
Vol.:(0123456789)

Journal of Asset Management (2019) 20:403–411 
https://doi.org/10.1057/s41260-019-00133-5

ORIGINAL ARTICLE

Refinement of the hedging ratio using copula‑GARCH models

Waël Louhichi1 · Hassen Rais1

Revised: 25 August 2019 / Published online: 16 September 2019 
© Springer Nature Limited 2019

Abstract
The goal of this paper is to improve the effectiveness of hedge overlays via futures against certain investment risks. Accord-
ingly, we propose a dynamic generalized autoregressive conditional heteroscedasticity (GARCH) model based on different 
copulas in order to specify the joint distribution between spot and futures returns. We test our model for several types of 
asset indices: S&P 500 for stocks, Brent for energy, Wheat for commodities, Gold for precious metals and Euro/Dollar for 
exchange rate market. The empirical results show that copula-GARCH models outperform the conventional model and 
improve the effectiveness of the hedging ratio. Our approach is useful for investors and risk managers, when determining 
their hedging strategy.

Keywords Hedging ratio · Copula · GARCH

Introduction

Hedging is the act of taking a futures market position in 
order to reduce the degree of risk associated with holding a 
specific asset. Although there exists a futures market for an 
underlying asset, that futures market is so illiquid that it is 
functionally useless (Hull 2014). One problem with using 
futures contracts to hedge a portfolio of spot assets is that a 
perfect futures contract may not exist, and as a consequence, 
a perfect hedge cannot be achieved. In order to allow an effi-
cient alignment of risk and reward, the well-known hedging 
ratio is implemented.

The selection of an optimal hedging ratio is a central issue 
in the risk management practices. Traditionally, the optimal 
hedge ratio is defined as the ratio of futures holdings to a 
spot position that minimizes the risk of the hedged portfolio 
(Conlon et al. 2016). A hedge ratio is the comparative value 
of an open position’s hedge to the aggregate size of the posi-
tion itself. It is expressed as a decimal or fraction and is used 
to quantify the amount of risk exposure one has assumed 
through remaining active in an investment or trade. It can be 
calculated based on correlation of both spot and future price 
and standard deviation of the future (Hull 2014).

The strategy of the hedging ratio is very simple and 
involves the adoption of a fixed hedge which consists of 
taking a futures position that is equal in magnitude, but 
opposite in sign to the spot position. If price changes in the 
futures market exactly match those in the spot market, the 
adoption of a one-to-one strategy will be enough to elimi-
nate the price risk. However, in practice the prices in the 
spot and futures markets do not move exactly together and a 
hedge ratio derived from the traditional beta hedge strategy 
would not minimize the risk. In particular, Casillo (2004) 
shows that mispricing adds 20% to the volatility of the 
futures contract. Since the futures contract is more volatile 
than the underlying index, the use of the beta as a sensitiv-
ity adjustment would over-hedged the portfolio. The fun-
damental of optimal hedge ratio is derived by maximizing 
the mean–variance expected utility of the hedged portfolio 
(Benet 1992; Tong 1996; Brooks and Chong 2001). The pre-
vious literature presents the estimation of static hedge ratio 
by the ordinary least squares technique (Ehsani and Lien 
2015). However, several papers are supportive of dynamic 
hedging strategies (Bollerslev 1986; Engle and Kroner 1995; 
Engle and Sheppard 2001; Engle 2002). Consequently, we 
employ the GARCH specification to estimate a time-varying 
hedge ratio, and we demonstrate that the dynamic hedging 
strategy provides greater risk reduction than the static one.

Because of the mixed results found in the literature, the 
research question on the optimal hedge ratio is still of para-
mount importance. Numerous papers attempt to derive the 
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optimal of hedging ratio by considering different extensions. 
Chen et al. (2014) compute the optimal hedge ratio by mini-
mizing the riskiness of hedged portfolio returns. The authors 
show that the riskiness-minimizing hedge ratio is effective in 
reducing the riskiness of the spot as compared to the variance-
minimizing hedge ratio. Choudhry (2003) shows that the time-
varying hedge ratio based on bivariate GARCH and bivariate 
GARCH-X models outperforms the constant minimum vari-
ance hedge ratio.

