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Abstract
Agencies reporting on disease outbreaks face many choices about what to report 
and the scale of its dissemination. Reporting impacts an epidemic by influencing 
individual decisions directly, and the social network in which they are made. We 
simulated a dynamic multiplex network model—with coupled infection and com-
munication layers—to examine behavioral impacts from the nature and scale of 
epidemiological information reporting. We explored how adherence to protective 
behaviors (social distancing) can be facilitated through epidemiological reporting, 
social construction of perceived risk, and local monitoring of direct connections, but 
eroded via social reassurance. We varied reported information (total active cases, 
daily new cases, hospitalizations, hospital capacity exceeded, or deaths) at one of 
two scales (population level or community level). Total active and new case report-
ing at the population level were the most effective approaches, relative to the other 
reporting approaches. Case reporting, which synergizes with test-trace-and-isolate 
and vaccination policies, should remain a priority throughout an epidemic.
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perceptions · Surveillance
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•	 We modeled reporting with five distinct types of outbreak data at two different 
scales to simulate how reporting can alter behavior in a coupled dynamic multi-
plex network

•	 Case reporting at the population level outperformed reporting of deaths, hospital 
capacity, and hospitalizations at the community level; we discuss important cave-
ats.

Introduction

Epidemic mitigation is often contingent on individual adherence to public control 
measures (for example, for SARS-CoV or COVID-19, H5N1, H1N1, HIV) [1, 2]. 
Control measures often rely on dissemination of reliable information via reporting. 
Thus, reporting about risk and control measures has a critical role, especially in the 
early stages of a pandemic [1]. Priority should be placed on how to most effectively 
communicate information to mitigate an epidemic [3], especially by improving 
social adherence to protective behaviors. Agencies reporting on a disease outbreak 
face many choices regarding what to report, or what statistics to emphasize, when 
providing information to the general public [4, 5]. For example, should a report-
ing agency focus on the ultimate outcomes of infection (such as the number of peo-
ple who have died or are hospitalized), or on the current case burden (such as the 
number of new cases each day, or the number of current active cases)? The scale 
of reporting is another key component. Should an agency focus on reporting local 
information for a specific community or instead place emphasis on trends over a 
wider region?

Public-facing health media outlets should tailor communicated information for 
risk reporting [6], as risk assessment is influenced by individual perception [7] and 
different forms of information can vary in evoking perceived risk [6, 8]. The impor-
tance of the information (and misinformation) available to people regarding their 
own personal risk of infection has been demonstrated to have the potential, at the 
very least, of influencing epidemic outcomes [3, 4, 9]. For reporting agencies, pri-
ority should be given to the data most likely to promote responsible and appropri-
ate concern as well as the subsequent adoption of protective behaviors, rather than 
either incite panic or inadvertently encourage complacency [3, 4, 10]. Reporting 
agencies have the responsibility [11] and capacity to balance generating concern 
while lessening irrational fear, which was evident for COVID-19 via panic buying 
[12] and across social media [13]—although the risk of COVID-19 likely greatly 
outweighed potential damage due to panic [14].

People do not process information received from reports in isolation. Individuals 
vary in their adherence to interventions contingent on personal health risk factors 
[15], but may additionally modulate their own behavior based on that of friends [16, 
17]. Each person’s perceived risk of infection depends on the health and behavior 
of those within their social community, and individuals often underestimate self-
perceived risk [18] relative to others in their neighborhoods [15]. Humans exhibit 
biological avoidance responses to contagion such as emotional disgust, as well as 
innate abilities for detecting early signs of contagious sickness in others [19, 20]. 
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Physiological responses to sickness—facial expressions, altered walking gait, and 
other visible signals—may, however, signal to others the need for help [21, 22]. 
These evolved person-to-person behavioral responses would not necessarily be elic-
ited by mass media or abstract population health statistics, but perceived disease risk 
might be. Consequently, there are complex and non-linear impacts of reported infor-
mation in the real world.

Reported case numbers may also inspire individuals to alter their behaviors, 
and observation of those behavioral changes may then influence others within their 
social network, especially those who might be less attentive to the direct reporting. 
For instance, Rosa and Jade may receive the same reports, but only Jade adheres to 
protective behavior based on the report. Upon observing this change, Rosa may be 
socially influenced to engage in more protective behaviors. Individuals may broadly 
perceive a behavioral pattern in their social groups, resulting in a perceived social 
norm [16]. The nature and scale of reporting can, therefore, have important con-
sequences for both the adoption of beneficial behaviors, and then for a cascading 
spread through a social network, meaningfully impacting the course of an epidemic.

