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Abstract Many airlines have been actively looking into

class-free inventory control approaches, in which the

control policy consists of dynamically varying prices over

a continuous interval rather than opening and closing fare

classes. As evidenced both in literature and in practice, one

of the big challenges in this setting is the trade-off between

policies that learn the demand parameters quickly and

those that maximize expected revenue. Starting in a typical

single-leg airline revenue management context, we inves-

tigate the applicability of recent advances in the area of

optimal control with learning. We consider a demand

model where customers’ maximum willingness-to-pay has

a Gaussian distribution and we analyze several estimation

and pricing approaches that include the expectation–max-

imization and a scheme of active generation of price

variability. We show that our model ensures discovery of

the underlying customer behavior while providing an

appropriate level of expected revenue via a simulated

example.

Keywords Dynamic pricing � Exploration–exploitation �
Revenue management � Regret � Expectation–

maximization � Simulation

Introduction

Today airlines around the world are motivated to redefine

the product offering methodology and customer experience

through dynamic pricing. With the antiquated architecture

present today, airlines can only file a limited number of

price points for limited booking classes (on average 10–16

per cabin) that often end up with large gaps for each

market. As a result, when the fare class of $300 is not

available, the consumer is offered the next higher class of

$400. However, if the consumer’s maximum willingness-

to-pay (WTP) is $350, they go elsewhere. In the same

example, the consumer could be offered the optimal

dynamic fare of $350 (or less), which would satisfy the

consumer while driving more revenue for an airline. The

industry’s new distribution capability (NDC) will now

allow for ‘‘continuous pricing’’ and ‘‘bucket-less distribu-

tion’’ and hence creates possibilities for dynamic pricing

without the traditional constraints of a booking class (Isler

and D’Souza 2009; Westermann 2013). Thus, a dynami-

cally generated optimal price (based on customer’s WTP,

choice set, as well as time-to-departure, and capacity left

for the specific flight, etc.) becomes the determining factor

in assigning seats and essentially makes integrating pricing

and capacity allocation possible.

The successful implementation of dynamic pricing is

contingent on effectively modeling the underlying market

demand as a function of the offered price, and a good

demand function on the other hand relies on well-modeled

customers’ WTP (note in a competitive environment the

WTP can be affected by other alternatives presented to the

passenger). Built upon the success of the recent WTP

model by Kambour (2014), in this article we model a

customer’s WTP as a normal distribution with mean l and

standard deviation r. In particular, we consider a single-leg

flight with finite capacity, and customers are assumed to

arrive according to a Poisson process with rate k over a

finite booking horizon. Upon the arrival of each customer,

the airline offers a price based on its remaining seat

inventory at that time, forecast for remaining demand as

& Wei Wang

weiwang@pros.com

1 PROS Inc., Houston, TX, USA

J Revenue Pricing Manag (2018) 17:63–77

https://doi.org/10.1057/s41272-017-0120-2

http://crossmark.crossref.org/dialog/?doi=10.1057/s41272-017-0120-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1057/s41272-017-0120-2&amp;domain=pdf


well as its estimated WTP of this customer. Then the

customer compares the offered price with his/her maxi-

mum WTP, and decides whether to accept or reject the

offer. The flight (which can also be equivalently considered

as a selling horizon) is assumed to repeat on a regular basis,

and both the WTP parameters (l, r) and the arrival rate k
are re-estimated through the learning-optimization cycle

across the selling seasons.

More specifically, in this paper we first assume that the

airline collects information only on the accepted offer

prices throughout the selling horizon. We devise a maxi-

mum likelihood estimation (MLE) approach to learn the

three unknown parameters under this framework. Mean-

while, we utilize a dynamic programming (DP) model to

calculate bid prices for each seat in each small time period,

and we use this information together with our estimated

WTP parameters to calculate the optimal offered prices.

Although the solution cannot be found in closed-form for

the Gaussian demand model, we show an efficient way of

computing the dynamic pricing policy.

To test our model, we set up a simulation environment.

Beginning with some arbitrary guesses on the parameter

values, we first solve the DP for bid prices. Then with

simulated customer arrivals (which are based on the true

parameter value k), we calculate the optimal offer price for

each, and observe the customer’s decision (based on his/her

true WTP parameters l and r). Finally, after each booking

horizon has ended, we re-run our MLE with all the newly

recorded sale prices to update our parameter estimations,

and then kick off the next cycle.

Our simulation results show that the above approach

(call it the ‘‘base model’’) performs rather poorly in terms

of parameter estimation. To overcome this inefficiency of

MLE, we develop an enhancement to our base model using

expectation–maximization (EM) and minimal active

learning. More specifically, we first formulate an MLE by

assuming that the airline has the capability to also collect

information on those time periods when no customer

arrived (loss information). As expected, the results ren-

dered appear rather promising given the extra information

used. However, we are well aware that in practice the loss

information is not readily available, then built upon the

extended MLE, we devise an EM approach to help estimate

the parameters when such information is not available. The

parameter learning process in this approach is still ‘‘pas-

sive,’’ in that, the variation of offered prices is generated

purely by the optimal control, and the model does not

‘‘actively’’ generate any prices for the purpose of exploring

the underlying demand model. In light of this, we devise an

algorithm (EM-DZ’15) by combining the EM method with

the minimal active learning method of den Boer and Zwart

(2015); our numerical results show that active learning

benefits the most when the demand-to-capacity ratio is

medium.

Overall our contribution is three-fold. First, we consider

a Gaussian demand model based on total demand volume

and customer WTP and describe a computationally effi-

cient way to find the dynamic pricing policy. Second, the

parameter estimation of the Gaussian demand model is

more difficult than the models considered in den Boer and

Zwart (2015), and in addition to the simple MLE, we

present a more sophisticated EM-based estimation

methodology. Third, we confirm in a similar setting the

result by den Boer and Zwart (2015) that when the

inventory is finite the myopic policy works well and only

minimal active learning is needed to achieve good revenue

performance. We also show the performance of various

estimation methods and identify the scenarios where active

learning is most desired.

The remainder of this paper is organized as follows. We

first present a brief literature review in the next sec-

tion. Then we describe our model in details, including the

demand model, price optimization, and the performance

measure. Next we present various parameter estimation

approaches, and describe the active learning methods. The

numerical results and conclusions from our study are pre-

sented in the subsequent sections.

Literature review

This paper’s joint nature of learning and optimization

makes us draw together two streams of literature, the

revenue management (RM) literature, and the statistical

learning literature.