Most of the above hedging models assume that both returns 
of spot and futures follow a multivariate normal distribution 
with linear dependence. However, this hypothesis is not con-
firmed by empirical studies, which show that financial asset 
returns are skewed, leptokurtic and asymmetrically depend-
ent (Longin and Solnik 2001; Ang and Chen 2002; Patton 
2006). The purpose of this paper is to improve the effective-
ness of dynamic hedging by specifying the joint distribution 
of spot and futures returns more realistically. Accordingly, 
we use a GARCH model based on copula. The copula func-
tion describes the dependence structure between the spot and 
futures returns, and the joint distribution can be decomposed 
into its marginal distributions and its dependence structure. 
The contribution of this article is to develop GARCH model 
and test it for several types of assets (exchange rate, stocks, 
energy and commodity indices) using different copulas to 
specify the joint distribution. With this more realistic hedging 
ratio, this paper tries to provide a better tool for risk manage-
ment. Our results show that the GARCH family models based 
on copula improve the hedging effectiveness.

The remaining part of the paper is organized as follows: 
Sect. 2 presents the hedging ratio measures, Sect. 3 discusses 
the empirical results and provides the economic implications 
for designing optimal portfolios and formulating optimal hedg-
ing strategies, and Sect. 4 gives some concluding comments.

Methodology

The hedging model

Following Hull (2014), let St and ft be the respective changes in 
the spot and futures prices at time t. If the joint distribution of 
spot and futures returns remains the same over time, then the 
conventional risk-minimizing hedge ratio � will be defined as 
the ratio of covariance between the spot and the future divided 
by the variance of the future:

Estimation of this stat hedge ratio is easily computed from 
the least squares regression of Stonft . However, the joint dis-
tribution of these assets may be time varying, in which case 

(1)� =
cov

(
St, ft

)

var
(
ft
)

the static hedging strategy is not suitable for an extension to 
multi-period futures hedging.

The dynamic hedge ratio depends on the way in which 
the conditional variances and covariances are specified. 
Thus, scholars (Jondeau and Rockinger 2006; Karakas 
2016; Han et al. 2017) propose to use GARCH models to 
compute the conditional variances.

The GARCH(p, q), generalized autoregressive condi-
tional heteroscedasticity, model was introduced by Boller-
slev (1986). According to this model, the conditional vari-
ance is a linear function of lagged squared error terms 
and lagged conditional variance terms. The GARCH (p, 
q) model successfully captures several characteristics of 
financial time series, such as thick tailed returns and vola-
tility clustering (Baba et al. 1990).

The conditional mean and variance equations of the 
GARCH (1,1) model can be expressed as:

where rt denotes return at time t, μt is the conditional mean 
at t, ht is the conditional variance at t and w, α and β are non-
negative parameters with the restriction that the sum α + β 
is less than one to ensure stationarity and the positive of 
conditional variance as well.

The dynamic conditional correlation (DCC)-GARCH 
model proposed by Engle and Sheppard (2001) and Engle 
(2002) releases the constant correlation and improves the 
flexibility of the hedging models. Also, this specification 
allows the correlation to be time varying. All the above 
models are estimated under the assumption of multivariate 
normality, whereas most of these dynamic hedging models 
assume that the spot and futures returns follow a multivari-
ate normal distribution with linear dependence.

This assumption is at odds with numerous empirical 
studies, which show that financial asset returns are skewed, 
leptokurtic and asymmetrically dependent. Various expla-
nations for these empirical facts have been provided, such 
as leverage effects and asymmetric responses to uncer-
tainty. Hence, these characteristics should be considered 
in the specifications of any effective hedging model. The 
use of a copula function allows us to consider the marginal 
distributions and the dependence structure both separately 
and simultaneously. Therefore, the joint distribution of the 
asset returns can be specified with full flexibility, which 
will thus be more realistic. Copula functions enable flex-
ible modeling of the dependence structure between ran-
dom variables by allowing the construction of multivariate 
densities that are consistent with the univariate marginal 
densities. Hence, copulas can be considered as a powerful 

(2)

rt = � + �rt−1 + �t,

�t =
√
htzt

ht = w + ��2
t−1

+ �ht−1
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tool for identifying and modeling dependence structure 
(Koirala et al. 2014).

The advantage of using copulas relies in the fact that mar-
ginal distributions and dependence structure that is entirely 
represented by the copula functions can be separated (Nelson 
1999; Cherubini et al. 2004). An important property of copu-
las is that they are invariant under strictly increasing transfor-
mations of the variables. This invariance property guarantees 
that variables and their logarithms have the same copula.