Researchers have indirectly quantified the spread of information seeking for 
influenza-like illnesses [23, 24] and protective behaviors [25] by following internet 
search trends. Recent work combined such an approach with measures of report-
ing, providing evidence of the beneficial effects of reporting [26]. Within districts of 
Germany, growing internet searches of ‘corona’ predicted subsequent local increases 
in infections, while reported case numbers predicted a local decrease in infections 
[26]. One interpretation might be that information seeking via internet searches is 
indicative of growing concern generated via awareness of increases in local expo-
sures. Steiger et al. acknowledged the difficulty in interpreting what internet searches 
measure [26]. For instance, search results can overestimate disease prevalence [27] 
because searches, themselves, spread through social learning, algorithms that uprank 
popular searches, or both processes [28]. Even so, awareness and reporting are likely 
to be closely coupled [26].

Here, we explore how reporting may facilitate adherence to non-pharmaceutical 
interventions, not just through direct dissemination of information, but also through 
accelerating the social construction of perceived risk. This change occurs when 
reporting, or another social process, ‘tips’ some individuals into being supportive 
of protective behaviors and enables concern to spread dynamically through direct 
connections in their social network. Here, we incorporate parameters representing 
both social and biological contagion [29] using a simulated, coupled dynamic, mul-
tiplex network model to examine how the nature and scale of reporting potentially 
generate concern and a subsequent adherence to protective measures. Our model is 
an advance on earlier models, which have considered how precautionary behavior 
can spread ahead of the disease itself through social learning [30, 31], but which 
have not included a separable communication network and reporting function as we 
present here. Such an approach importantly unites behavioral responses to outbreaks 
[30–32] under a dynamic disease transmission network [33, 34], which includes a 
coupled information layer [35, 36], and reporting of outbreak data.
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Methods

Base model

We extended a previously published stochastic model by adding a ‘reporter’ func-
tion. Specifics of the complete model’s construction are fully detailed elsewhere 
[37, 38] (also included in Supplementary Material). Briefly, we used multiplex 
social networks that we dynamically modeled through coupled infection and com-
munication layers, which incrementally inform each other as time progressed [37, 
38]. We simulated a closed population of 2000 individuals, broken into three age 
groups (children [24%], younger adults [63%], and older adults [13%]) within 10 
communities of equal size (200 individuals). We randomly generated network 
structure and rewired into 9 distinct network structures with a 3 × 3 design for 
levels of homophily (absence of homophily, homophily in the communication 
layer, homophily in both layers) and levels of relative modularity [39] for the con-
structed communities (0.4 in both layers, 0.6 in both layers, 0.4 in the infection 
layer with 0.6 in the communication layer).

We used an epidemiological model identical to that of Silk et al. [38], also with 
parameter values adapted from recent publications documenting the COVID-
19 pandemic (Supplementary Methods). Though we rely on disease parameters 
based on COVID-19, we intend the underlying principles of the coupled dynam-
ics model design to extend to other respiratory diseases that can be effectively 
managed in similar ways. We included seven epidemiological compartments: sus-
ceptible (S), exposed (E), pre-symptomatic (I1), symptomatic (I2), hospitalized 
(I3), recovered (R), and dead (D).

We determined adherence to protective behaviors by a Bernoulli draw, contin-
gent on a probability determined by an underlying concern trait. An individual’s 
concern responded, at each time point, to multiple features of their environment. 
As further detailed in previous work [37, 38], concern could be modified via 
social construction (individuals gain concern with a higher proportion of adher-
ent connections), awareness (individuals gain concern with a higher proportion of 
direct connections that were symptomatic), and reassurance (individuals reduce 
in concern if none of their connections are infected). We selected values for these 
parameters based on previously published analyses [37, 38] that were quantitative 
in the model (Table 1). Here, we co-varied social construction and awareness, and 
set them as either strong (0.4) or weak (0.1). Reassurance, similarly, we defined 
as either strong (− 0.075) or weak (− 0.025).

Due to the synthesis of underlying theoretical frameworks necessary for this 
modeling approach, we made several assumptions. The justifications for these 
assumptions are detailed elsewhere [37, 38] (Supplementary Methods), but we 
also explore potential modifications in the Discussion. Given our prior work 
with this model, we did not dramatically alter the mechanics of the underly-
ing model as this would require reanalysis and understanding of the base model 
(that included varying network structure, awareness, social construction, and 
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reassurance), which now has a developed knowledge set that facilitates an accrued 
and informed understanding of how the system functions.

