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Abstract
In this paper, we analyze how tail risk impacts both asset prices and the optimal asset allocation. For this purpose, we consider 
an equilibrium model with investors exhibiting an empirically well-justifiable decreasing relative risk aversion (DRRA) and 
different investment horizons. In contrast to the seminal CAPM, two fund separation does no longer hold, and investors not 
only regard one risk measure such as the standard deviation but additionally care for the size of tail risk. The shorter the 
investment period, the more prone they are to negatively skewed returns. In particular, short-term investors not only hold a 
lower equity ratio than (else equal) long-term investors do, but they also reduce the fraction of assets with negative tail risk. 
Consistently, the more short-term investors are in a market, the higher the tail risk premium is, i.e., the additional expected 
return due to skewness beyond a given standard deviation. Consequently, these theoretical findings allow us to draw empirical 
predictions about (i) the drivers of the skewness premium, (ii) characteristics for markets in which the premium is especially 
severe, and (iii) the optimal investors’ asset allocation.

Keywords Asset allocation · Jump diffusion process · DRRA  · Skewness premium · CAPM · Investment horizons
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Introduction

According to the seminal capital asset pricing model 
(CAPM) by Sharpe (1964), Lintner (1965), and Mossin 
(1966), optimal investment decisions can be based only on 
expected returns and standard deviations of the overall port-
folio return, but higher moments do not matter at all. To 
obtain this highly tractable result, the model requires spe-
cific assumptions for the return distribution and/or the util-
ity functions of investors. Empirical capital market research 
[see for example Harvey and Siddique (2000), Ang et al. 
(2006), Boyer et al. (2010)], however, provides evidence that 
investors do care about further risk characteristics, which 
the standard deviation does not fully include. An example of 
these risk characteristics is tail risk or catastrophe risk. The 
danger of losing a large part of the portfolio’s wealth with 

ruinous consequences for the individual with a very small 
probability is for some investors less attractive than a portfo-
lio with normally distributed returns despite identical means 
and standard deviations as the other portfolio. Hence, these 
empirically observed preferences favor an additional risk 
premium for tail risk or, technically speaking, a skewness 
premium for (systematic) negatively skewed asset returns.

Since many theoretical applications are based on a 
CAPM-like notion, skewness premia cannot be analyzed in 
these approaches as there is no premium for skewness at all 
due to the consciously imposed set of assumptions. In prac-
tice, however, the optimal portfolio choice requires a careful 
treatment of tail risks and—in case of positive skewness 
premia—the voluntary selection of skewed returns. Because 
of a missing established framework for tail risk rather than 
total market risk, we lack an understanding of the drivers 
of a potential skewness premium. Moreover, it is doubtful 
whether each investor should still hold a part of the market 
portfolio in equilibrium, such as concluded by the CAPM if 
the extended case that investors not only care for market risk 
but also tail risk is present.

The aim of this paper is to provide an insightful asset 
pricing model to explain skewness premia. With the help 
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of this model, we want to deal with the questions: (i) what 
drives a high skewness premium and (ii) which optimal port-
folio should heterogeneous investors choose with regard to 
tail risk.

Our findings are as follows: first, with decreasing rela-
tive risk aversion (DRRA) of investors, we can obtain a 
positive skewness premium that decreases with the inves-
tors’ investment horizon. Second, allowing for heterogene-
ous investment horizons, our asset pricing model implies a 
higher equity fraction of long-term investors than short-term 
investors. Third, contrary to the conclusion of the CAPM, 
we explain that the composition of the risky portfolio dif-
fers among the heterogeneous investors: Long-term investors 
invest a higher fraction in assets associated with catastrophe 
risk than short-term investors do. Fourth, we show that the 
composition of market participants affects the size of the 
skewness premium: The skewness premium rises with the 
proportion of short-term investors in the economy.

The paper is related to the rich literature dealing with 
the implications of skewed returns in financial applications. 
Based on Arditti (1967) and Scott and Horvath (1980), who 
provide evidence under general assumptions that investors 
have a preference for positive skewness, the role of skewness 
in the context of asset pricing has been studied in numerous 
papers. For example, Kraus and Litzenberger (1976) extend 
the CAPM and stress the relevance of systematic skewness 
in a three-moment CAPM. Mitton and Vorkink (2007) intro-
duce a one-period model with agents having heterogeneous 
preferences for skewness and conclude that idiosyncratic 
skewness is priced. Further, the impact of higher moments 
on the optimal asset allocation decision of investors is high-
lighted in several studies. These include among others Liu 
et al. (2003), Wu (2003), Jondeau and Rockinger (2006), and 
Harvey et al. (2010).

Our paper contributes to this literature by showing how 
tail risk affects (i) the portfolio decision of investors who 
differ in terms of their investment horizon and (ii) the equi-
librium prices, which lead to skewness premia depending on 
investors’ investment horizons in a multi-period framework. 
We deviate from the typical assumption of constant rela-
tive risk aversion (CRRA) or a Taylor series expansion to 
approximate utility functions. Instead, we assume investors 
with DRRA and thereby capture the often observed behav-
ior of market participants to choose higher equity fractions 
when their investment periods are longer. In principle, this 
outcome is in line with the frequently proposed investment 
rule by practitioners to allocate a percentage of wealth in 
risky assets equal to 100 minus the investor’s age. While this 
is arguably a somewhat stylized investment advice, it takes 
up the idea that younger investors with longer investment 
periods (should) have higher equity fractions.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the asset pricing model and specifies the 

return generating processes as well as the utility function 
of investors. The equilibrium characteristics for economies 
with homogeneous and heterogeneous investment horizons 
of investors are described in Sect. 3. Section 4 deals with 
selected parameter modifications as robustness checks. Sec-
tion 5 concludes.

Model description

Market and time structure

We consider an economy from time t0 to time T, which 
consists of a risk-free asset, paying the risk-free rate rf  per 
annum (p.a.), and two risky stocks. While both stocks have 
identical expected returns and standard deviations, the 
returns of Stock 1 are normally distributed, and the returns 
of Stock 2 exhibit negative skewness. The left-skewed return 
distribution implies that the probability of large negative 
returns exceeds the probability of equally large positive 
returns. Both stocks pay out their respective fundamental 
values S̃1,T and S̃2,T at time T and nothing at other points 
in time.