Following Hsu et al. (2008), we specify the the Glos-
ten–Jagannathan–Runkle (GJR)-ARCH models for shocks 
in the spot and futures returns. Under the same error cor-
rection model, the conditional variance for asset i, i = s, f, 
is given by:

with ki,t−1 = 1 when εi,t−1 is negative; otherwise, ki,t−1 = 0. 
The density function of the skewed t distribution is:

The values of a, b and c are defined as:

where η is the kurtosis parameter and ∅ is the asymme-
try parameter. These are restricted to 4 < η < 30 and − 1 <  
∅  < 1. Thus, the specified marginal distributions of spot and 
futures returns are asymmetric, fat-tailed and non-Gaussian. 
Assume that the conditional cumulative distribution func-
tions of zs and zf are Gs,t (zs,t|Ψt−1) and Gf,t (zf,t|Ψt−1), respec-
tively. Ψt−1is the information set at time t − 1.

The conditional copula function, denoted as Ct(ut,vt|Ψt−1), 
is defined by the two time-varying cumulative distribution 
functions of random variables

Let Φt be the bivariate conditional cumulative distribution 
functions of zs,t and zf,t. Using the Sklar theorem, we obtain:

(3)
h2
i,t
= ci + bih

2
i,t−1

+ ai,1�
2
i,t−1

+ ai,2ki,t−1�
2
i,t−1

�it = hi,tzi,t;zi,t ∼ skewed − t
(
zi∕�i,�i

)

(4)

Skewed − t(z∕𝜂,𝜙) =

⎧
⎪⎪⎨⎪⎪⎩

bc

�
1 +

1

𝜂−2

�
bz+a

1−𝜙

�2
� 𝜂+1

2

; z < −
a

b

bc

�
1 +

1

𝜂−2

�
bz+a

1+𝜙

�2
� 𝜂+1

2

; z ≥ −
a

b

(5)

a ≡ 4�
� − 2

� − 1
; b ≡ 1 + 3�2 − a2; c ≡

�
�

�+1

2

�

√
�(� − 2)�

�
�

2

�

(6)ut = Gs,t(zs,t|�t−1) and vt = Gf , t(zf ,t|�t−1).

(7)
�t

(
zs,t, zf ,t∕�t−1

)
= Ct

(
ut, vt∕�t−1

)

= Ct

(
Gs,t

(
zs,t∕�t−1

)
,Gf ,t

(
zf ,t∕�t−1

)
∕�t−1

)

The bivariate conditional density function of zs,t and zf,t 
can be constructed as:

where

is the conditional density of zs,t and  gf,t (zf,t |Ψt−1) is the con-
ditional density of zf,t.

The literature proposes several copulas such as elliptical, 
Archimedean, archimax and extreme value copulas (Ewing 
and Malik 2013). In our paper, we focus on Archimedean 
copulas. Archimedean copulas are a prominent class of 
copulas with a common method of construction involving 
one-dimensional generator functions (Joe 1997 and Nelson 
1999). This version of copulas functions is suitable for our 
study as it presents desirable properties such as associatively 
and symmetry and they are capable of capturing wide ranges 
of dependence (Malevergne and Sornette 2003). Archime-
dean copulas have no linear dependence parameter in their 
density function. Prior to their use in financial application, 
Archimedean copulas have been successfully used in actu-
arial applications (Frees and Valdez 1998). Many extreme 
value copulas are introduced in the literature, and the most 
known are Gumbel, Frank, BB7, Joe and Kimeldorf–Samp-
son copulas (Joe 1997; Nelson 1999).

• Gumbel copula

The Gumbel copula is an Archimedean copula, which 
can capture a different sense of risk occurring during peri-
ods of stress. It has the following form:

with θ ≥ 1 expressing the degree of dependence.

• Frank copula

The Frank copula (1979) takes the following form:

The dependence parameter may assume any real value 
(− ∞; ∞). Values of − ∞, 0 and ∞ correspond to the 
Frechet lower bound, independence and Frechet upper 

(8)

�t

(
zs,t, zf ,t∕�t−1

)
= ct

(
Gs,t

(
zs,t∕�t−1

)
,Gf ,t

(
zf ,t∕�t−1

)
∕�t−1

)

× gs,t
(
zs,t∕�t−1

)
× gf ,t

(
zf ,t∕�t−1

)

(9)ct
(
ut, vt∕�t−1

)
=

�2Ct

(
ut, vt∕�t−1

)
�ut�vt

; gs,t
(
zs,t∕�t−1

)

(10)

C
(
u1, u2

)
= exp

{
−
[(
− log u1

)�
+

(
− log u2

)�]1∕�}

(11)

C
(
�1,�2; �

)
= −�−1 log

{
1 +

(
e−��1 − 1

)(
e−��2 − 1

)
e−� − 1

}
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bound, respectively. Consequently, the Frank copula can 
be used to model outcomes with strong positive or nega-
tive dependence.