Reporting of epidemiological information

We added a ‘reporter’ function to the previous model specifications and summed, at 
each time-step, outputs of one of five types of reporting, either: total (active) cases, 
new cases since the previous time-step, current hospitalizations, hospital capac-
ity exceeded, or deaths. We set hospital capacity at a value of 20, which per capita 
is between that of Japan and Germany, but higher than the United States [40]. We 
included a parameter for a ‘daily’ probability of a positive COVID test per time-
step that varied for symptomatic individuals (0.02, 0.05, 0.10, 0.25, 0.50, 0.75, 1.00) 
(Supplementary Fig.  1, for cumulative probabilities). For asymptomatic testing, 
the probability was a constant function (0.2) of the probability of daily testing for 
symptomatic testing within each run. We included two probabilities for death being 
attributed to COVID (0.75, 1.00), while we always identified hospitalized patients as 
COVID positive (1.00).

The strength of response parameter represents the magnitude of risk perception 
invoked by reporting on the disease [6, 8], by either attenuating or amplifying the 
effect of the number of positive tests. To integrate strength of response, we aggre-
gated positive tests at the two levels, community level or population level, and then 
multiplied those respective results by this scalar parameter. These modified numbers 
were then fed back into the model at the respective scale, either as community spe-
cific values or one population value aggregated from all 2000 individuals. Note that, 
for population-level reporting, we divided strength of response by the number of 
communities, effectively diffusing reporting among the communities. In each case, 
the result was then added to each individuals’ current concern within each commu-
nity alone or within the entire population (see Supplementary Methods). To provide 
one example, a concern of 0.000 would result in a probability of being adherent of 
0.500, a reporting value increase of 0.55 would then result in this probability chang-
ing to 0.634 at the subsequent time-step. We varied strength of response discontinu-
ously between 0.001 and 10.0. Finally, we included a delay function to account for 
variation in latency of the collection and dissemination of information for reporting 
(1, 4, 7 time-steps).

Simulations

We conducted modeling in R3.6.3 [41] and provide all of the relevant code in the 
supplementary material, as well as on GitHub: https://​github.​com/​matth​ewsilk/​
Coupl​edDyn​amics3_​repor​ter. We present the general procedure of the model in 
Fig. 1. We simulated 768,960 uniquely independent runs with 4,608 parameter com-
binations across the 9 networks, with 10–20 replicates (Table  1). Replicates each 
started with a random selection of five individuals that were infected. Simulations 
continued for 300 time-steps or until epidemics died out, whichever came first. We 
assessed the mitigating effects of different parameters on the modeled epidemic 

https://github.com/matthewsilk/CoupledDynamics3_reporter
https://github.com/matthewsilk/CoupledDynamics3_reporter
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curves visually by (a) a shift downward in the maximum infection peak and (b) a 
later peak. Both indicate a flattening in the epidemic peak. To facilitate discussion, 
we organized the values into relative categorical bins (Table 2).

Results

What is reported?

Even with high strength of response values, reporting deaths and dwindling hos-
pital capacity was functionally ineffective at mitigating the epidemic for the pop-
ulation size investigated (Fig. 2; Supplementary Fig. 2). With reporting strength 
values ten times those of the maximum simulated for total active case and new 
case reporting, hospital capacity resulted in little discernible change in either the 
height of the infection peak or when it occurred, except for a small reduction at 

Fig. 1   Visual summary of the model’s procedure. We simplified the network layers to 2 communities 
(400 nodes). The disease model [left] and reporting output [lower-right] show the results from a single 
exemplar run, averaged across communities. The concern plot [right] shows concern generation from a 
single run, averaged by community per time-step
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a very high strength of response. Similarly, reporting deaths resulted in a small 
shift at very high strengths of response. The reporting of hospitalizations had a 
small effect at moderate response strengths (Fig.  2; Supplementary Fig.  3). We 
observed the highest benefit of reporting, however, for that of total active and new 
cases. Notably, these benefits were only pronounced with weak awareness and 
social construction of concern. Consequently, Figs.  2, 3, and 4 have been con-
strained to presenting results with weak awareness and social construction.