Before time T, equilibrium prices of the two stocks are 
formed under consideration of the known distributions of 
the two stocks by market participants. At time t0 , the funda-
mental values S1,t0 and S2,t0 of Stock 1 and 2, respectively, are 
normalized to 1, which might differ from the corresponding 
(trading) prices pEQ

1,t0
 and pEQ

2,t0
 in equilibrium. To ensure that 

the aggregate fundamental value of stocks is equal to 1, the 
time t0 supply Xk of Stock k = 1, 2 is given by

Investors enter the economy at time t0 , who can either pur-
chase units of the two stocks or invest in the risk-free asset. 
We assume that the demand for stocks is characterized by 
perfect competition, which implies that all investors are 
price takers so that we can use the concept of a representa-
tive investor following, e.g., Huang and Litzenberger (1988). 
This way, we can determine equilibrium prices as if there 
were only one investor in the economy, endowed with total 
endowment of (infinitely many) market participants.

To allow for different investment horizons, we consider 
two types of representative investors: representative long-
term Investor L with an investment horizon until time T, 
and representative short-term Investor S with an investment 
horizon until time TS , which is prior to time T. Both investors 
thereby pursue a buy-and-hold strategy and cannot make any 
portfolio adjustments throughout their respective investment 
periods. For tractability, stocks are infinitely divisible and 
no trading costs exist.

The representative investors at time t0 are ini-
tially endowed with cash, whereby the total monetary 

(1)X1 = X2 = 0.5.
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endowment XCash equals the aggregated fundamental value 
of all shares outstanding:

Against payment of the equilibrium prices pEQ
1,t0

 and pEQ
2,t0

 , the 
investors receive units of the stocks at time t0 . While Investor 
L obtains the fundamental values S̃1,T and S̃2,T at time T, 
Investor S leaves the economy at time TS , offering the stock 
holdings XS

1
 in Stock 1 and XS

2
 in Stock 2 without limit.

Analogously to time t0 , stock supply is hence perfectly 
inelastic, and we consider representative follow-up Inves-
tor F to enter the economy at time TS . This investor, with 
residual investment horizon T − TS , is endowed with X

F

Cash
 , 

which equals the sum of fundamental values of shares out-
standing at time TS:

This treatment assures equal conditions as at time t0 . Investor 
F purchases the available units of stocks, paying the time TS 
equilibrium prices pEQ

1,TS
 and pEQ

2,TS
 to Investor S. Figure 1 sum-

marizes the investment horizons of the investors in the 
economy.

Before turning to the derivation of the equilibrium 
prices, we set out the statistical stock properties and spec-
ify the utility function of investors in the following.

Statistical stock properties

We consider two well-established stochastic processes for 
Stock 1 and Stock 2: a pure diffusion model (geometric 
Brownian motion) and a jump diffusion model (compen-
sated geometric Brownian motion with jumps). The con-
sidered return generating models enable us to construct 
return distributions with equal expected return and stand-
ard deviation of returns but which differ in terms of their 
skewness.

For Stock 1, the well-known stochastic differential equa-
tion in continuous time of the standard geometric Brownian 
motion reads

(2)XCash = X1 ⋅ S1,t0 + X2 ⋅ S2,t0 = 1.

(3)X
F

Cash
= XS

1
⋅ S1,TS + XS

2
⋅ S2,TS .

Equation (4) denotes the instantaneous discrete return of 
Stock 1 over an infinitesimally small time step dt. � and � 
denote the expected discrete return and standard deviation 
(p.a.), respectively, and zt a standard Wiener process. The 
log return representation follows from Ito’s lemma [see, e.g., 
Hull (2017)] and is given by

where z̃T is normally distributed with zero mean and vari-
ance T.

Following Merton (1976), we construct the jump diffu-
sion process by adding a Poisson distributed jump compo-
nent to the stochastic differential equation in Eq. (4). The 
discrete Poisson probability distribution assigns a prob-
ability to the number of events, or jumps, occurring during 
a fixed period of time and average event rate. For the sake 
of simplicity, we consider a non-stochastic negative jump 
of size 𝜙 < 0 in the logarithm of the stock price in case a 
jump occurs, such that the stochastic differential equation 
of Stock 2, with jump-adjusted drift �J and volatility �J of 
the diffusion term, reads

The Poisson process is denoted by Jt and in case a jump 
occurs, the stock price jumps from S2,t to the lower value 
e� ⋅ S2,t . The volatility �J denotes the standard deviation 
(p.a.) of returns conditional on no Poisson event to occur. dJt 
and dzt are assumed to be independent. To ensure that the 
expected discrete return �

(
dS2,t

S2,t

)
 equals � ⋅ dt , the jump-

adjusted drift �J in Eq. (6) needs to be set to

where � denotes the intensity of the Poisson process, i.e., 
the instantaneous jump probability is � ⋅ dt . By subtracting 
the expected (negative) discrete jump size 

(
e� − 1

)
 from � , 

we have 𝜇J > 𝜇 and the expected discrete return of the jump 
diffusion process coincides with the expected discrete return 
of the geometric Brownian motion in Eq. (4) and equals �.

Similar to Eq. (5), following the Ito formula for jump 
diffusion processes given by Cont and Tankov (2003), the 
log return representation of the process considered for the 
fundamental value S2,t reads

(4)
dS1,t

S1,t
= � ⋅ dt + � ⋅ dzt.

(5)ln

(
S̃1,T

S1,t0

)
=
(
� −

1

2
�2

)
⋅ T + � ⋅ z̃T ,

(6)
dS2,t

S2,t
= �J ⋅ dt + �J ⋅ dzt +

(
e� − 1

)
⋅ dJt.