• BB7 copula

This family was introduced by Joe and Xu. It has the fol-
lowing form:

with θ ≥ 1, δ ≻ 0.
Where μ = 1 − μ, θ = 1 − θ and generator function 

φ(t) = [1 − (1 − t)θ]−δ − 1. The lower and upper tail dependences 
for the BB7 copula are λL = 2−1/δ and λμ = 2 − 21/θ, respectively.

It is worth emphasizing that parameter θ allows us to cap-
ture the upper tail dependence only, whereas δ is related to the 
lower tail dependence. For this characteristic, the BB7 copula 
plays an important role among all the two-parameter Archi-
medean copulas.

• Joe copula

Joe copula can be presented as follows:

where  δ  ≥  1  and  the  genera tor  func t ion  i s 
φt = − ln(1 − (1 − t)δ).

• Kimeldorf–Sampson

The Kimeldorf and Sampson copula has the following 
form:

where 0 ≺ δ ≺ ∞0 and the generator function is φ(t) = t−δ − 1. 
This copula is also known as the Clayton copula.

Following Patton (2006) and Bartram et al. (2007), we 
assume that the dependence parameters �t or �t rely on the 
previous dependences and historical information. These 
time-varying parameters are specified, respectively, as:

where both �1 and �2 are positive, and then, the copula 
parameters are:

(12)

C(�, �, �, �) = 1 −

(
1 −

[(
1 − �−�

)−�
+
(
1 − �−�

)−�
− 1

]−1∕�)1∕�

(13)
C(�1,�2 ∶ �) = 1 − ((1 − �1)� + (1 − �2)�

−(1 − �1)�(1 − �2)�(1 − �2)�)1∕�,

(14)C(�, �) = (� − � + � − � − 1) − 1∕�,

(15)

(
1 − �1L

)(
1 − �2L

)
�t = � + �

(
ut−1 − 0.5

)(
vt−1 − 0.5

)

(16)

(
1 − �1L

)(
1 − �2L

)
�t = � + �

(
ut−1 − 0.5

)(
vt−1 − 0.5

)

(17)�c =
(
�1, �2,�, �

)

In our study, extreme dependence between spot and 
futures returns is modeled by one of these five copulas. We 
consider that the best and the more appropriate copula is the 
one that minimizes Akaike criteria (AIC). The IMF (infer-
ence function for margins) method allows estimation of the 
parameters of the distributions and those of the function 
copulates separately, using the maximum likelihood method 
for each one.

After estimating the parameters in different copula-based 
GARCH models, the conditional variances h2

st
 and h2

ft
 are 

obtained (using Eq. 3):

The dynamic hedge ratios for the copula-based GARCH 
models are then calculated as the conditional covariance of 
the spot S and futures f prices (Eq. 18) on the conditional 
variance of the future f including the dependence defined by 
the copulas (Eqs. 10, 11, 12, 13 and 14):

Hence, the steps of our approach can be summarized 
hereafter:

1. Check the nature and the behavior of the data.
2. Use the sample of innovations to estimate the parameters 

of the selected copula functions.
3. Estimate the parameters and covariances of the GJR-

ARCH model including the copula in the skewed distri-
bution, as developed in the Sklar’s theorem.

4. Use the covariances and variances obtained to estimate 
the hedging ratio.

Effectiveness of hedging

For checking the effectiveness of copula-GARCH models for 
hedging ratio, we use DCC-GARCH model as benchmark.