Total active case reporting proved most effective at mitigating the epidemic 
peak, even at low strengths of response. This was driven by the gross number 
of reported cases being much higher when reporting total active cases relative 
to new case reporting. The peak number for reported active cases were 6.64 
(median, IQR 5.39–7.57) times higher than the peaks for reported new cases. 
New case reporting, however, required only a four-to-five times greater strength 
of response to gain an equivalent benefit in mitigating the epidemic peak (Fig. 3; 
Supplementary Fig.  4), indicating that the response to new cases was slightly 
more effective per case than the response to total active cases. We propose that 
this was caused by the peak in the number of new cases occurs earlier in the epi-
demic than the peak in the number of total active cases (Supplementary Fig. 5).

Fig. 2   Influence of reporting scale and type. We organize plots by row as the strength of response (strong 
[top], weak [bottom]). The x-axis shows a subset of strength of response values as a factor, while the 
y-axis is the peak infections per run. The boxes are filled according to type of reporting, while the outline 
corresponds to the scale of reporting. Delay and probability of testing are not fixed; awareness and social 
construction are fixed at 0.1
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Scale of reporting

The best scale at which to report epidemiological information was contingent on 
what was being reported. For active case, death, and hospitalization reporting, a 
population-level scale was more effective than a community-level scale (Fig. 2; 
Supplementary Figs. 2 and 3). For new case reporting, however, there was a less 
pronounced distinction in the mitigating benefits of the two scales of reporting 
at low and negligible strengths of response. Finally, for hospital capacity, the 
community-level scale of reporting was more effective, relative to population-
level reporting. Overall, population-level reporting was more, or equally, effec-
tive across the types of reporting except for reports of hospital capacities being 
exceeded, which had limited effectiveness anyway.

Assuming active case reporting with a negligible reporting effect and strong 
reassurance, communities that had infections emerge later in the run were hit 
more severely (Fig.  4a), in line with prior findings [37]. With a moderate test-
ing probability and strength of response, however, community-level report-
ing negated the increased severity observed in late-hit communities (Fig.  4b). 

Fig. 3   Impact of the reporting of total active cases relative to new cases. Active case reporting (both pop-
ulation and community level) is simplified as horizontal bars (median) and shading (interquartile range) 
for a low strength of response (0.05 top [orange online]) or moderate strength of response (0.20 bottom 
[red online]). We represent new case reporting by points at the median with whiskers for interquartile 
range. Points are colored by population- and community-level reporting. The x-axis shows strength of 
response as a factor. Awareness and social construction are set to 0.10; reassurance is set to strong; prob-
ability of testing was fixed at 0.25; delay was not fixed. See Supplementary 4 for weak reassurance
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Population-level reporting completely reversed this phenomenon, such that com-
munities where infections emerged later were hit less severely. This latter reversal 
effect was only visible with a strong reassurance effect. Increasing the strength 
of response while retaining a high testing probability removed this reversal effect 
(Fig.  4c), likely due to overall high effectiveness in reducing cases irrespective 
of scale. This was also apparent from the population-level reversal effect being 
reproducible when we retained high strengths of response, but lowered the test-
ing probability. Strength of response and probability of testing interacted with the 
scale of reporting to alter the severity of late-hit, relative to early-hit, communi-
ties. Probability of testing had a largely synergistic relationship with strength of 
response (Supplementary Results). We should note that with a weak reassurance 
effect, later hit communities did not experience more severe epidemics in the 
first place (Fig.  4d). Though, with weak reassurance, late-hit communities with 

Fig. 4   Changes in severity of epidemic peaks across time over the ten communities. Reporting scale is 
indicated by the outline color (population-level = gray outline; community-level = black outline). Prob-
ability of testing is indicated by shading (light = 0.02, dark = 0.25). Each box shows coefficients of linear 
regressions for each run with a model of when peak infections occur, as predicted by the infection peaks. 
Thus, positive y-values indicate lower infection peaks in early-hit communities, while negative values 
indicate lower infection peaks in late-hit communities. The top row of plots illustrates strong reassurance, 
the bottom row weak reassurance. Left plots are for a negligible strength of response (0.01), the mid-
dle plots are for a low strength of response (0.10), the right plots show a moderate strength of response 
(0.50). Awareness and social construction are set to 0.10; delay was not fixed
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community-level reporting benefited from a high strength of response, but only 
with a low probability of testing (Fig. 4e).

Awareness, social construction, and reassurance

When awareness and social construction were strong, the benefit of reporting was 
generally not observable across the different levels and types of reporting (Fig. 5). 
The combined effect of strong social construction and awareness overwhelmed the 
benefit afforded by concern generated via reporting. Awareness and social construc-
tion were, consequently, fixed at weak values throughout the previous results on 
reporting.