For the RM research, the problem of evaluating a

dynamic pricing policy over a selling horizon based on a

well-defined and known demand model has been exten-

sively studied and is well understood. In the seminal work

of Gallego and van Ryzin (1994), a closed-form solution

for exponential demand functions is found, and for general

demand functions they derive a revenue upper-bound using

a deterministic heuristic. In a similar setting, McAfee and

te Velde (2008) develop an explicit solution for the con-

stant elasticity demand model. More recently, Schlosser

(2015) considers the dynamic pricing problem with time-

dependent price elasticities of demand. However, in any

practical implementation, the demand function is unknown

and will have to be learned from the observed booking

data. In this regard, some recent works have proposed to

allow probing the demand function while optimizing the

pricing policies through learning (den Boer and Zwart

2014; Wang et al. 2014).
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The statistical learning literature generally falls into the

parametric and non-parametric categories for the demand

model. For a parametric model, the functional form of the

demand function is assumed to be known; this form is

typically based on a certain underlying distribution for the

WTP. Most existing research has focused on parametric

models (including ours). In particular, Bertsimas and

Perakis (2006) consider a linear demand model where the

parameters vary slowly; Broder and Rusmevichientong

(2012) assume a Bernoulli demand distribution. Kambour

(2014) proposes a Gaussian demand model and utilizes

only products purchased and the prices paid, while in

many other methods the availability of fare classes (or

choice sets in broad term) are used. In this paper, we will

also model our demand function as Gaussian. The non-

parametric models do not assume a known functional

form of demand and generally involve robust approaches

for joint learning and optimization. Interested readers are

referred to recent research including but not limited to

Besbes and Zeevi (2012), Wang et al. (2014), etc., and for

the remainder of the paper we focus only on parametric

models.

Methods for parameter estimation commonly include

Least Squares (Bertsimas and Perakis 2006), maximum

likelihood estimation (MLE) (Broder and Rusmevichien-

tong 2012), maximum quasi-likelihood estimation (MQLE)

(den Boer and Zwart 2014). The observed historical

booking data are typically constrained due to the interac-

tion of optimal controls with the incoming demand. This

complicates the estimation problem even further since

some form of unconstraining method is required to recover

demand volumes. For our parameter estimation, in addition

to MLE we also formulate an EM approach tackling the

incomplete demand information regarding lost sales.

Moreover, it has also been observed that under the dynamic

pricing framework, prices typically do not show much

variation over the selling horizon especially in the low-to-

medium load factor scenarios. Indeed, Gallego and van

Ryzin (1994) show that open loop static pricing policies are

close to optimal in the low-load factor scenarios. This lack

of price variation may pose further challenges from the

estimation perspective.

In this setting, the airline faces two challenges: firstly,

the offered prices should have enough variance such that

the underlying parameters k, l, and r can be discovered

and secondly dynamic pricing decisions need to be made

for each arriving customer such that the revenue is max-

imized. The end goal of the airline is to maximize

expected revenue over the long run. This situation rep-

resents the classic exploration vs. exploitation trade-off:

myopically offer prices that maximize the revenue for the

current selling horizon based on their present knowledge

of the demand model parameters, or offer prices that

enable fast discovery of the unknown parameters to

optimize total revenue over multiple selling horizons.

Since we are concerned with revenue maximization over

multiple selling horizons, a policy that achieves balance

between these two criteria is desirable. In light of this, den

Boer and Zwart (2014) recently propose a controlled

variance pricing (CVP) approach for the infinite-capacity

setting where a ‘‘taboo interval’’ is imposed around the

average chosen prices to generate sufficient price variation

to help improve the demand learning and revenue opti-

mization. For the finite-capacity setting, den Boer and

Zwart (2015) show that for certain family of demand

models, a policy that offers optimal prices by assuming

that the current known parameter estimates are correct

during most of the selling horizon (the passive learning

policy) and incorporates a minimal amount of active price

exploration in the last few selling opportunities shows

good performance. The demand model that we study is

different from the one considered by den Boer and Zwart

(2015). The survey paper by den Boer (2014) also gives

an extensive overview of dynamic pricing and learning

literature.

Model formulation

Consider the problem facing a monopolist selling a single

product as described in Gallego and van Ryzin (1994). A

firm has a finite number of perishable items to sell over

selling horizons of length T, e.g., a small low-cost carrier

operating a daily direct flight. The firm is able to influence

the quantity demanded for its products by varying the

price. In particular if the firm charges a price p, then their

items are sold according to a Poisson process with rate kðpÞ
items per unit time. As one last assumption, we do not

consider block sales (e.g., group requests in the airline

industry) within the scope of this study as the structural

properties of the underlying dynamic programming (DP)

model may not necessarily hold.

We consider a parametric model for the demand func-

tion kðpÞ based on an individual customer’s maximum

WTP described in the ‘‘Demand model’’ Section. The firm

has imperfect knowledge about the demand parameters and

wants to maximize the total cumulative revenue over

K consecutive selling horizons (flights).

At the start of each selling horizon, the firm has C units

of capacity and each selling horizon is further subdivided

into N periods (slots) of length T
N

. If there is inventory on

hand in period t, then the firm must set a constant price

pt 2 ½pmin; pmax� for this period. We assume that these time

periods are small enough so that the probability of

observing more than one arrival is negligible. Let dt denote

a variable that takes the value 1 if an item is sold in period t
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and is 0 otherwise. Due to the Poisson assumption, if the

firm sets a price pt in period t, then a single unit of the item

is sold with probability k(pt)/N, and with probability

1-k(pt)/N there is no sale independent of the other time

periods. The firm’s pricing policy can depend on all past

prices and sales data observed in each period of this selling

horizon (up to the current time) as well as the past selling

horizons. The prices pmin and pmax are user-defined

depending on the business requirements.

We assume that in case of no booking in a period, the

firm cannot distinguish if this is due to lack of an arrival or

the price exceeding the maximum WTP of an arriving

customer. Given the historical observations, the firm wants

to find a pricing policy p that maximizes the cumulative

expected revenue over K selling horizons, Ep½
PNK

i¼1 p
p
i d

p
i �.

This multiple selling horizon setting is similar to the one

considered by den Boer and Zwart (2015) but with a dif-

ferent demand model.

In this paper, we assume there is a constant customer

arrival intensity and a fixed WTP distribution over time for

ease of exposition. In practice, airlines typically face time-

varying demand model parameters. For such scenarios, we

may easily extend the model and consider several periods in

the booking horizon each having its own demand parameters.