To developp this benchmark, we use a multivariate 
GARCH with bivariate error correction, following Kroner 
and Sultan (1993) and Kroner and Ng (1998). For St−1 and 
Ft−1, the spot and futures prices:

with 
(
�st�ft

)
∼ N

(
o,Ht

)

And h2
it
= �i + �i�

2
it−1

+ �ih
2
it−1

And Qt =
(
1 − �1 − �2

)
Q+

�1�t−1�
,

t−1
+ �2Qt−1 with �t ∼ N(O, I)

(18)h2
i,t
= ci + bih

2
i,t−1

+ ai,1�
2
i,t−1

+ ai,2ki,t−1�
2
i,t−1

(19)�̂∗
t
= hsf ,t

/
h2
f ,t

st = �0s + �1s

(
St−1 − �Ft−1

)
+ �st

ft = �0f + �1f

(
St−1 − �Ft−1

)
+ �ft

Ht =

[
kst 0

0 kft

][
1 �

� 1

][
kst 0

0 kft

]
= DtRDt = DtJtQtJtDt
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The benchmark hedging ratio is the respective changes in 
the spot S and futures f prices using the DCC model. Includ-
ing correlation between them:

For computing the effectiveness, we evaluate the hedg-
ing performance of the different copula-GARCH models, by 
computing the variance of the return of the hedged portfolio. 
Knowing a portfolio is composed of a spot asset st and �t 
units of futures ft . We have:

where �∗
t
 represents the estimated hedge ratio. The effective-

ness of hedging across different models can be evaluated by 
comparison with the benchmark.

Empirical analysis

The aim of this study is to improve the effectiveness of 
dynamic hedging using GARCH model based on several 
types of copula. To test the effectiveness of our hedging 
ratio, we collect from Bloomberg, data dealing with daily 
spot and futures prices for different asset indices: S&P 500 
for stocks, Brent for energy, Wheat for commodities, Gold 
for precious metals and Euro/Dollar for exchange rate mar-
ket. All the asset prices cover the period from January 2, 
2010, to October 31, 2015. The continuously compounded 
daily returns are defined and calculated as the difference in 
the logarithms of daily future prices multiplied by 100.

Table 1 presents descriptive statistics of all the assets 
composing our sample. The measures for skewness and 
excess kurtosis show that most return series are obviously 
skewed and highly leptokurtic with respect to the normal 
distribution. J–B is the Jarque–Bera test for normality. The 

�̂∗
t
= ksf ,t

/
k2
f ,t

var
(
st − �∗

t
ft
)

Jarque–Bera statistics indicate that daily returns for each 
asset of our sample are not normally distributed. In fact, the 
Ljung–Box statistic is used to test for the hypothesis of no 
autocorrelation up to order of 12. On the basis of Ljung–Box 
Q-statistic and for raw returns series, the hypothesis that all 
correlation coefficients up to 12 are jointly zero is rejected. 
The Ljung–Box statistics of order 12 applied to squared 
returns is highly significant, indicating that there is no serial 
correlation over the time. These findings justify the use of 
the GARCH model based on copula specification, as finan-
cial asset returns are skewed, leptokurtic and asymmetrically 
dependent. 

Table 2 reports the estimates of parameters for condi-
tional means, variances and marginal distributions for the 
copula-based GARCH models. The coefficient β1 is signifi-
cant for all the indices, which confirms the asymmetric effect 
on volatility, i.e., negative shocks have greater impacts than 
positive shocks on the conditional variances. Concerning 
the estimation of parameters for different copula functions, 
it seems that the autoregressive parameter �1 is greater than 
0.9 for all copulas and portfolios, which implies that shocks 
to the dependence structure between the spot and futures 
returns can persist for some considerable time and in turn 
affect the estimated hedge ratio. The parameter γ is signifi-
cantly positive at the 1% level, suggesting that the latest 
information on returns is an appropriate measure for mod-
eling the dynamic dependence structure. In terms of model 
fitting, it seems that the Franck and Joe copulas have the 
highest log-likelihood. This finding is consistent with the 
results of Bartram et al. (2007).

Table 3 presents the estimation of the parameters of 
GARCH (1,1) model. The parameters are estimated by 
using the maximum likelihood technique. We notice the 
AR (1) term, φ1, in the mean equation is significant in all 
cases. The coefficients of the lagged squared residuals, 
α0 and α1, are highly statistically significant in all cases, 

Table 1  Descriptive statistics

*Indicates significance at the 1% level

Statistics Assets

S&P500 Brent Wheat Gold Exchange rate

Spot Futures Spot Futures Spot Futures Spot Futures Spot Futures

Mean 0.0006 0.0006 0.0005 0.0005 0.0018 0.0021 0.0008 0.0005 0.0007 0.0008
SD 0.0087 0.0089 0.0097 0.0015 0.0015 0.0017 0.0085 0.0087 0.0086 0.0014
Skewness − 0.110 − 0.128 − 0.113 − 0.144 − 0.077 − 0.507 − 0.110 − 0.125 − 0.032 − 0.064
Kurtosis 6.9403 6.1194 5.8994 5.3063 7.4841 6.8108 6.9857 6.1176 8.9956 7.9456
J–B 1176* 1432* 1610* 1213* 1700* 1140* 1568* 1286* 1334* 1667*
Q(12) 18.79 16.26 22.93 28.54 27.87 23.68 18.75 17.39 28.22 22.56
Q2(12) 1876* 1595* 1679* 1262* 1087* 1439* 1884* 1587* 1667* 1667*
Corr. Coef. 0.9125* 0.892* 0.863* 0.883* 0.906*
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Table 2  Parameters estimation for the copula-based GARCH models