If all else was equal, strong reassurance resulted in heightened infection peaks 
relative to weak reassurance (Fig. 5), as explored more fully in prior models [37, 
38]. We found the benefit of reporting to be more pronounced with strong reassur-
ance, such that equal steps in the strength of response resulted in a greater absolute 
change in the magnitude of infection peaks, relative to runs with weak reassurance. 
Consequently, runs with a strong reassurance experienced consistently higher peaks 
relative to weak reassurance; though this difference was reduced when reporting 

Fig. 5   Influence of awareness, social construction, and reassurance relative to active case reporting. Plots 
are organized by row as the level of reporting (community [top], population [bottom]), while columns 
as the value of awareness and social construction (0.1 [left], 0.4 [right]). The x-axis treats strength of 
response as a factor, while the y-axis is the peak infections per run. The boxes are colored according to 
Reassurance (strong [gray or blue online], weak [black or navy online]); delay was not fixed. Boxes with 
a strength of response < 0.75 show the results of 3780 runs, while the box with 0.75 shows 540 runs
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strengths were moderate or high, for active and new case reporting, respectively. 
Reporting deaths, hospitalizations, and hospital capacity were not strong enough, 
even with moderate to very high strengths of response, to alter the relative difference 
between the infection peaks of runs with strong versus weak reassurance (Supple-
mentary Figs. 6, 7).

Discussion

Nature of reporting

The reporting of epidemiological information to the public has the potential to alter 
the shape of an epidemic curve through the generation of concern, which can pro-
mote adherence to protective behaviors. Here, we demonstrate the efficacy of total 
active and total new case reporting over reports of hospitalizations, hospital capac-
ity, and deaths. While case reporting is often used for global and national surveil-
lance, public health agencies should implement policies with forethought as to 
how this might shape public concern. The real-world generation of concern has 
been associated with media reporting based on surveys of H1N1 risk in the United 
Kingdom [10], though the authors emphasized the importance of timing for media 
reporting. Indeed, the effectiveness of reporting hospitalizations, hospital capacity, 
and deaths may be impeded by a lack of timeliness [42, 43] and, thus, any resulting 
change in behavior occurs too late to shape the initial epidemic. Public-facing health 
media outlets should time reporting to coincide with imminent increases in the local 
risk of contagion, to avoid reassurance or a unintended public perceptions of sensa-
tionalism [10]. Furthermore, concern and adherence to protective behaviors may be 
most effectively generated during a behaviorally receptive phase [37].

Scale of reporting

Overall, reporting at the population level had greater efficacy than reporting at the 
community level. Timing was, in part, why population-level reporting was effective, 
with a disproportionate mitigation benefit in late-hit communities. Previous work 
suggests that the onset of reassurance can erode initially high levels of concern in 
communities that are not yet incubating infections—or where substantial infections 
exist but are not yet fully reported (e.g., [44–46])—and result in higher epidemic 
peaks [37]. Consequently, public health agencies should practice care in balanc-
ing public concern and reassurance in the absence of infection risk. As with tim-
ing of reporting, over-reporting may create a perception of sensationalism, as pos-
ited for public health responses to or media coverage of H1N1 [47, 48] and H5N1 
[6]. Unfortunately, a formal analysis of United States newspaper coverage of H5N1 
found that the media relied heavily on loaded terminology and worst-case scenarios 
[6]. This may erode trust [48], an intervening variable of interest [49, 50], which 
could skew responsiveness to case reporting. Public-facing health media outlets 
could effectively increase initial concern by synchronizing reports with impending 
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disease risk based on rates in neighboring communities. Similarly, altering initial 
concern of our simulated population, without reporting [37], often facilitates a rapid 
mitigating response.

Communication with the public

An intervening variable not modeled here is how people differ in understanding 
numeric measures. Generally, objective measures can be informative in under-
standing disease risk, and may reduce some types of media reporting bias [51], 
but such an effect is not guaranteed [3, 52]. Some demographics or cultures may 
respond more strongly to framings of economic or social risk [1, 53], rather than 
disease risk. Case numbers often elicit concern via negative framing [18], and 
may be challenging for less numerate members of the public to contextualize [18, 
54]. This latter point is important as 7.8% of Americans cannot complete one-step 
numeracy problems in English, which includes assessments of counting ability 
[55]. Numeracy has been show to interact with risk magnitude, such that more 
numerate individuals are more likely to be concerned with a higher magnitude of 
risk (that is, disease developing in 500 of 1000, versus 50 of 1000 people) [56]. 
Research has also linked level of education to knowledge regarding the symptoms 
and transmission of respiratory disease [57]. Public-facing health media outlets 
should contextualize reporting in a relatable framework considerate of the diverse 
backgrounds and skills that different members of the public possess [3, 5]. Pub-
lishing untargeted or comprehensive information may not provide an accruing 
benefit for less numerate individuals and could instead alienate members of the 
public. Public-facing health media outlets should give priority to how informa-
tion can be disseminated simply, but effectively, to encourage the adoption of pro-
tective behaviors [5].