�J ∶= � − � ⋅

(
e� − 1

)
,

t0 TS T

Long-term Investor L

Short-term
Investor S

Follow-up
Investor FTrade

Fig. 1  Investment horizons of the representative investors
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where J̃T follows a Poisson distribution with intensity � ⋅ T  
and denotes the number of jump occurrences from time t0 to 
time T. The variance of the log return from time t0 to time 
T is

As we aim to construct two processes with equal standard 
deviation, we set the volatility �J of the diffusion term such 
that the total standard deviation of the return of Stock 2, i.e., 
the square root of Eq. (8) per year, is equal to � , the annual 
standard deviation of Stock 1. Solving for the volatility �J 
of Stock 2 conditional on no Poisson event to occur, we get

For given volatility � , jump intensity � , and jump size � , 
Eq. (9) for �J ensures equal standard deviations of returns 
of both Stock 1 and Stock 2. The skewness of the returns 
generated by the jump diffusion process is

Contrary to the normally distributed log returns of the pure 
diffusion process from Eq. (5), the skewness of the jump 
diffusion process differs from zero. Due to 𝜙 < 0 , we always 
have a negative skewness. Equation (10) shows that the 
skewness converges to zero with increasing T. Accordingly, 
the distribution of returns generated by the jump diffusion 
process converges to the distribution of returns of the pure 
diffusion process for large T.

Investors

We regard rational investors with decreasing relative risk 
aversion (DRRA). Contrary to constant relative risk aver-
sion (CRRA), DRRA captures the often observed behavior 
that investors with a long investment horizon have a higher 
equity fraction, else equal, than investors with a short 
horizon. While the availability of closed-form solutions 
makes CRRA a common choice to model utility in many 
applications, it can be easily shown that the optimal equity 
fraction, which results from a static portfolio optimization 

(7)ln

(
S̃2,T

S2,t0

)
=
(
�J −

1

2
�2

J

)
⋅ T + �J ⋅ z̃T + � ⋅ J̃T ,

(8)Var

(
ln

(
S̃2,T

S2,t0

))
=
(
�2

J
+ � ⋅ �2

)
⋅ T .

(9)�J =
√
�2 − � ⋅ �2, with �2 − � ⋅ �2 ≥ 0.

(10)Sk

�
ln

�
S̃2,T

S2,t0

��
=

�√
T
⋅

�3

�
�2

J
+ � ⋅ �2

3
.

problem, is independent of the investment horizon of the 
investor. DRRA utility, however, implies that the wealth-
ier an investor, the less risk averse the investor is, which 
results in an increasing equity fraction with the investment 
horizon [see Thorley (1995)].

Following Merton (1971), we assume one functional 
form of the hyperbolic absolute risk aversion (HARA) 
family to model utility of investors. Depending on final 
wealth W at the end of the investment horizon of arbitrary 
Investor i, the utility function reads

where � and �i specify the risk aversion of Investor i with 
𝛾 > 0(≠ 1) . The relative risk aversion (RRA) coefficient for 
Ui(W) is given by

It follows that �i specifies whether Investor i exhibits increas-
ing or decreasing RRA with wealth. While Eq. (11) reduces 
to CRRA utility for �i = 0 , utility is characterized by DRRA 
for 𝜂i > 0.

Sharpe (2007) refers to �i as the minimum required level 
of wealth, which seizes the fact that the utility function in 
Eq. (11) is only defined for W > 𝜂i . The condition ensures 
positive and diminishing marginal utility. He stresses that 
only values exceeding �i “should be considered” (p. 23). In 
a static portfolio optimization problem, the application of 
the DRRA utility function hence implies an upper bound 
of possible equity fractions, which assures that W > 𝜂i . 
Following Ogaki and Zhang (2001), we refer to �i as the 
investor-specific subsistence level of wealth.

We assume investors to have equal � and set �i as a frac-
tion of monetary endowment of Investor i according to

with X
i

Cash
> 0 . Equation (12) assures that investors make 

identical investment decisions, independent of initial wealth 
for given subsistence wealth �.

With investors’ utility depending on final wealth at 
time T, intermediate wealth levels prior to time T are not 
evaluated by the investor: While the investors require a 
minimum level of wealth at the end of their investment 
periods, they are willing to endure substantial portfolio 
losses in the interim. Specifically, we can assume shorter-
orientated investors pursuing a buy-and-hold strategy with 
capital needs in the nearer future at time T for consumption 

(11)Ui(W) =

(
W − �i

)1−�
1 − �

,

RRAi(W) = −

�2Ui(W)

�W2

�Ui(W)

�W

⋅W = � ⋅

(
W

W − �i

)
.

(12)�i = � ⋅ X
i

Cash
,
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purposes or longer-term investors saving for retirement 
with a specific (minimum) capital requirement at the 
beginning of their pension period at time T.1

With utility of investors depending on final wealth, we 
now turn to the specific expressions for final wealth of the 
investors in the economy.

Long-term Investor L Final wealth of representative 
Investor L with investment horizon T reads

In this representation, XL
1
 and XL

2
 denote the number of 

shares of Stock 1 and Stock 2 purchased at time t0 and S̃1,T 
and S̃2,T the fundamental stock values at time T, respectively, 
which follow from Eqs. (4) and (7). The investment XL

Cash
 

at the risk-free rate rf  can be expressed as the difference of 
initial monetary endowment X

L

Cash
 and expenditures for the 

risky assets with trading prices p1,t0 and p2,t0 . Including this 
budget constraint, we can write final wealth of Investor L as

Short-term Investor S Similarly to long-term Investor L, 
we can write final wealth of representative Investor S with 
investment horizon TS(< T) as

WL
T

(
XL
1
,XL

2
;p1,t0 , p2,t0

)
= XL

1
⋅ S̃1,T + XL

2
⋅ S̃2,T + XL

Cash
⋅ erf ⋅T .

(13)

WL
T

(
XL
1
,XL

2
;p1,t0 , p2,t0

)

= XL
1
⋅ S1,t0 ⋅ e

(
�−

1

2
�2

)
⋅T+� ⋅̃zT

+ XL
2
⋅ S2,t0 ⋅ e

(
�J−

1

2
�2

J

)
⋅T+�J ⋅̃zT+�⋅J̃T

+
(
X
L

Cash
− XL

1
⋅ p1,t0 − XL

2
⋅ p2,t0

)
⋅ erf ⋅T .

(14)

WS
TS

(
XS
1
,XS

2
;p1,t0 , p2,t0

)

= XS
1
⋅ p̃1,TS + XS

2
⋅ p̃2,TS

+
(
X
S

Cash
− XS

1
⋅ p1,t0 − XS

2
⋅ p2,t0

)
⋅ erf ⋅TS .

While the budget constraint of Investor S reads analogously 
to the budget constraint of Investor L, Investor S does not 
receive fundamental values of the stocks at time TS , but trad-
ing prices p̃1,TS and p̃2,TS , which come from trading with 
Investor F.

