454 > 0.151
Isoelastic, q = ap−2.5 1.814 < 3.024 1.008 < 1.680 1.277 < 1.680
Negative exponential, 
q = a exp (−p∕8)

0.605
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leading, and a retail-leading game, the ratios of standard 
deviation of the retail and wholesale price are 3.024

1.814
= 1.667 , 

1.68

1.008
= 1.667 , and 1.68

1.277
= 1.316 respectively. Analytical 

results of BP ratios from Table 3 are l

l−1
=

2.5

2.5−1
= 1.667 and 

l2

l2−(l−1)
=

(2.5)2

(2.5)2−(2.5−1)
= 1.316 and. Again, the results of 

Table 5 match the results of Table 3 as expected.

From Fig. 4, it is clearly visible that, for a linear (or an 
isoelastic) demand, the price variability is decreased (or 
amplified) towards the downstream supply chain. For a 
negative exponential demand, the variability of the cost, the 
wholesale price, and the retail price remain constant (Fig. 5).

We want to remark that this section is meant to be 
for illustration purposes only and not meant to present a 
comprehensive numerical experiment since the results are 
already analytically driven and proven in “BP in different 
game leadership structures”. More specifically, here we 
first calculate the cost-pass-throughs and decide on the 
occurrence of BP analytically (“BP in different game 
leadership structures”). Then through the simulation, we 
obtain standard deviations and variances, and illustrate the 
amplified or absorbed fluctuation of prices that conform the 
analytical results of the occurrence of BP. In the simulation, 
a uniform cost distribution is assumed. Hence, the cost 
pattern looks the same through all the runs. The simulation 
would be more comprehensive if other types of distributions 
are considered as well.

A discussion on price variations and markup 
profits

Comparing the price variations among various game 
structures (Fig. 4, and Table 5), it is seen that the retail 
price variability is same in the case of a wholesale-leading 
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and a retail-leading game for both a linear and an isoelastic 
demand. But in the case of a simultaneous game, the retail 
price variability increases compared to other game scenarios. 
Because, for a linear demand, the more the markups the 
less the variability of prices. In other words, the closer the 
price to the cost, it captures more of the variability of the 
cost. For a linear demand, the far the price from the cost, 
the variability is absorbed more. On the other hand, for 
an isoelastic demand, the price variability is amplified for 
higher markups. In other words, the closer the price to the 
cost, the variability is less.

Regarding the comparative markups under different game 
leadership, it is known from the literature (Moorthy and 
Fader 1989) that the concept of strategic complementarity 
or substitutability plays an important role here. For a linear 
demand, the optimal retail price is less under a simultaneous 
game compared to leader–follower games. On the other 
hand, for an isoelastic demand, it is vice versa.

Hence, for a linear demand, the optimal price is closer to 
the cost (i.e. less markup) under a simultaneous game com-
pared to the Stackelberg games; thus, it shows less absorp-
tion in variation of prices. For an isoelastic demand, the 
optimal retail price is far from the cost (i.e. greater markup) 
under a simultaneous game compared to the Stackelberg 
games; thus, it shows more amplification in variability of 
prices.

Conclusion and future directions

In this paper, after discussing the conditions for the occur-
rence of BP, we considered a markup-pricing model with 
three game rules (e.g. simultaneous, wholesale leading, and 
retail leading) and three types of demand functions (e.g. log-
concave type (linear as a special case), isoelastic, and nega-
tive exponential). We showed that an isoelastic demand gives 
RBP, a log-concave (or linear as a special case) demand and 
a logit demand give FBP, a negative exponential demand 
gives no BP, a logarithmic demand gives RBP, FBP, or no 
BP based on the range of the optimal price. Moreover, for a 
linear demand, higher markups correspond to less price vari-
ability; on the other hand, for an isoelastic demand, higher 
markups correspond to higher price variability. The supply 
chain game comparison shows, that the demand function 
dictates the occurrence of BP but the cost-pass-throughs 
and BP ratios change under different game structures. We 
extended the cost-pass-through analysis for a N-stage sup-
ply chain and conjecture the BP ratios for a N-stage supply 
chain. The results show that a linear and isoelastic demand 
functions give constant cost-pass-throughs and BP ratios 
in the case of a wholesale leading game; but in the case 

of a simultaneous and a retail leading game, the cost-pass-
through and BP ratio depend on the number of stages.

The results can aid managers in their pricing decisions. 
Since the occurrence of BP is affected by the demand func-
tion and market structure (e.g. game rule, number of stages 
etc.), managers can have an idea of the expected price 
fluctuations at the consumer level for a particular market. 
Moreover, the derived cost-pass-throughs also reflect on how 
retailers react to suppliers’ price-discounts or cost-increases.

Future research can include analysis of supply chain 
contracts (such as revenue-sharing, buyback contracts etc.), 
and consideration of competing retailers. The relationship 
between the occurrence of BP and the supply chain profits 
can also be investigated. Also, a more advanced perhaps 
integrated model may be developed to analyze the inter-
action between bullwhip effect in price (BP) and bullwhip 
effect in order quantity (BW).
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