*Indicates significance at the 1% level

st = �0s + �1s

(
St−1 − �Ft−1

)
+ �st 

ft = �0f + �1f

(
St−1 − �Ft−1

)
+ �ft With 

(
�st�ft

)
∼ N

(
o,Ht

)
 

h2
i,t
= �1i + �2ih

2

i,t−1
+ �i,1�

2

i,t−1
+ �i,2ki,t−1�

2

i,t−1
 

�i,t∕�t−1 = hi,tzi,t;zi,t ∼ skewed − t
(
zi∕�i,�i

)
 

The parameters of copula are:(
1 − �1L

)(
1 − �2L

)
�t = � + �

(
ut−1 − 0.5

)(
vt−1 − 0.5

)

Parameter S&P500 Brent Wheat Gold Exchange rate

i = s i = f i = s i = f i = s i = f i = s i = f i = s i = f

Estimates of marginal process
φ0i 0.0002 0.0004 0.0003 0.0005 0.0004 0.0004 0.0005 0.0005 0.0002 0.0004
φ1i − 0.0356 0.0206 − 0.0356 0.0643 − 0.0464 0.0542 − 0.0387 0.0745 − 0.0234 0.0634
α0 0.0003* 0.0002* 0.0001* 0.0021* 0.0005* 0.0016* 0.0006* 0.0007* 0.0021* 0.0009*
α1 0.0004 0.0001* 0.0004 0.0009* 0.0002 0.0003* 0.0003 0.0014* 0.0006 0.0005*
β1 0.1325* 0.1332* 0.1189* 0.1211* 0.1116* 0.1186* 0.1376* 0.1734* 0.1786* 0.1225*
β2 0.8499* 0.7934* 0.7379* 0.8611* 0.8516* 0.8386* 0.8745* 0.7752* 0.7895* 0.6623*
� 12.0456* 11.0706* 9.0056* 9.1067* 11.0064* 11.0042* 9.2464* 9.1861* 11.4453* 12.2756*
� − 0.0913* − 0.1154* − 0.1312* − 0.0943* − 0.1121* − 0.1276* − 0.1667* − 0.1567* − 0.0821* − 0.0676*
Estimates of Gumbel dependence process
ω 0.0034* 0.0074* 0.0052* 0.0033* 0.0084*
�1 0.8999* 0.9279* 0.9416* 0.9471* 0.8975*
�2 0.0041 0.0031 0.0012 0.0033 0.0027
� 0.0099* 0.0029* 0.0036* 0.0032* 0.0098*
Log-likelihood 19,187 20,845 20,886 20,221 19,834
Estimates of Frank dependence process
ω 0.0022* 0.0004* 0.0002* 0.0005* 0.0022*
�1 0.9734* 0.9845* 0.8854* 0.9356* 0.9523*
�2 0.0004 0.0008 0.0002 0.0004 0.0006
� 0.0009* 0.0007* 0.0006* 0.0011* 0.0009*
Log-likelihood 21,064 20,338 21,634 21,745 20,445
Estimates of BB7 dependence process
ω 0.0077* 0.0023* 0.0031* 0.0022* 0.0078*
�1 0.9897* 0.9241* 0.9945* 0.9927* 0.9845*
�2 0.0008 0.0004 0.0006 0.0005 0.0009
� 0.0007* 0.0008* 0.0003* 0.0011* 0.0009*
Log-Likelihood 20,117 19,117 19,884 19,894 20,654
Estimates of Joe dependence process
ω 0.0054* 0.0022* 0.0075* 0.0033* 0.0055*
�1 0.9453* 0.9776* 0.9543* 0.9745* 0.9662*
�2 0.0004 0.0005 0.0005 0.0006 0.0005
� 0.0012* 0.0023* 0.0011* 0.0024* 0.0012*
Log-likelihood 21,634 18,564 20,187 18,642 217,834
Estimates of Kimeldorf–Sampson dependence process
ω 0.0044* 0.0021* 0.0064* 0.0022* 0.0045*
�1 0.9945* 0.9672* 0.9865* 0.9623* 0.9921*
�2 0.0006 0.0006 0.0007 0.0006 0.0006
� 0.0099* 0.0079* 0.0016* 0.0081* 0.0098*
Log-likelihood 21,564 18,856 20,823 19,634 21,734
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which suggests that volatility of series returns is more 
readily affected by relevant information at time t − 1. The 
coefficients of lagged variance of the volatility, β1, are 
highly significant in all cases, implying that the volatility 
at time t depends on the volatility at time t − 1.