Follow-up Investor F With an investment period from 
time TS to time T, representative Investor F receives the fun-
damental values S̃1,T and S̃2,T at time T. The expenditures at 
time TS depend on prices p̃1,TS and p̃2,TS , such that we can 
write final wealth as

with monetary endowment X
F

Cash
 of Investor F given in 

Eq. (3).

Derivation of the equilibrium

The equilibrium is characterized by all representative inves-
tors to make expected utility-maximizing investment deci-
sions and by markets at time t0 and time TS for both stocks to 
clear. Hence, the optimization problem of Investor i at time 
t0 for a given price combination p1 and p2 of the two stocks 
at the trading date reads

With DRRA utility from Eq. (11), a closed-form solution 
for the optimal number of units of stocks bought does not 
exist so that we solve Eq. (16) by simulation.2 In this way, 
the demand functions χi

1

(
p1, p2

)
 and χi

2

(
p1, p2

)
 of Investor i 

for Stock 1 and Stock 2 are derived. Else equal, demand for 
a stock is a decreasing function of the respective price of the 
stock and increasing in the other stock’s price.

(15)

WF
T

(
XF
1
,XF

2
;p1,TS , p2,TS

)

= XF
1
⋅ S̃1,T + XF

2
⋅ S̃2,T

+
(
X
F

Cash
− XF

1
⋅ p̃1,TS − XF

2
⋅ p̃2,TS

)
⋅ erf ⋅(T−TS),

(16)max
Xi
1
,Xi

2

�t0

[
Ui

(
W
(
Xi
1
,Xi

2
;p1, p2

))]
.

1 Whether the investor’s utility depends only on wealth at time T or 
interim shortfalls impact the investor’s utility and/or the investor is 
not willing to endure substantial losses during the investment period 
is subject to controversial discussions [see, e.g., Bodie (2015)]. Fol-
lowing the discretionary wealth hypothesis by Wilcox (2003), for 
example, which builds on the investment criteria by Kelly (1956) and 
Markowitz (1952), risk aversion of investors is determined by the 
necessity to avoid “shortfalls, not only at some far-off ending period, 
but all along the way” (p. 62). Maximizing the expected periodic log 
return of discretionary wealth, investors do not tolerate a periodic 
(e.g., monthly or annual) percentage loss exceeding a pre-specified 
value such that the optimal equity fraction is independent of inves-
tors’ investment horizons in a static portfolio optimization problem 
with repeating periods (Wilcox 2020). For a one-periodic investment 
horizon, the investment policy by Wilcox is equivalent to the DRRA 
utility function for the special case of � = 1 and � = W0 ⋅

(
1 −

1

L

)
 in 

terms of identical asset allocation implications.

2 To generate distributions of final wealth, we simulate 50,000 val-
ues for the diffusion term z̃T for the two stocks. For numerical stabil-
ity, we explicitly take into account the number of jumps from zero 
to JT of Stock 2, rather than simulating the Poisson-distributed num-
ber of jumps J̃T for each realization of z̃T . The maximum number of 
jumps considered with respect to time T, JT , satisfies that the cumu-
lative probability 

∑JT
�=0

p(�;� ⋅ T) of all jumps included just exceeds 
99.9999%, whereby p(�;� ⋅ T) denotes the probability function of the 
Poisson distribution with number of jumps � and intensity � ⋅ T:

We add the residual probability 1 −
∑JT

�=0
p(�;� ⋅ T) to the respective 

probability of JT . The expected utility is then derived as the average 
of the utilities weighted by the occurrence probability p(�;� ⋅ T) of 
the respective jumps �.

p(�;� ⋅ T) =
(� ⋅ T)�

�!
⋅ e−�⋅T .
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Specifically, since Investor S receives trading prices p̃1,TS 
and p̃2,TS at time TS , which result from trade with follow-up 
Investor F, a recursive solution of the model is required to 
determine equilibrium prices pEQ

1,t0
 and pEQ

2,t0
 . In line with the 

notion of perfect competition, it is thereby assumed that 
Investor S cannot affect prices at time TS by choosing the 
number of stocks bought at time t0 strategically.

At time TS , Investor F maximizes expected utility depend-
ing on final wealth from Eq. (15) by choosing optimal stock 
holdings for prices p1,TS and p2,TS:

Thereby, we derive the corresponding demand functions for 
Stock 1 and Stock 2, χF

1
(p1,TS , p2,TS ) and χF

2
(p1,TS , p2,TS ) . Equi-

librium prices pEQ
1,TS

 and pEQ
2,TS

 are the price combination such 
that the demand of Investor F for both stocks at time TS 
equals the respective supply of Investor S. The market clear-
ing conditions at time TS read

In this representation, χF
1
(p

EQ

1,TS
, p

EQ

2,TS
) and χF

2
(p

EQ

1,TS
, p

EQ

2,TS
) are 

the demand functions evaluated at the equilibrium prices at 
time TS and denote the numbers of units of Stock 1 and Stock 
2 Investor F purchases in equilibrium. Supply of the two 
stocks by Investor S in equilibrium is denoted by XS,EQ

1
 and 

X
S,EQ

2
 and equal to the priory chosen units of Investor S:

i.e., χS
1
(p

EQ

1,t0
, p

EQ

2,t0
) and χS

2
(p

EQ

1,t0
, p

EQ

2,t0
) are the demand functions 

of Investor S evaluated at the equilibrium prices at time t0.
At time t0 , Investor S and Investor L maximize expected 

utility depending on final wealth given in Eqs. (13) and (14), 
by choosing the optimal stock holdings for price combina-
tions p1,t0 and p2,t0 . The optimization problems of Investor L 
and Investor S read:

max
XF
1
,XF

2

�TS

[
UF

(
WF

T

(
XF
1
,XF

2
;p1,TS , p2,TS

))]
.

χF
1
(p

EQ

1,TS
, p

EQ

2,TS
) − X

S,EQ

1

!
= 0

χF
2
(p

EQ

1,TS
, p

EQ

2,TS
) − X

S,EQ

2

!
= 0.