Demand model

Our demand model is based on the assumption that each

arriving customer has a maximum WTP W which is nor-

mally distributed with mean l and variance r2. Further-

more we assume the customers’ arrival process is Poisson

with rate k. Therefore if the firm offers price p, then the

demand rate for the firm’s product is

kðpÞ ¼ kPr½W[ p� ¼ k
�

1 � U
� p� l

r

��
¼ k �U

� p� l
r

�
;

ð2:1Þ

where Uð�Þ is the standard Normal cumulative distribution

function and �Uð�Þ ¼ 1 � Uð�Þ is the survival function. If the

firm sets a price pt in period t of a selling horizon and there

is positive inventory then the demand, dtðptÞ, in that period

is Bernoulli-distributed with the following probability mass

function

dtðptÞ ¼
1 w:p:

k
N
U

p � l
r

� �

0 w:p: 1 � k
N
U

p � l
r

� �
:

8
><

>:

The true value of the demand model parameter h0 ¼
ðk0; l0; r0Þ is unknown to the seller. We denote by hk the

firm’s estimate of these parameters at the beginning of

selling horizon k 2 f1; 2; . . .;Kg. We assume that this

estimate remains fixed throughout any selling horizon and

the firm updates this estimate only at the start of the next

selling horizon.

Given the parameters learned, there are many ways to

obtain the control policy and hence derive revenue. The

next subsection describes how to generate an optimal

pricing policy for a selling season if the demand model

parameters are known.

Optimal policy with known demand model

parameters

If the demand model parameters are known then the opti-

mal pricing policy for any selling horizon can be obtained

by solving a DP problem (see for example Gallego and van

Ryzin 1994). This framework can be used by a firm to

generate a pricing policy based on myopically optimizing

revenue for the current selling horizon with parameters

estimated at the start of this horizon. The state space is the

remaining inventory denoted by x 2 f0; 1; . . .;Cg. The

action space is the optimal price to charge denoted by

p 2 ½pmin; pmax�. If we set a price p for a seat at the start of

period t with x seats remaining, then with probability
k
N
�Uðp�l

r Þ a seat gets sold, we accumulate revenue p and

move to the next time period with one less available seat,

i.e., the state transitions to x� 1; with probability
�

1 �
k
N
�Uðp�l

r Þ
�
; there is no sale in the current time period; in this

case we do not collect any revenue and move to the next

period with all inventory intact, i.e., state remains as x. Let

V(x, t) be the optimal expected revenue given that there are

x seats left and we are at the start of time period t, then the

following equation holds:

Vðx; tÞ ¼ sup
p2½pmin;pmax�

k
N

�U
� p� l

r

��
pþ Vðx� 1; t þ 1Þ

��

þ
�

1 � k
N

�U
� p� l

r

��
Vðx; t þ 1Þ

�

¼ sup
p2½pmin;pmax�

k
N

�U
� p� l

r

��
p� DVðx; t þ 1Þ

��

þVðx; t þ 1Þg; ð2:2Þ

where DVðx; tÞ ¼ Vðx; tÞ � Vðx� 1; tÞ is the displacement

cost (or bid price), and the boundary conditions are

Vðx;N þ 1Þ ¼ 0 8x 2 f1; 2; . . .;Cg and

Vð0; tÞ ¼ 0 8t 2 f1; 2; . . .;N þ 1g. Previous work in the

RM literature shows that similar dynamic programs with

exponential or constant elasticity demand models can be

solved very efficiently (in closed-form), see for example

Gallego and van Ryzin (1994) and McAfee and te Velde

(2008). However for the Normal demand model a closed-

form solution for the above model does not exist. Note that

given the bid price DVðx; t þ 1Þ, the optimal price to offer
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in period t is generated by maximizing the expected margin

over the bid price

sup
p2½pmin;pmax�

�U
� p� l

r

��
p� DVðx; t þ 1Þ

�
: ð2:3Þ

Although the objective function in (2.3) may not be con-

cave over the entire range of permissible prices, the next

proposition shows that it is concave over an interval

defined by the bid price and the WTP parameters, as well

as the optimal price lies in this interval. Thus, the dynamic

program defined in (2.2) can be solved efficiently.

Proposition Denote the marginal cost by c, then there

exists a unique p� 2
�
c; lþc

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r2 þ ðlþcÞ2

4

q �
that maxi-

mizes expected margin:

UðpÞ ¼ ðp� cÞ � PrðW � pÞ

¼ ðp� cÞ � �U
� p� l

r

�
:

This p� can be numerically obtained by a line search over

the interval. Furthermore, if l� c[ 1:2534r, then p�

exists in ðc; lÞ.

Proof We shall pick our price from ðc;1Þ as otherwise

the objective value is negative.

First, U
0 ðpÞ ¼ �U

�
p�l
r

�
� p�c

r � /
�
p�l
r

�
. Notice

U
0 ðcÞ ¼ �U

�
c�l
r

�
[ 0.

Next, see that

U
00 ðpÞ ¼ � 2

r
/
� p� l

r

�
� p� c

r2
/

0
� p� l

r

�

¼ � 2

r
ffiffiffiffiffiffi
2p

p e
�ðp�lÞ2

2r2 þ p� c

r2
ffiffiffiffiffiffi
2p

p e
�ðp�lÞ2

2r2 �
� p� l

r

�

¼ 1

r3
ffiffiffiffiffiffi
2p

p e�
ðp�lÞ2

2r2 �
	
ðp� cÞðp� lÞ � 2r2




¼ 1

r3
ffiffiffiffiffiffi
2p

p e
�ðp�lÞ2

2r2 �
��

p� lþ c

2

�2

�
�

2r2 þ ðlþ cÞ2

4

��

:

This is negative (i.e., U is concave) for p 2
�
c; lþc

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r2 þ ðlþcÞ2

4

q �
and positive (i.e., U is convex) for

p 2
�

lþc
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r2 þ ðlþcÞ2

4

q

;1
�

.

Therefore, we have that U
0

is positive at c, and that it

decreases over
�
c; lþc

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r2 þ ðlþcÞ2

4

q �
and then

increases over
�

lþc
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r2 þ ðlþcÞ2

4

q

;1
�

. But since

U
0 ðpÞ\ �U

�
p�l
r

�
8p 2 ðc;1Þ, and lim

p!1
�U
�
p�l
r

�
¼ 0, it

holds that U
0

is negative over
�

lþc
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r2 þ ðlþcÞ2

4

q

;1
�

.