Awareness, social construction, and reassurance

Our model emphasized the importance of awareness and social construction 
of concern for mitigating the epidemic. Here, strong awareness and social con-
struction showed a greater contribution than even the strongest performing type 
of reporting. This observation parallels data on public perceptions of H1N1 in 
Canada [48], where 58.91% of polled respondents said they would be concerned 
‘when one or more of their direct contacts became infected,’ while only 27.98% 
said ‘when infection was reported in ≥ 10% of the general populace’ [48]. More 
respondents anticipated that awareness of the disease in their direct network 
would have a greater influence on their concern than reported case numbers. Also 
of note is the role of reassurance, which we used, here, to simulate the erosion of 
concern over time within a social context. Such an effect has been documented via 
surveys [10, 58]. For example, interviews of 4047 Italian respondents indicated 
that their concern of H1N1, their perceived risk of infection, and their use of 
protective behaviors all declined over time along with the actual risk of infection 
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[58]. Here, moderate reporting generated concern sufficient to counteract the 
effects of strong reassurance, such that epidemic peaks were similar to those in 
runs with weak reassurance. Future research would benefit from comparing the 
role of reporting in communities with disparate tendencies for reassurance.

Adapting to shifting conditions

We recognize that the intersection between social and health behavior has dramat-
ically shifted throughout the course of the pandemic. For instance, we now have 
numerous highly effective vaccines [59], which have been released concurrent with 
a swell in public belief in and engagement with misinformation [60]. Although vac-
cine effectiveness is robust against hospitalizations and deaths, protection against 
infection and transmission is not complete [59]. This is further complicated by 
growing concerns about waning immunity [61], and varying vaccine uptake across 
demographic groups [62]. These dynamics result in complex interactions. For exam-
ple, how does vaccine uptake or willingness to accept misinformation intersect with 
concern-generating processes, especially in the face of future pandemic waves? 
High vaccine uptake decreases transmission, but also might reduce awareness and, 
thus, prevent rapid adherence in response to local outbreaks. Individuals who do not 
practice social distancing might also be unwilling to vaccinate, but could gain natu-
ral immunity. Such dynamics, therefore, likely require competing information flow 
or network layers, with individual properties or identities altering the probability of 
information and vaccine acceptance. Future research would benefit from altering our 
model construction, or building similar models that utilize multiplex information 
and disease layers, either relying on simulations or by expanding to include data-
based analyses for further inference of these complex dynamics.

Conclusion

Presently, some nations are transitioning from a surging COVID-19 pandemic, man-
aged primarily by protective behaviors, to a percentage of vaccinated residents fac-
ing sustained low-case numbers and a continued risk of variants. In areas where 
vaccination rates are low, however, public health agencies and public-facing health 
media outlets are primarily responsible for recommending public practices to man-
age COVID-19 outbreaks through the use of protective behaviors. In the absence 
of reporting, public reassurance is much more likely to decrease concern, and so 
reduce the efficacy of protective behaviors prior to new increases in risk. An individ-
ual’s awareness of past pandemics has been associated with greater awareness and 
knowledge of newer viral risks [63]. However, subsequent increases in concern may 
be stunted [10] and the persistent use of preventative behaviors through subsequent 
waves may vary [64].

Case reporting can occur in tandem with test-trace-and-isolate policies which 
effectively synergize with vaccination efforts [65]. Sustained testing is vital for test-
trace-isolate programs [66] and can facilitate continued reporting to mitigate future 
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outbreaks. In a recent review of COVID-19 cases in the United States, Li et al. [67] 
emphasized that public information campaigns have a strong effect on reducing case 
growth rates relative to other policies, including closures, event cancellations, and 
movement restrictions [67]. Public information campaigns often extend beyond sim-
ply reporting infection status and numerical data, but we emphasize that reporting 
can have indirect benefits outside of direct policy health action. Thus, we recom-
mend that all aspects of the multi-modal dissemination of information remain a 
research priority to amplify the effectiveness of reports, which may not necessarily 
be government run [68, 69].
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