X
S,EQ

1
∶=χS

1
(p

EQ

1,t0
, p

EQ

2,t0
)

X
S,EQ

2
∶=χS

2
(p

EQ

1,t0
, p

EQ

2,t0
),

From the utility maximization problems follow the demand 
functions χL

1
(p1,t0 , p2,t0 ), χ

L
2
(p1,t0 , p2,t0 ) and χS1(p1,t0 , p2,t0),

χS2(p1,t0 , p2,t0) for Stock 1 and Stock 2, which depend on 
prices at time t0 . For equilibrium prices pEQ

1,t0
 and pEQ

2,t0
 , aggre-

gate demand of Investor L and Investor S meets the available 
quantity from Eq. (1) for both Stock 1 and Stock 2, sepa-
rately. We can write the market clearing conditions at time 
t0 as

Model results

The results presented in the following are based on the 
parameter specifications summarized in Table 1. We employ 
a generally valid set of parameters for the two stocks with 
an expected discrete return � of 10% and standard devia-
tion � of 20%. A jump intensity of � = 0.1 implies that, on 
average, a jump occurs once every ten years with a jump 
size � of −30 %. It follows from Eq. (9) that the volatility 
�J conditional on no jump to occur is equal to 17.61%. The 
risk-free rate rf  is 2% p.a.

Throughout this paper, we assume that the returns of 
Stock 1 and Stock 2, conditional on no jump to occur, are 
governed by the same Wiener process zt . By construction, 
we thereby mitigate the possibility of diversification and 
emphasize the impact of the tail risk of Stock 2 on the opti-
mal portfolio decision of investors.

Regarding the specification of the utility function of 
investors, we assume that the risk aversion parameter � 
is equal to 4 and subsistence wealth � equals 0.8, which 
implies that the investors require at least 80% of their initial 
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!
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Table 1  Parameters

Table 1 shows the set of parameters utilized in the following. μ denotes the expected return and � the (total) 
standard deviation of returns of Stock 1 and Stock 2. �J is the standard deviation of returns of Stock 2 con-
ditional on no jump. Jump size � in the logarithm of the price and jump intensity � characterize the jump 
component of Stock 2. rf  denotes the risk-free rate (p.a.). The utility function in Eq. (11) is defined by � and 
� , whereby the investor’s specific subsistence level of wealth �i depends on initial endowment as given in 
Eq. (12)

Parameter � (%) � (%) �J(%) � (%) � rf  (%) � �

Value 10 20 17.61 −30 0.1 2 4 0.8
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endowment at the end of their investment horizons. Hence, 
the relative risk aversion is always above 4 for all wealth 
levels. We provide the results of robustness checks for alter-
native parameter specifications in Sect. 4.

First, we consider an economy with homogeneous invest-
ment horizons of investors represented by long-term Investor 
L. We derive the equilibrium characteristics for investment 
horizons T of Investor L ranging from 1 year to 30 years for 
the parameter specifications described. We then turn to an 
economy with heterogeneous investment horizons of investors.

Economy with homogeneous investment horizons

With long-term investors only in the economy, it follows from 
Eq. (2) that representative Investor L is endowed with aggre-
gate monetary endowment XCash of

The derivation of the equilibrium described in the previ-
ous section thereby reduces to the optimization problem of 
Investor L from Eq. (17) and the market clearing conditions 
simplify to

For the prices in equilibrium, Investor L purchases all avail-
able units of stocks at time t0 according to her demand func-
tion, such that

X
L

Cash
= 1.

χL
1
(p

EQ

1,t0
, p

EQ

2,t0
) − X1

!
= 0

χL
2
(p

EQ

1,t0
, p

EQ

2,t0
) − X2

!
= 0.

χL
1
(p

EQ

1,t0
, p

EQ

2,t0
) = χL

2
(p

EQ

1,t0
, p

EQ

2,t0
) = 0.5.

In equilibrium, the required return of Investor L for Stock 
k = 1, 2 comes from the logarithmic return of the expected 
fundamental value �t0

(
Sk,T

)
 at time T related to the equilib-

rium trading price pEQ
k,t0

 at time t0 . We define yL,EQ
k

 as the 
required annual return of Investor L and write the required 
return for Stock k as

Figure 2a illustrates the required annual returns of Investor 
L in equilibrium depending on the investment horizon T. 
y
L,EQ

1
 and yL,EQ

2
 are monotonously decreasing functions of 

the investment horizon T. While Investor L requires a return 
of Stock 2 of 94.6% with an investment horizon of one year, 
the required return reduces to 12.9% (p.a.) for T = 30 . The 
result illustrates the effectiveness of time diversification on 
the investor’s optimal portfolio allocation: With a longer 
investment horizon of Investor L, else equal, the investor 
is willing to accept lower returns (p.a.) for both stocks to 
purchase the outstanding shares.

Further, the required returns in Fig. 2a indicate that 
Investor L requires a higher annual compensation for the 
negatively skewed Stock 2 than for Stock 1, as it holds for 
all T that

The additional annual compensation required for Stock 2 
relative to Stock 1, yL,EQ

2
− y

L,EQ

1
 , thereby decreases with T. 

Since both stocks have identical means and variances at time 
T, but Stock 2 suffers from a lower market price in equilib-
rium due to tail risk, there must be a positive premium for 

(21)T ⋅ y
L,EQ
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(a) Required return (p.a.)

Required return (p.a.) of Investor L and the skewness premium 

1 5 10 15 20 25 30
0%

20%

40%

60%

80%

100%

(b) Skewness premium
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Fig. 2  Fig.  2a shows the required return (p.a.), yL,EQ
1

 and yL,EQ
2

 , of 
Investor L for Stock 1 and Stock 2, defined as the annualized loga-
rithmic expected return for each stock in equilibrium according to 

Eq.  (21). The skewness premium skprem in Fig.  2b is the logarith-
mic price difference between Stock 1 and Stock 2 in equilibrium as 
defined in Eq. (22)
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(negative) skewness. We define the skewness premium as 
the logarithmic price difference between Stocks 1 and 2 in 
equilibrium:

Figure 2b indicates that the skewness premium is positive 
for all T. The skewness premium measures the additional 
logarithmic return of Stock 2 relative to Stock 1 until time T 
as compensation for a disliked negative jump risk. Thereby, 
the skewness premium is a decreasing function of T, which 
declines from 35.6% for T = 1 to 0.6% for T = 30 , and 
approaches zero for longer investment horizons.