Consequently, we obtain that a unique p� exists over
�
c; lþc

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r2 þ ðlþcÞ2

4

q �
that satisfies U

0 ðp�Þ ¼ 0 and that

maximizes U. This p� can be obtained by a simple line

search over the interval.

Lastly, in the special case where U
0 ðlÞ ¼ 1

2
� l�c

r�
ffiffiffiffi
2p

p

\0 , l�c
r [

ffiffi
p
2

p
� 1:2533, we obtain p� in ðc; lÞ. h

Performance measure

A popular metric in the demand learning and pricing lit-

erature to evaluate the quality of pricing policies is the

Regret measure (e.g., see Besbes and Zeevi 2015 or den

Boer and Zwart 2015). Seller’s Regret under a policy p
after k selling horizons is defined as the difference

between the total cumulative revenue earned if the

parameters were known and the cumulative revenue

earned under policy p,

Regretpk ¼ kVh0
ðC; 1Þ � Ep

XNk

i¼1

ppi d
p
i

" #

; ð2:4Þ

where h0 are the true demand model parameters and

Vh0
ðC; 1Þ defined in (2.2) is the optimal expected revenue

over a single selling horizon. In this paper, in addition to

our focus on the quality of parameter estimation under

various policies, we will use regret measure to evaluate

their revenue performance. Note that minimizing the regret

is equivalent to the originally stated objective of maxi-

mizing cumulative expected revenue.

Parameter estimation

Assume that we are at the start of selling horizon k and we

have a dataset Dk of the outcomes of each period in pre-

vious k � 1 selling horizons. Thus Dk ¼ fðpt; dtÞ; t ¼
1; 2; . . .;Nðk � 1Þg, where pt is the price offered in slot

t and dt is 1 if there was a booking in that slot and 0

otherwise. Based on our Normal demand model assump-

tion, given the prices, dt are independent draws from a

Bernoulli distribution with success probability k
N
�Uðpt�l

r Þ.
By some abuse of notation, in the rest of this and the next

sections, we refer to k
N

as k. The firm’s goal is to estimate

the demand model parameters hk ¼ ðkk; lk; rkÞ at the start

of each selling horizon given historical observations. We

next present an MLE for this purpose.

MLE for parameter estimation

With notations introduced above, our log-likelihood func-

tion for k, l, and r can be written as
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log Lðhk j DkÞ ¼ log
YNðk�1Þ

t¼1

h
k �U
� pt � l

r

�idt
�

h
1 � k �U

� pt � l
r

�i1�dt

¼
XNðk�1Þ

t¼1

dt � log
h
k �U
� pt � l

r

�i

þ ð1 � dtÞ � log
h
1 � k �U

� pt � l
r

�i
:

ð3:1Þ

Note our estimate of hk is the point that maximizes the log-

likelihood function (3.1), and we next illustrate the per-

formance of the MLE in Example 3.1 below.

Example 3.1 Consider a case where a flight has 100 seats

to sell, over 500 time periods in a selling horizon and we

have 100 selling horizons. The true mean and standard

deviation of customers’ WTP are, respectively, $200 and

$75, and the effective demand-to-capacity ratio1 of the

flight is 90%. We study the performance of a myopic

(passive learning) policy with the MLE. The seller at the

start of each selling horizon estimates the demand model

parameters using the MLE and then solves the dynamic

pricing DP (2.2) using the estimated parameters.

Figure 1 shows the percentage relative parameter esti-

mation errors, respectively, for k, l; and r over the 100

selling horizons and averaged across 5 simulation runs.

As depicted, in this case the estimates take too long to

converge, beginning to converge after about 50 selling

horizons. Even by the end of 100 selling horizons, they are

still far away from the true values (with approx. 16.9, 7.4,

and 26.4% errors for k, l; and r; respectively). It also

appears that r has the largest estimation error among the 3

parameters. Our main observation based on this example

and many other tests is that the MLE does not show robust

convergence behavior and this necessitates a better

parameter estimation method.

The complete information case

The main problem with the above estimation procedure is

that for slots where there are no bookings, we do not know

if this is because no one arrived or if someone arrived but

the offered price was too high and hence no sale was made.

Suppose that, in each time period, in addition to the

booking information (dt), the airline can also observe if

there was an arrival (yt) in a slot or not. In this case, the

parameter estimation problem becomes more tractable.

However, in practice, such information may not be avail-

able reliably. From this perspective our original estimation

Fig. 1 Sample parameter errors—MLE

1 Defined in ‘‘Numerical results’’ below.
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problem is an incomplete data problem. We next develop

an MLE based on this additional information with two uses

in mind: first if an airline is capturing this additional

information then they can improve parameter estimation

using the proposed methodology and second, when such

information is not available, as a stepping stone for our

formulation of the EM estimator (presented in the next

section) which is especially suited for such incomplete data

situations.

Let D0

k ¼ fðpt; dt; ytÞgðk�1ÞN
t¼1 be a dataset of the out-

comes of each slot in previous k � 1 selling horizons with

this additional customer arrival information yt. As before,

pt is the price charged in period t and dt ¼ 1 if a sale

happens in period t and 0 otherwise. The new piece of

information yt equals 1 if a customer arrives in period t and

0 otherwise. Then fytg is a sequence of IID samples from a

Bernoulli distribution with success probability k. Given

that there was an arrival in slot t and a price pt was charged,

dt is independently sampled from a Bernoulli distribution

with success probability �Uðpt�l
r Þ. Note that if we observe a

booking in any slot, then there must be an arrival in that

slot (dt ¼ 1 implies yt ¼ 1). Assuming that our dataset is

consistent with this condition, the complete information

log-likelihood function for hk ¼ ðk; l; rÞ is

logLcðhk j D
0

kÞ ¼ log
Yðk�1ÞN

t¼1

k1yt¼1ð1 � kÞ1yt¼0

 

h
�U
� pt � l

r

�
�1yt¼1;dt¼1 �

h
1 � �U

� pt � l
r

�i1yt¼1;dt¼0

!