Given the availability of the estimates of GARCH (1, 1) 
models, we turn to estimate five copula functions for each 
pair of spot and futures.

Table 4 reports the estimates of parameters for the 
DCC-GARCH. In terms of model fitting, both the log-like-
lihood functions and the Kolmogorov–Smirnov goodness 
of fit validate the DCC-GARCH models. We also notice 
that the coefficients �1 and �2 are close and less than 1, 
which implies that the correlations between the futures and 
their underlying assets are highly persistent. This means 
that shocks can push the correlation away from its long-
run average for some considerable time.

Tables 5 and 6 present the hedging performance of the 
different models. A hedged portfolio is composed of a spot 
asset and δ units of futures. The effectiveness of a hedge 
becomes relevant only if there is a significant change in the 
value of the hedged item. A hedge is effective if the price 
movements of the hedged item and the hedging derivative 
roughly offset each other.

The results show that the copula-based GARCH mod-
els outperform the dynamic hedging models for all types of 
assets. The improvement over the DCC benchmark model 
varies from 12 to 17%, from 15 to 25%, from 11 to 29%, 
from 3 to 16% and from 3 to 25%, for the Gumbel copula, for 

Table 3  Parameters estimates of GARCH (1,1) model for each asset

*Indicates significance at the 1% level

st = �0s + �1s

(
St−1 − �Ft−1

)
+ �st 

ft = �0f + �1f

(
St−1 − �Ft−1

)
+ �ft With (

�st�ft
)
∼ N

(
o,Ht

)

Ht =

[
hst 0

0 hft

][
1 �
� 1

][
hst 0

0 hft

]
= DtRDt = DtJtQtJtDt

 
And h2

it
= �i + �i�

2

it−1
+ �ih

2

it−1

Parameter S&P500 Brent Wheat Gold Exchange rate

i = s i = f i = s i = f i = s i = f i = s i = f i = s i = f

φ0i 0.0004 0.0006* 0.0006* 0.0007* 0.0007* 0.0004* 0.0006* 0.0006* 0.0004* 0.0005*
φ1i − 0.0456* 0.0706* − 0.0056* 0.1067* − 0.0064* 0.0042* − 0.0611* 0.0055* − 0.0321* 0.0712*
αi 0.0003* 0.0002* 0.0001* 0.0021* 0.0005* 0.0016* 0.0002* 0.0019* 0.0004* 0.0006*
� i 0.0534* 0.0251* 0.0234* 0.0419* 0.0452* 0.0303* 0.0401* 0.0312* 0.0551* 0.0312*
� i 0.9499* 0.6934* 0.6379* 0.1611* 0.2516* 0.8386* 0.2117* 0.8267* 0.2631* 0.8178*
Log-likelihood 22,218 21,889 20,216 21,561 21,745

Table 4  Estimation of the DCC-GARCH model

*Indicates significance at the 1% level

Qt =
(
1 − 𝛼1 − 𝛼2

)
Q̄ + 𝛼1𝜉t−1𝜉

,

t−1
+ 𝛼2Qt−1 with �t ∼ N(O, I)

Parameters S&P500 Brent Wheat Gold Exchange rate

�1 0.0456* 0.0354* 0.0467* 0.0384* 0.0448*
�2 0.8952* 0.9236* 0.8796* 0.9131* 0.8854*
Log-likeli-

hood
22,243 21,897 21,675 22,853 21,734

D combined 
K–S

0.1450 0.1544 0.1356 0.1421 0.1258

Table 5  Effectiveness of 
hedging. Comparison with 
DCC-GARCH model: portfolio 
variance

*Indicates significance at the 1% level

To compute the effectiveness, we evaluate the hedging performance of the different copula-GARCH mod-
els, by computing the variance of the return of the hedged portfolio. Knowing a portfolio is composed of a 
spot asset st and �t units of futures ft . We have: var