For short investment horizons, Investor L hence requires a 
relatively high additional compensation for being exposed to 
the negative jump risk in prices of Stock 2. Even though the 
probability of one or more jumps to occur is relatively small, 
already the size � = −30 % of a jump leads to substantial losses 
in wealth from which final wealth hardly recovers over short 
investment horizons. For longer investment horizons, how-
ever, the impact of negative jumps on final wealth diminishes 
because the return distribution of Stock 2 converges to the 
return distribution of Stock 1 for long T indicated by the limit 
of the skewness of Eq. (10). Intuitively speaking, over a shorter 
investment period, the portfolio return of an investor is hence 
more strongly affected if a surprising jump in fact occurs.

Accordingly, the impact of catastrophe risk on investors 
with DRRA utility is less pronounced at longer investment 
horizons, so that the prices pEQ

1,t0
 and pEQ

2,t0
 converge to each other 

for long T despite the negative jump risk in Stock 2 prices. We 
summarize the first implication of our model in:

Stylized fact 1 (Skewness premium) The skewness premium 
is positive and decreases with the investment horizon T of 
the investors.

Economy with heterogeneous investment horizons

We now consider an economy with long-term investors, who 
have an investment horizon of 10 years, and short-term inves-
tors, who leave the economy after five years. Hence, the invest-
ment horizon T − TS of the follow-up investors also equals five 
years. With short-term investors being identically endowed as 
long-term investors, representative Investor L and Investor S 
hold half of the aggregate monetary endowment XCash each, 
such that

In equilibrium, the required return of Investor S for Stock 
k = 1, 2 is the logarithmic return between the expected 

(22)skprem ∶= ln
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⎞
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.
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Cash
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S

Cash
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equilibrium trading price �t0

(
p
EQ

k,TS

)
 at time TS and the equi-

librium trading price pEQ
k,t0

 at time t0 . With yS,EQ
k

 defined as the 
annual return required of Investor S, we can write

Similarly, the required return of Investor F, conditional on 
time t0 expectations, is the logarithmic return of the expected 
fundamental value �t0

(
Sk,T

)
 at time T and the expected equi-

librium trading price �t0

(
p
EQ

k,TS

)
 at time TS:

where yF,EQ
k

 is the required annual return of Investor F from 
the perspective of time t0.

Since Investor S and Investor F split the investment period 
of Investor L and trade Stock 1 and Stock 2 at time TS , we 
can express the required return of Investor L from Eq. (21) 
as the sum of the required logarithmic returns of Investor S 
and Investor F from Eq. (23) and (24):

This is a result of well-known logarithm computation rules. 
Substituting the expressions of the required returns in 
Eq. (25) and dividing by T, we obtain

The relation states that the required return (p.a.) of Investor 
L for Stock k = 1, 2 is equal to the average of the respective 
required returns of Investor S and Investor F, weighted by 
the investor’s investment horizon.

In principle, the return required by an investor is affected 
by two sources: (i) the investment horizon of the investor and 
(ii) the number of stocks the investor holds in total.

First, from the results of the previous section with homo-
geneous investment horizons, we know that the required 
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returns (p.a.) for both stocks are decreasing functions of the 
investor’s investment horizon. For Investor L and Investor 
S to purchase equally many units of both stocks at time t0 , 
the returns Investor S requires exceed the required returns of 
Investor L. The same is true for Investor F, i.e., she requires 
higher returns than Investor L for identical holdings due 
to a shorter investment period. Hence, for identical hold-
ings XS

k
= XL

k
= 0.25 , the right-hand side of Eq. (26) would 

exceed the left-hand side and is therefore no equilibrium. 
As a result, Investor L and Investor S must not buy equally 
many units of stocks in equilibrium.

Second, a reduction (increase) of the units of a stock 
bought, else equal, reduces (increases) the required return 
for the stock. Table 2 presents the quantity of stocks Investor 
S and Investor L purchase in equilibrium, and Table 3 pro-
vides the respective annual returns required. In the considered 
example, Investor S reduces the numbers of stocks purchased 
to 0.21 units of Stock 1 and 0.17 units of Stock 2, which low-
ers the required returns on the right-hand side of Eq. (26).

We can interpret yF,EQ
k

 as the conditional on time t0 expected 
discount rate Investor S applies to discount the expected fun-
damental value �t0

(
Sk,T

)
 . Investor S anticipates the annually 

required returns of Investor F, which equal 25.4% for Stock 1 

and 27.2% for Stock 2. For the reduced holdings in equilib-
rium, Investor S only requires 15.7% and 15.4%, respectively.

Analogously, Investor L increases stock holdings and 
buys 0.29 units of Stock 1 and 0.33 units of Stock 2 with 
jump risk in equilibrium, which in turn increases the 
required returns (p.a.) on the left-hand side of Eq. (26) to 
20.6 and 21.3%, respectively. The quantities purchased by 
Investor S and Investor L in equilibrium ensure that the rela-
tion between the required returns in Eq. (26) holds. Table 2 
shows that Investor L has 41.8% of wealth invested in the 
two stocks, while Investor S has an equity fraction of only 
25.3%. We summarize the implication in:

Stylized fact 2 (Equity fraction) For investors who differ 
only in terms of their investment horizon, long-term inves-
tors have a higher equity fraction than short-term investors.

Further, we can conclude that the composition of the inves-
tors’ portfolios in equilibrium differs: Particularly, Investor L 
(Investor S) acquires 0.04 units more (less) of Stock 2 with 
tail risk than of Stock 1 in equilibrium. Accordingly, besides 
the higher equity fraction of Investor L, the portfolio of Inves-
tor L is characterized by a higher fraction invested in Stock 
2 of 51.4% compared to 43.0% of Investor S. As a result of 
the previous section with homogeneous investment horizons, 
we know that the additional annual compensation required for 
Stock 2 relative to Stock 1 is a decreasing function of the inves-
tor’s investment horizon. Hence, for the skewness premium of 
7.2% in equilibrium, Investor L is willing to bear—in relative 
and absolute terms—more tail risk than Investor S. This is a 
major difference to the conclusion of the CAPM that all mar-
ket participants invest a fraction of their wealth in an identical 
portfolio of risky assets, i.e., the market portfolio (two fund 
separation theorem). We summarize the implication in:

Stylized fact 3 (Portfolio composition) For investors who 
differ only in terms of their investment horizon, long-term 
investors hold a higher portfolio weight in assets with tail 
risks than short-term investors.