ð3:2Þ

¼ log
�
k
Pðk�1ÞN

t¼1
ytð1 � kÞðk�1ÞN�

Pðk�1ÞN
t¼1

yt
�

þ
X

t:yt¼1

h
dt log

�
�U
� pt � l

r

��

þ ð1 � dtÞ � log
�

1 � �U
� pt � l

r

��i
:

ð3:3Þ

The parameters that maximize (3.3) lead to the following

MLE estimators

k̂ ¼
Pðk�1ÞN

t¼1 yt

ðk � 1ÞN ; ð3:4Þ

and

ðl̂; r̂Þ ¼ arg max
l;r

X

t:yt¼1

h
dt log

�
�U
� pt � l

r

��

þð1 � dtÞ � log
�

1 � �U
� pt � l

r

��i
:

ð3:5Þ

The problem in (3.5) is relatively easier to solve as com-

pared to the problem of maximizing the incomplete log-

likelihood in (3.1). We next use this observation to provide

an EM Algorithm for our original problem.

EM algorithm for the incomplete information case

To find the parameter estimates for our original incomplete

information problem, we use the expectation–maximization

(EM) approach introduced by Dempster et al. (1977). For

applying this methodology, we consider our original dataset

Dk to be a partial version of the complete information dataset

D0

k. The EM algorithm is an iterative procedure which starts

with an initial guess on the unknown parameters (h0
k). We

then find the expectation of the complete information log-

likelihood function with respect to the unknown data Yk ¼
ðy1; . . .; yðk�1ÞNÞ given the observed data and our current

guess of the parameters. This constitutes theE step of the EM

algorithm. The expected log-likelihood function has similar

form as the complete information log-likelihood function;

therefore, it can be maximized easily to find the updated

parameter estimates (the M step). The algorithm iterates over

the E and M steps until parameter convergence is achieved.

This results in the following algorithm:

• Choose initial parameter estimate h0
k (ith iteration).

• (E Step) Compute the expectation of complete infor-

mation log-likelihood function w.r.t the current param-

eter estimate h
ði�1Þ
k

Qðhk; hði�1Þ
k Þ ¼ EYjDk ;h

ði�1Þ
k

h
logLc

�
hkjD

0

k; h
ði�1Þ
k

�i
:

• (M Step) Compute the updated parameter estimates by

maximizing the expected log-likelihood

h
ðiÞ
k ¼ arg max

hk

Qðhk; hði�1Þ
k Þ :

The key step in this procedure is to find the expression for

the expectation of complete information log-likelihood

function in closed-form. In the E step for the ðiþ 1Þst

iteration, the unobserved data, given the observed data and

current parameter estimate, YkjDk; h
ði�1Þ
k , comprise inde-

pendent samples from the following distribution

P½ytjpt; dt; hðiÞk � ¼

kðiÞk UðiÞ
k ðptÞ

1 � kðiÞk ð1 � UðiÞ
k ðptÞÞ

yt ¼ 1; dt ¼ 0;

1 � kðiÞk
1 � kðiÞk ð1 � UðiÞ

k ðptÞÞ
yt ¼ 0; dt ¼ 0;

1 yt ¼ 1; dt ¼ 1;

0 yt ¼ 0; dt ¼ 1;

8
>>>>>>>>><

>>>>>>>>>:

ð3:6Þ
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where UðiÞ
k ð�Þ is the cumulative distribution function of a

Normally distributed random variable with mean lðiÞk and

standard deviation rðiÞk . To simplify the expression for the

expectation of complete information log-likelihood, we

define the probability that a customer arrives in slot t

given that there is no booking observed in that slot [in

(3.6)] as

aðiÞt :¼ P½yt ¼ 1jpt; dt ¼ 0; h
ðiÞ
k � ¼ kðiÞk UðiÞ

k ðptÞ
1 � kðiÞk ð1 � UðiÞ

k ðptÞÞ
:

ð3:7Þ

Taking the expectation of the complete log-likelihood

function (3.2) with respect to the distribution (3.6), we get

Qðhk; hðiÞk Þ ¼ EYjDk ;h
ðiÞ
k

h
logðLc

�
hkjD

0

k; h
ðiÞ
k

�i

¼
X

t:dt¼1

h
log
�
k �U
� pt � l

r

��i

þ
X

t:dt¼0

h
aðiÞt log

�
k
�

1 � �U
� pt � l

r

���

þ ð1 � aðiÞt Þ logð1 � kÞ
i
: ð3:8Þ

Then the parameters that maximize (3.8) as a function of

hk lead to the following updates for the parameter

estimates:

kðiþ1Þ
k ¼

Pðk�1ÞN
t¼1 dt þ

P
t:dt¼0 a

i
t

ðk � 1ÞN ; ð3:9Þ

and

ðlðiþ1Þ
k ; rðiþ1Þ

k Þ ¼ arg max
l;r

Xðk�1ÞN

t¼1

h
dt � log

�
�U
� pt � l

r

��

þð1 � dtÞ � aðiÞt � log
�

1 � �U
� pt � l

r

��i
:

ð3:10Þ

Note that the update for the probability that a customer

arrives in a slot, kðiþ1Þ
k , is quite intuitive, i.e., the sum of

total observed bookings and the expected number of slots

where a customer arrived given there was no booking

divided by the total number of slots. Equations (3.9) and

(3.10) are essentially providing a mechanism for uncon-

straining (sometimes also referred to as uncensoring or

detruncation) for the fully price-sensitive demand model in

(2.1) defined over a continuum range of prices. The updates

defined in (3.9) and (3.10) are similar to the MLE for the

complete information case, thus the maximization (M) step

can be computed efficiently.

Policies for dynamic pricing and learning

In this section, we discuss two pricing strategies that will

be used to evaluate revenue performance and parameter

convergence when demand model parameters are

unknown.

Passive learning policy

The simplest learning policy that one can consider is the

pure exploitation-based myopic policy. We assume that the

seller at the start of the first selling horizon has some

estimate of the demand model parameters. At the start of

each selling horizon, the seller first uses one of the esti-

mation methods discussed in the ‘‘Parameter estimation’’

Section to estimate demand model parameters based on

historical observations. The estimated parameters are then

used to evaluate a dynamic pricing policy for the current

selling horizon by solving the dynamic program (2.2). This

cycle is then repeated for each selling horizon. Such a

policy is also referred to as the passive learning or certainty

equivalent pricing policy in the Revenue Management lit-

erature. In the rest of the paper, this policy will be referred

to as MLE-PAS or EM-PAS based on the estimation pro-

cedure used.

We also evaluated the performance of a policy assuming

that the complete loss information is available and the

MLE formulated in Section ‘‘The complete information

case’’ (MLE-CPLT). As expected, since more information

is available in this scenario, the performance will be better

as compared to the incomplete information case. Never-

theless, such a comparison allows us to gage the value of

obtaining additional loss information.