(
st − �∗

t
ft
)
 , where �∗

t
 represents the estimated hedge ratio

Models S&P500 Brent Wheat Gold Exchange rate

DCC-GARCH 0.0733 0.0662 0.0685 0.0652 0.0744
Gumbel copula  0.0645 0.0552 0.0567 0.0551 0.0687
Franck copula 0.0576 0.0564 0.0512 0.0568 0.0594
BB7 copula  0.0518 0.0589 0.0587 0.0571 0.0528
Joe copula 0.0612 0.0644 0.0597 0.0607 0.0662
Kimeldorf–Sampson copula 0.0548 0.0645 0.0583 0.0521 0.0612



410 W. Louhichi, H. Rais 

the Franck copula, for the BB7, for the Joe copula and for the 
Kimeldorf Sampson copula, respectively. As expected, the 
dynamic hedging models outperform the conventional hedg-
ing model for all types of assets. The copula-based GARCH 
models are the most effective in reducing the variances of 
hedged portfolios.

Figure 1 compares the optimally performing hedge ratios 
obtained from the copula-GARCH models with respect to 
those obtained from the DCC-GARCH benchmark model. 
Overall, this figure suggests that the proposed models provide 
greater hedging effectiveness than the conventional model. 
These observations support that when estimating the optimal 
hedge ratio, it is extremely important to have time-varying 
variances and to employ suitable distribution specifications 
for the time series, as demonstrated by the superior perfor-
mance of the copula-based GARCH models. Our findings 
are in line with those of Conlon et al. (2016), Ehsani and 
Lien (2015), Ewing and Malik (2013) and Han et al. (2017).

Conclusion

In this paper, we have proposed a class of new copula-based 
GARCH models to estimate risk-minimizing hedge ratios. 
We have compared the hedging effectiveness of our model 

with other conventional models, especially the dynamic 
conditional correlation GARCH hedging models. Through 
different copula functions, the proposed models allow to 
specify the joint distribution of the spot and futures returns 
with full flexibility. Since the marginal and joint distribu-
tions can be specified separately and simultaneously, we 
estimate the conditional variance and covariance to obtain 
the optimal hedge ratio without the restrictive assumption of 
multivariate normality. Our results highlight that the hedg-
ing effectiveness based on the proposed models is improved 
compared to the conventional model. Therefore, we show 
that a better specification of the joint distribution of the asset 
can effectively help to manage the risk exposure of portfo-
lios. Our findings are useful for investors, hedgers and risk 
managers as they allow to improve the hedging performance 
using the same quantity of futures contract or to obtain the 
same effectiveness of hedging using less futures contracts. 
Finally, in our study the hedging effectiveness is investigated 
based on futures. An extension of our work is to take into 
account options as a hedging instrument.

Acknowledgements The authors acknowledge financial support from 
the Région des Pays de la Loire (France) through the grant PANORisk.

Table 6  Effectiveness of 
hedging

Comparison with DCC-GARCH model: variance reduction
*Indicates significance at the 1% level

To compute the effectiveness, we also evaluate the variance reduction over DCC model (%)

Models S&P500 Brent Wheat Gold Exchange rate

Gumbel copula 0.0088* (12%) 0.011* (16%) 0.0118* (17%) 0.0101* (15%) 0.0057* (8%)
Franck copula 0.0157* (21%) 0.0098* (15%) 0.0173* (25%) 0.0084* (12%) 0.015* (20%)
BB7 copula 0.0215 (29%) 0.0073* (11%) 0.0098* (14%) 0.0081 (12%) 0.0216 (29%)
Joe copula 0.0121* (16%) 0.0018* (3%) 0.0088* (13%) 0.0045* (6%) 0.0082* (11%)
Kimeldorf–

Sampson 
copula

0.0185* (25%) 0.0017 (3%) 0.0102 (15%) 0.0131* (20%) 0.0132* (18%)

Fig. 1  Variance reduction in 
each copula-GARCH model 
with respect to the DCC-
GARCH benchmark model. 
Notes Figure compares the vari-
ance reduction in each copula-
GARCH model with respect to 
the DCC-GARCH benchmark 
model 0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

DCC Garch Gumbel
Copula

Franck Copula BB7 Copula Joe Copula Kimeldorf –
Sampson 
Copula

S&P500 Brent Wheat Gold Exchange Rate
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