Varying proportions of investors in the economy

For the previous analysis with heterogeneous investment 
horizons, we assumed an economy with equal proportion 
of short-term investors and long-term investors, which can 
be interpreted as Investor L and Investor S with equal mon-
etary endowment. By varying initial monetary endowment 
X
L

Cash
 and X

S

Cash
 for given aggregate monetary endowment 

XCash from Eq. (2), we can modify the composition of inves-
tors in the economy. The higher X

S

Cash
 at the cost of X

L

Cash
 , 

the higher the proportion of short-term investors relative to 
long-term ones. Table 4 presents the outcomes of the econo-
mies for different proportions of short-term investors.

Table 2  Equilibrium results with heterogeneous investors

Table  2 shows the key characteristics of the economy with equal 
proportion of short-term investors and long-term investors with 
T=10 and  TS=5. The equity fraction denotes the risky portfolio value 
at time t0 as a fraction of initial wealth. The fraction invested in Stock 
2 is the value invested in Stock 2 divided by the risky portfolio value 
at time t0 . X

EQ

1
 and XEQ

2
 denote the equilibrium holdings in Stock 1 

and Stock 2. The skewness premium skprem from Eq.  (22) is defined 
as the logarithmic price difference between Stock 1 and Stock 2 in 
equilibrium

Investor Equity frac-
tion (%)

Fraction in 
Stock 2 (%)

X
EQ

1
X
EQ

2
skprem

L 41.8 51.4 0.29 0.33 7.2%
S 25.3 43.0 0.21 0.17

Table 3  Required returns of the 
investors

Table  3 shows the annual 
returns required in the econ-
omy with equal proportion of 
short-term investors and long-
term investors with T=10 and 
 TS=5.  The required returns of 
representative Investor L, Inves-
tor S, and Investor F are given 
in Eqs.  (21), (23), and (24), 
respectively

Investor y
EQ

1
 (%) y

EQ

2
 (%)

L 20.6 21.3
S 15.7 15.4
F 25.4 27.2
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In the absence of short-term investors, Investor L pur-
chases the outstanding 0.5 units of each stock in equilibrium 
with an equity fraction of 39.2% and a fraction invested in 
Stock 2 of 49.2%. The skewness premium equals 3.2%.

With 25% of all investors being short-term investors, Inves-
tor L is endowed with three times as much cash as Investor S. 
For equivalent behavior of both investors, Investor S should 
hold 0.125 units and Investor L 0.375 units of each stock. Inves-
tor S and Investor F, however, require higher annual returns for 
both stocks on average and a higher additional compensation for 
Stock 2 relative to Stock 1 than Investor L to purchase respec-
tive units of each stock. Therefore, the right-hand side of the 
relation in Eq. (26) would exceed the left-hand side for each 
stock and respective holdings cannot represent equilibrium.

In equilibrium, to satisfy Eq. (26) for both stocks, Investor 
S reduces the stock holdings to a volume equal to 0.09 units 
of Stock 1 and 0.07 units of Stock 2. Correspondingly, Inves-
tor L increases the stocks purchased to 0.41 units of Stock 1 
and 0.43 units of Stock 2. The equity fraction of Investor L 
increases from 39.2% with long-term investors only to 40.6% 
in the considered example. Similarly, the fraction invested in 
Stock 2 of Investor L rises from 49.2 to 50.2%, and the skew-
ness premium from 3.2 to 4.9%.

With 75% short-term investors, the equity fraction of Inves-
tor L increases to 44.9% and the fraction invested in Stock 2 
to 52.4%. The skewness premium rises to 10.5%. With short-
term investors only, Investor S purchases all outstanding units 
of stocks in equilibrium and the skewness premium equals 
12.6%, which is four times as high as with long-term investors 
only. We summarize the implication of our model in:

Stylized fact 4 (Market participants) The skewness premium 
increases with the proportion of short-term investors in the 
economy. Moreover, long-term investors increase both their 
equity fraction and their portfolio weight in the asset with 
tail risk with the proportion of short-term investors in the 
economy.

Robustness checks

The aim of this section is to analyze the impact of param-
eter modifications on the key characteristics of the economy 
with heterogeneous investment horizons. For this purpose, 
we change one parameter from the previously utilized set 
of parameters given in Table 1 at a time. The results are 
presented in Table 5, whereby the first row recapitulates the 
results from Table 2, which we refer to as the benchmark.

The first three analyses deal with parameter alternations of 
the stock properties. First, we consider a more negative jump 
size � of −40 %, while keeping the standard deviation of returns 
� constant at 20%. From Eq. (10) follows that the resulting 
skewness of the returns of Stock 2 is more negative than in the 
benchmark analysis. With identical equilibrium stock holdings 
as in the benchmark, both Investor L and Investor S bear greater 
tail risk so that investors require higher compensation. Accord-
ingly, the skewness premium almost doubles to 13.6%.

In the next two analyses, we consider both higher and lower 
standard deviation � in the stocks’ returns. For fixed jump size 
� = −30 %, the standard deviation �J conditional on no jump 
to occur is adjusted according to Eq. (9) for Stock 2. From 
Eq. (10) follows that a higher (lower) standard deviation � 
reduces (increases) the negative skewness of the returns of 
Stock 2. Hence, a higher standard deviation of 24% decreases 
the skewness premium to 2.3%. On the contrary, a lower stand-
ard deviation of 16% results in a skewness premium of 24.2%, 
which is more than three times as high as in the benchmark. 
Therefore, the level of tail risk compared to total risk matters. 
In case that tail risk relative to total risk is high, the skewness 
premium rises.