Policy based on minimal active learning

den Boer and Zwart (2015) develop a pricing strategy that

modifies the passive learning policy slightly to incorporate

minimal amount of price exploration. Under this scheme,

one uses the passive learning policy throughout a selling

horizon except perhaps for a small fraction of the selling

horizon towards the end. The essential idea is that if we

have not seen much price variation in a selling horizon and

if there are few time periods left for exploration either

because we are running out of inventory or the selling

horizon is about to end, we generate prices that will benefit

learning. We make a slight modification to the original

algorithm of den Boer and Zwart (2015) mainly to suit the

present setting and to increase the level of active learning.

We state this algorithm (EM-DZ’15) here for completeness.
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• Initialization Assume initial parameter estimates h1.

Choose 0\�\ðpmax � pminÞ=4. Set parameters to

define state space in which active learning may be

triggered: j 2 f1; 2; . . .; 5g and 0:95\s\1 (Start of

selling horizon k)

• Estimation Estimate demand model parameters, hk,

using the EM estimator and the historical dataset Dk�1

• Pricing Solve the Dynamic Program (2.2) for selling

horizon k based on the estimated parameters hk to

evaluate the myopic price pkðx; tÞ for inventory state x

and time period t. For determining prices in time slot

t þ 1 during selling horizon k, if inventory state x ¼ 0

then set ptþ1 ¼ pmax else if x[ 0:

– If

1. j pi � pj j \� for all 1� i; j� t in current

selling horizon k, and

2. j pi � pkðx; t þ 1Þ j \�, for all 1� i� t in the

current selling horizon k, and

3. x� j or t[ sN then choose ptþ1 2 ½pkðx; t þ
1Þ � 2�; pkðx; t þ 1Þ þ2�� \ ½pmin; pmax�.

– Else, choose ptþ1 ¼ pkðx; t þ 1Þ.

This algorithm in any selling horizon will generate prices

based on the passive learning policy unless the price varia-

tion for a significant portion of selling horizon is less than a

certain threshold. In case of low price variation, when the

remaining capacity is less than j or greater than s fraction of

the selling horizon has elapsed then a price that deviates from

the optimal price by at most 2� is generated. Parametersj and

s govern the aggressiveness of active learning; higher j or

lower s induce more exploration. den Boer and Zwart (2015)

showed that for a different demand model, j ¼ 1 and s ¼
N�1
N

(i.e., either inventory level is 1 or this is the last time slot

in the selling horizon) is sufficient for convergence of

parameter estimates and good (Oðlog2ðTÞÞ) regret perfor-

mance. The demand model considered in this paper is

arguably more complex at least from the perspective of

number of model parameters. Therefore, it required a slightly

more aggressive (j ¼ 2 and s ¼ 0:98) learning policy to see

some advantages from active learning.

Numerical results

In this section, we conduct several numerical experiments

to test the performance of the pricing policies described in

the previous section. We conduct these experiments with

the following aims:

• to test whether the parameter estimation under various

approaches converge to acceptable levels,

• to evaluate the revenue performance of various

policies,

• to identify the conditions where active learning pro-

vides the most benefit.

Experiment setup

In our numerical study, we consider that the flight capacity

is 100 and each selling horizon is of unit length (T ¼ 1).

Recall that the demand rate when price p is charged has the

following functional form:

kðpÞ ¼ k
�

1 � U
� p� l

r

��
:

We fix the true mean (l0) and standard deviation (r0) of

customers’ maximum WTP to be $200 and $75, respec-

tively. Under this setting, we consider 6 arrival intensity

(k0) values to simulate various congestion scenarios. To

quantify different congestion scenarios, we define ‘‘effec-

tive’’ demand-to-capacity (D/C) ratio attained under a

selected arrival intensity. More specifically, let p� be the

revenue maximizing price in the infinite-capacity setting

p� ¼ argmax
p� 0

p � �U
� p� 200

75

�
;

which is the optimal price to charge if we have infinite

capacity. Then the ‘‘effective’’ demand-to-capacity (D/C)

ratio under arrival intensity k0 is defined as

D=C ¼ kðp�Þ
C

¼ k0

C

h
1 � U

� p� � 200

75

�i
:

In this study, the six D/C scenarios range from 30 to

180%. We summarize the input parameters used in our

experiments in Table 1. This table also shows the initial

parameter estimate (h1) used in our simulation studies.

The initial parameter estimate is what the airline believes

prior to the first selling season. These are used in solving

the dynamic program (2.2) to generate the pricing policy

for the first selling horizon, and also as the initial guess

for parameter estimation problem to be solved at the end

Table 1 Experiment input parameters

Scn. # Eff. D/C (%) True parameter

values (h0)

Initial parameter

estimate (h1)

k0 l0 r0 k1 l1 r1

1 30 42 $200 $75 29.4 $300 $112.50

2 60 84 $200 $75 58.8 $300 $112.50

3 90 126 $200 $75 88.2 $300 $112.50

4 120 168 $200 $75 117.6 $300 $112.50

5 150 210 $200 $75 147 $300 $112.50

6 180 252 $200 $75 176.4 $300 $112.50
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of this selling horizon. In practice there is often more

uncertainty in the estimates of the willingness-to-pay

parameters (l; r) than the volume parameter. Therefore,

we set our initial estimate on k at 70% of the true value,

and guesses on l and r both at 150% of the true values in

all our experiments.

For each of these scenarios, we consider 100 consecu-

tive selling horizons (K ¼ 100) and divide each selling

horizon into 500 periods of equal length (N ¼ 500). For

each scenario, we run 5 independent trials and compute the

performance metrics and parameter estimation errors as the

mean over these trials.

Performance and error metric

To evaluate the performance of policies described in the

previous section, we use the following metrics:

• Relative parameter errors: We evaluate relative param-

eter errors after each selling horizon ends. Let �rkðkÞ,
�rlðkÞ , and �rrðkÞ denote the relative errors in arrival

intensity, mean WTP, and standard deviation of WTP,

respectively, in trial r after selling horizon k. Then the

overall relative parameter error for trial r after selling

horizon k is ��rðkÞ ¼ �rkðkÞþ�rlðkÞþ�rrðkÞ
3

. Finally the average

percentage relative parameter error is ��ðkÞ ¼
PR

r¼1
��rðkÞ

R
	 100%, which is the average over the total

number of trials R. In our experiments, we considered

R ¼ 5.

• Relative regret: For revenue performance we define

percentage relative regret for trial r after k selling

seasons as Relative regretrðkÞ ¼ Regretr
k

k�Vh0
ðC;1Þ 	100%;

where Vh0
ðC; 1Þ is the optimal expected revenue per

selling season if true parameters were known. As stated

above, we take the average across trials to get the

average percentage relative regret after selling season

k denoted by avg. relative regret (k).

Results

We have organized the results of our numerical experi-

ments in three parts. First, we analyze the parameter esti-

mation performance of various methods in different D/C

scenarios. Second, we discuss the revenue performance of

various methods using the relative regret metric. Our

results on parameter estimation and revenue performance

show that in some cases revenue performance is still good

even though the estimated parameters do not completely

converge to the true parameters. In the third part of our

results, we investigate this observation in depth and present

insights on this.

Estimation performance

Figure 2 shows the average relative parameter error for the

pricing policies across 100 selling horizons for each of the

six D/C scenarios.

A few observations are in order. The worst errors

(20–30%) for all policies occur for the lowest D/C sce-

nario. This is because when the demand is very low, there

is very little price variation and the passive learning

methods suffer. For the EM-DZ’15 method, since we have

large inventory at hand throughout the selling horizon, the

active learning takes effect only in last few periods in a

selling horizon. However, given that the demand is low, it

is unlikely to see bookings during the period when active

learning is implemented. This renders active learning to be

not as effective in discovering the full underlying demand

curve.

For the medium D/C (60–90%) scenarios, the policy

incorporating minimal active learning (EM-DZ’15) shows

lower estimation errors (10%) than both passive learning

policies: MLE-PAS and EM-PAS. This is to be expected

since in medium D/C scenarios the prices generated by the

passive learning (myopic) policies show less variation.

Thus any form of active learning should improve parameter

estimates.

We also note that the benefit of active learning begins to

diminish as the D/C increases past the 90% level. Indeed

for relatively high D/C (120–180%), EM-PAS performs as

well as EM-DZ’15. Intuitively, for higher D/C scenarios,

the passive learning policy inherently leads to higher price

variation, thereby making active learning less useful.

Furthermore, we observe that the EM estimation method

is more stable and robust than the incomplete information

MLE. EM method converges close to the final value

quickly (within 20 selling horizons), while the MLE takes

much longer to converge and shows large fluctuations in

estimated parameter values.

As expected, more information helps with parameter

estimation; the complete information MLE with passive

learning (MLE-CPLT) has the lowest error and converges

to a very good estimate within 10 selling seasons.

Revenue performance

The relative regrets over selling seasons 5–100 for all four

methods are plotted in Fig. 3. Clearly MLE-PAS performs

the worst in all scenarios, mainly because of the high errors

in parameter estimation in the earlier selling horizons.

In scenarios with D/C 30 and 60%, both EM-DZ’15 and

EM-PAS do well. Interestingly, in this case even when

EM-DZ’15 has lower estimation error (for D/C 60%), the

benefit does not translate to revenue performance. We will

give more insight into the relationship between parameter
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estimation error and revenue performance in the next

section.

EM-DZ’15 performs the best when we have medium

D/C (e.g., 90%). In this case since the demand is capacity

constrained, estimating parameters well and charging

optimal prices become more critical. For high D/C sce-

narios, both EM-PAS and EM-ACT give good revenue

performance. Overall we note that the EM-DZ’15 method

leads to near-optimal revenues much faster than the MLE;

it drives the regret to below 0.5% within 20 selling hori-

zons in demand scenarios under 120% D/C, and 40 selling

horizons in the rest.

Although MLE-CPLT has the least errors in parameter

estimation, this does not translate to better revenue

performance over EM-DZ’15 or EM-PAS in most sce-

narios. This seems to indicate that from a revenue per-

spective there is limited benefit of collecting the

additional loss information and a good estimation pro-

cedure like EM can overcome the challenges posed by

missing information.

In the appendix, we present a more detailed view of the

relative errors in each of the three parameters as averaged

across the last 10 simulation iterations in each demand

scenario. The table also shows the relative regret and load

factors achieved in each demand scenario.

Revenue performance under parameter errors

We observe from the results presented above that in most

demand scenarios, although the parameter errors are in the

10–20% range at the end (the 100th selling season), the

corresponding relative regret falls under 1%. To investigate

why we observe good revenue performance under the

observed parameter errors, we next present a deeper anal-

ysis on the 90% D/C scenario which is more representative

of the load factors observed in practice.

We focus on the EM-DZ’15 model in this section (re-

sults for the other three models are similar), and Fig. 4

shows its corresponding offered prices spread along with

that for the true model across all the 100 selling horizons.

Note the bottom and top edges in the box plot represent the

Fig. 2 Parameter error
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Fig. 3 Relative regret

Fig. 4 Spread of offered prices under the EM-DZ’15 and true model for 90% D/C scenario
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25th and 75th percentile values, respectively, and the bot-

tom and the top whiskers denote the 5th and 95th percentile

values, respectively. Outliers beyond the 5th and 95th

percentile values are also plotted as dots.

We observe from the last two boxes in this figure that

the median offered prices for the EM-DZ’15 algorithm

converge to that for the true model (ptruemed � $160) in the

last 10 selling horizons. In general, the EM-DZ’15 algo-

rithm demonstrates a larger variation in offered prices due

to the fact that the parameter values are re-estimated at the

start of each selling horizon and hence differ slightly for

each selling horizon. We also notice that most of the

offered prices under the true model lie within the interval

ptruemed 
 r0=2, where r0 denotes the standard deviation of

the true WTP distribution, i.e., in the interval of

160 
 75
2
¼ ½122:5; 197:5�. We next devote our attention to

how the estimated demand function deviates from the true

demand function over this ‘‘critical’’ price range.

Figure 5a shows the true and estimated (averaged over

the 5 trials) demand response functions kðpÞ under the EM-

DZ’15 pricing policy at the end of 1st, 34th, 67th, and

100th selling horizon (SH). To show the impact of error in

estimated demand function on revenues, we also plot the

corresponding total revenue pkðpÞ in Fig. 5b.

Notice as we progress over selling horizons, better

approximation of the estimated demand function to the true

demand function is observed, and this is especially true for

the portion of demand curve in the aforementioned price

range of [122.5, 197.5], as marked by the vertical dashed

lines in Fig. 5a. Moreover, the corresponding total revenue

(Fig. 5b) shows even better convergence of the estimated

revenue function to the true revenue function.

Thus, although the parameter error in the estimated model

is as high as 11% for EM-DZ’15 in the 90% D/C Scenario

(see Fig. 2 and Table 3), the estimated demand response is

able to approximate the true demand function very well over

the price range where most of the optimal offered prices lie.