The following two robustness checks deal with the 
specifications of the utility function of the investors. 
Specifically, we assume investors who exhibit a higher 

Table 4  Different composition 
of investors in the economy

Table 4 shows the key characteristics of the economy as outlined in Table 2 for proportions of short-term 
investors in the economy from 0% to 100% by adjusting initial endowment X

L

Cash
 and X

S

Cash
 of the repre-

sentative investors for given aggregate monetary endowment XCash

Proportion of 
Investor S (%)

Investor Equity fraction 
(%)

Fraction in Stock 
2 (%)

X
EQ

1
X
EQ

2
skprem (%)

0 L 39.2 49.2 0.5 0.5 3.2
25 L 40.6 50.2 0.41 0.43 4.9

S 22.9 41.0 0.09 0.07
 50 L 41.8 51.4 0.29 0.33 7.2

S 25.3 43.0 0.21 0.17
75 L 44.9 52.4 0.15 0.19 10.5

S 28.8 44.8 0.35 0.31
100 S 29.6 46.9 0.5 0.5 12.6
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RRA, either by increasing the risk aversion parameter � 
or the subsistence level of wealth � . First, by increasing 
� from 4 to 6, Investor L (Investor S) buys more (less) 
units of Stock 1, while the holdings in Stock 2 remain 
unchanged compared to the benchmark. The skewness 
premium increases by 60 basis points to 7.8%. Accord-
ingly, a higher risk aversion parameter �  results in a 
greater skewness premium.

Second, with a subsistence level of wealth of � = 0.9 , 
we find that investors are particularly more averse against 
skewness risk and require higher additional compensa-
tions for Stock 2 relative to Stock 1. Thereby, the effect is 
more pronounced for short-term investors: For the skew-
ness premium of 16% in equilibrium, Investor L (Investor S) 
increases (decreases) the number of units bought of Stock 2, 
while the holdings in Stock 1 remain unchanged compared 
to the benchmark.

This section illustrates that the derived stylized facts from 
Sect. 3 do not follow from a specific parameter choice of the 
DRRA utility function or of the stock properties but hold for 
a wide range of parameter constellations. We particularly 
find that:

Robustness check (Skewness premium) The skewness 
premium increases with the negative skewness in the returns 
of assets and with the relative risk aversion of the investors 
specified by � and �.

Conclusion

In this paper, we introduce a theoretical framework to analyze 
how tail risk affects both asset prices and the optimal asset 
allocation of investors. Particularly, we contribute to the under-
standing of skewness premia with an insightful multi-period 

equilibrium model that accounts for heterogeneous investment 
horizons and investors with DRRA, capturing the empirically 
observed behavior of investors to allocate more wealth to equi-
ties when their investment horizons are longer. The investors’ 
portfolio compositions and endogenous market prices enable a 
rigorous analysis of investors’ tail risk preferences depending 
on their respective investment horizons.

While only expected returns and standard deviations of 
the overall portfolio return are relevant for the optimal port-
folio allocation according to the CAPM, our empirically 
justified model explains that investors incorporate assets’ 
distributional properties of returns higher than the second 
(centralized) moment in their portfolio allocation decision. 
Notably, since investors require higher compensation to hold 
the stock with tail risk, there is a positive skewness pre-
mium. As a main result, this skewness premium decreases 
with the length of the investment period of investors as a 
surprising jump in the stock price more strongly affects final 
wealth of investors with a shorter investment period. With 
heterogeneous investment horizons, long-term investors hold 
both a higher equity fraction and portfolio weight in the asset 
with negative skewness in equilibrium than short-term inves-
tors so that as a major distinction from the seminal CAPM, 
two fund separation no longer holds.

Our results provide a fruitful foundation by means of test-
able implications for an empirical analysis of the impact of 
heterogeneous investment horizons on skewness premia for 
future research: First, the model’s implication that additional 
premia for assets with tail risk, else equal, exist is not lim-
ited to equities but holds for other asset classes with an even 
stronger negative skewness such as high-yield bonds. Like-
wise, assets exhibiting positive skewness—such as growth 
stocks or lottery-like venture capital investments—are sup-
posed to yield lower expected returns, else equal, due to a 

Table 5  Robustness checks

Table 5 shows the equilibrium results as outlined in Table 2 for selected parameter alternations from the set 
of parameters given in Table 1

Investor Equity fraction 
(%)

Fraction in 
Sstock 2 (%)

X
EQ

1
X
EQ

2
skprem (%)

Benchmark L 41.8 51.4 0.29 0.33 7.2
S 25.3 43.0 0.21 0.17

� = −40% L 41.8 49.2 0.29 0.33 13.6
S 25.7 42.4 0.21 0.17

� = 24% L 33.8 51.6 0.31 0.33 2.3
S 19.1 45.5 0.19 0.17

� = 16% L 49.2 44.9 0.28 0.29 24.2
S 36.5 42.7 0.22 0.21

� = 6 L 33.9 49.9 0.31 0.33 7.8
S 18.9 44.8 0.19 0.17

� = 0.9 L 34.3 50.7 0.29 0.35 16.0
S 19.0 37.5 0.21 0.15
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preference for positively skewed returns. Second, from an 
investor’s perspective, it may be optimal for longer-orientated 
investors, who pursue a buy-and-hold strategy, to deliber-
ately select investments with tail risk to benefit from tail risk 
premia. Third, these tail risk premia are the higher, (i) the 
more negative the returns’ skewness, (ii) the higher the rela-
tive risk aversion of market participants, (iii) the more domi-
nated respective markets are by short-term oriented investors, 
and (iv) the shorter these investment horizons. Consequently, 
we can expect high premia in stock markets and private equity 
investments due to a relatively short investment period and/or 
significant tail risks: The average holding period of US stocks 
traded at the NYSE has been less than 12 months from 2010 
to 2020 [see Chatterjee and Adinarayan (2020)], which indi-
cates that shorter-orientated investors represent a substantial 
proportion of investors in stock markets. An example for a 
longer investment horizon is private equity investments with 
an average holding period of the investments of approximately 
four years [see, e.g., Jenkinson and Sousa (2015)].

Further, we expect high transaction costs and/or low liquid-
ity of assets to induce investors to hold respective assets for 
longer periods. With longer-orientated investors selecting 
higher proportions of those investments, we can conclude 
from our theoretical model that the ownership structure low-
ers respective skewness premia. For example, higher entry and 
exit costs typically characterize mutual funds and real estate 
investments (or funds). Real estate investments and covered 
bonds are further examples of (more) illiquid assets, which 
are hence less attractive to short-term investors.

The stylized facts derived in this paper are intended to raise 
awareness of the existence of tail risk premia, provide an intui-
tive understanding of the drivers of these premia, and empha-
size the practical relevance for investors to carefully consider 
tail risks in their investment decisions. Holding the same port-
folio of risky assets might not be equally optimal for investors, 
as being exposed to tail risk can be less or more attractive for 
investors depending on respective investment horizons.
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