More specifically, Fig. 6 shows the mean relative error

(MRE, also referred to as mean absolute percentage error in

some literature) between the estimated demand function and

the true demand function discretized using 200 equally

spaced points over the price range [122.5, 197.5] for various

Fig. 5 Demand and revenue snapshots for EM-DZ’15 90% D/C scenario (SH selling horizon). a Demand response k(p). Dotted vertical lines

show 160 ± 2 range, b total revenue pk(p) possible under infinite capacity setting
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methods. Table 2 shows the mean relative and root mean-

squared errors (RMSE) in the demand response curves

averaged over the last 10 selling horizons for all four

schemes in the 90% D/C scenario. We see that for the EM-

DZ’15 method the relative error quickly diminishes to less

than 5% by selling horizon 20 and further decreases to less

than 2% by selling horizon 100.

This suggests that by estimating the demand function

correctly over a limited price range where most of the

optimal offer prices lie, the EM-DZ’15 method is able to

produce a good revenue performance. Note that a policy

may be able to satisfy this less restrictive criterion even

when the estimates of demand model parameters (k; l; r)

converge to values different from the true values. This may

explain the observed robustness of the revenue perfor-

mance to the parameter estimation errors. Similar results

have also been reported by Besbes and Zeevi (2015) for

the related problem of dynamic pricing under the infinite-

capacity setting.

Conclusion and future research

Airlines have been looking into leveraging dynamic pricing

for more revenue-beneficial control of available capacity in

an ever more competitive market. In this paper we inves-

tigate the problem of dynamic pricing in a single-leg set-

ting when the airline has imperfect knowledge about the

demand model parameters. We propose a framework for

dynamic pricing based on a demand model with Gaussian

WTP distribution. Under this assumption, we show how to

formulate the revenue maximization problem over a single

finite horizon as a dynamic program. We also show that a

unique optimal solution exists for the pricing problem

embedded in the DP and provide an interval in which this

optimal price lies.

We develop MLE and EM-based estimators for the

setting in which the demand model parameters are not

known. Using these estimators, we study the revenue

impact in a long-run (multiple selling horizons) setting and

compare the performance of pricing policies that enforce

small amounts of price variation designed to accelerate

demand model learning (EM-DZ’15) and policies that

myopically optimize single horizon revenues given esti-

mated parameters (EM-PAS, MLE-PAS, MLE-CPLT). We

observe from our numerical examples that with all the

parameter estimation methods, the model will eventually

output near-optimal revenues. However, the EM-DZ’15

method leads to near-optimal revenues much faster than the

MLE. Moreover, congestion scenarios with load factors of

80–90% (D/C = 90%), which are closer to what is observed

in practice, can benefit the most from incorporating a

minimal amount of active price exploration.

Our numerical experiments also show that for good

revenue performance, it is not necessary to learn the

demand curve over the entire range of prices. The impor-

tant characteristic of a method delivering good revenue

performance is that it learns the demand curve well over a

critical range of prices where most of the optimal prices

under the true model lie. This is an important observation,

since it suggests that low parameter estimation error is a

sufficient but not a necessary condition for obtaining good

revenue performance. From a practical perspective this

indicates that models that are misspecified either in their

functional form or model parameters may still be able to

provide good revenues by learning the ‘‘critical’’ part of the

true demand curve well.

Table 2 Errors in demand curve in price range [122.5, 197.5] for

90% D/C scenario averaged over the last 10 selling horizons

Method Error in demand

MRE (%) RMSE

MLE-PAS 3.48 4.18

EM-PAS 4.29 5.07

EM-DZ’15 1.83 1.89

MLE-CPLT 1.52 1.54

Fig. 6 Errors in demand curve in price range [122.5, 197.5] for 90%
D/C scenario
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Throughout the paper we have focused on a case where

there is constant customer arrival intensity and a fixed

WTP distribution. In practice, we note that this framework

can be easily extended to situations where the underlying

demand parameters vary by time-to-departure. To this end,

the airline needs to assume certain time points when the

average customer arrival and WTP characteristics change.

After this, the same mechanism can be followed to solve

the DP, collect booking history, and re-estimate parameters

after each selling horizon. For future work, we plan to test

our model with real data and extend our model to the

network and multiple-product settings.
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Appendix

See Table 3.
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Table 3 Model performances—average over last 10 selling horizons

Dmd.

Sce.

(%)

k-

Err.

(%)

l-

Err.

(%)

r-

Err.

(%)

Param.

Err.

(%)

Rel.

Reg.

(%)

Load

factor

(%)a

MLE-

PAS

30 23.7 11.8 24.4 20.0 0.11 25.27

60 22.3 9.1 36.8 22.7 0.12 48.14

90 16.9 7.4 26.4 16.9 0.36 80.64

120 19.7 9.7 25.2 18.2 0.71 96.06

150 21.1 9.5 27.1 19.2 0.44 97.60

180 27.9 13.6 29.8 23.8 0.39 99.14

EM-

PAS

30 34.3 18.0 39.1 30.5 0.04 24.93

60 21.2 10.4 29.6 20.4 0.04 53.31

90 25.1 13.9 23.5 20.9 0.23 82.53

120 14.4 7.6 13.4 11.8 0.39 96.14

150 23.8 10.7 17.1 17.2 0.30 98.54

180 15.8 7.8 11.4 11.7 0.26 98.78

EM-

DZ’15

30 47.7 25.7 40.2 37.9 0.04 31.63

60 6.5 5.3 12.0 8.0 0.05 61.08

90 11.9 6.5 14.8 11.0 0.13 89.16

120 15.3 7.2 8.8 10.5 0.35 96.83

150 23.8 10.7 17.1 17.2 0.30 98.57

180 15.7 7.8 11.3 11.6 0.26 98.78

Table 3 continued

Dmd.

Sce.

(%)

k-

Err.

(%)

l-

Err.

(%)

r-

Err.

(%)

Param.

Err.

(%)

Rel.

Reg.

(%)

Load

factor

(%)a

MLE-

CPLT

30 1.4 3.6 16.8 7.2 0.04 31.25

60 0.8 1.7 7.4 3.3 0.04 63.05

90 0.8 1.7 9.9 4.1 0.12 90.05

120 0.6 0.4 4.8 2.0 0.22 97.15

150 0.4 0.3 4.9 1.9 0.28 98.57

180 0.4 0.4 3.1 1.3 0.17 99.22

aAverage over all 100 selling seasons
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