
Vol.:(0123456789)

Journal of Asset Management (2019) 20:157–174 
https://doi.org/10.1057/s41260-019-00117-5

ORIGINAL ARTICLE

Taking the right course navigating the ERC universe

Roberto Savona1 · Cesare Orsini2

Revised: 13 November 2018 / Published online: 25 March 2019 
© Springer Nature Limited 2019

Abstract
We study the equal risk contribution (ERC) investment strategies exploring how these portfolios perform relative to tradi-
tional risk-only (minimum variance portfolio), risk–return (Markowitz portfolio) and naïve (1/n) investment schemes when 
expanding the asset class universe. We propose a combinatorial mechanism to expand the investment universe of all feasible 
ERC portfolios and then combine them, thus realizing an ERC efficient frontier consistent with the mutual fund separation 
theorem (Merton in J Financ Quant Anal 7:1851–1872, 1972). In doing this, we mitigate the out-of-sample estimation error 
in portfolio weights and better diversify asset allocation against unpredictable extreme events. Simulation, bootstrapping and 
empirical experiments indicate that the corresponding tangency portfolio, computed through the regression-based approach 
introduced in Britten-Jones (J Finance 54:655–671, 1999), offers better risk-adjusted performance relative to risk-only, 
risk–return-based competitors as well as the 1/n strategy.

Keywords  Portfolio optimization · Risk parity · Equal risk contribution

JEL Classification  G11 · G15

Introduction

Wealth allocation across risky assets can be more efficient 
when limiting the informational set to a risk-only param-
eter instead of solving the portfolio selection problem using 
the two-moment distribution as in Markowitz (1952). This 
is, in a nutshell, the main message of the risk parity (RP) 
approach, which has been gaining popularity among practi-
tioners (Asness et al. 2012), especially during (and after) the 
global financial crisis of 2008–2011, when the risk–return 
informational set led to huge estimation errors. A number of 
papers devoted considerable effort to the issue of estimation 
error in the portfolio optimization problem. Green and Hol-
lifield (1992) observe that when using sample moments, the 
resulting portfolios are often highly non-diversified. Merton 

(1980) proves that the influence of the estimation error in 
the mean is more critical than the error in the variance. 
And again, Jobson and Korkie (1980) write “naïve forma-
tion rules such as the equal weight rule can outperform the 
Markowitz rule.”

The reason why the risk-only paradigm should be bet-
ter than the risk–return approach is technically linked to 
parameter estimation and portfolio diversification issues. 
As Michaud (1989) discussed in his Markowitz optimiza-
tion enigma, mean–variance (MV) optimizers act as esti-
mation error maximizers, producing extreme weights over 
time with poor performance and lack of diversification. Esti-
mation error maximization is also exacerbated by jumps in 
correlations and volatilities in equity markets, next reflecting 
on asset class risk contributions that greatly exceed their 
corresponding wealth allocations: A typical 60/40 (equity/
bond) portfolio may indeed show 90/10, or even more, risk 
contributions during times of stress. Moreover, DeMiguel 
et al. (2009) prove that the 1∕n naïve portfolio outperformed 
traditional MV optimal portfolios and other various asset 
allocation models, thus reopening the question of better port-
folio diversification.

RP offers a simple rule, based on risk instead of wealth 
diversification. The beauty of this approach is that by 
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equalizing the risk allocation/contribution across asset 
classes, thus overweighting safer assets relative to their 
weight in the market portfolio, we obtain better performance 
out-of-sample and better portfolio diversification. As noted 
by de Jong (2018), risk parity is the solution to the Markow-
itz optimization problem if portfolios are presumed vulner-
able to unforeseen price shocks.

The literature on RP is extensive1 and focuses on the inner 
technicalities of risk-only portfolios (Lindberg 2009; Mail-
lard et al. 2010), as well as on a possible theoretical founda-
tion of the approach, such as the leverage aversion theory 
introduced in Asness et al. (2012).

Being part of the risk-based portfolio strategies, RP is 
conceptually linked to the minimum portfolio variance. On 
this issue, Jurczenko et al. (2013) have shown that risk-based 
portfolios can be conceived as special cases of a generic 
function defined by a first parameter that controls the inten-
sity of regularization and a second one that determines the 
tolerance for individual total risk. However, as argued in 
Clarke et al. (2013), minimum variance portfolios “… equal-
ize the marginal contributions of each asset to portfolio risk, 
in contrast to the risk parity portfolio, which equalizes each 
asset’s total risk contribution. Thus, risk parity portfolios 
generally lie within the efficient frontier, rather than on it.”

The question on risk-based portfolio strategies has been 
recently addressed in Lee (2014), who notes that the supe-
riority of the risk-based approaches is not deriving from a 
novel asset-pricing theory but rather is built upon the ability 
to further push the resulting portfolio toward the efficient 
frontier.

One distinct subclass of the risk parity approach that 
has attracted great interest among practitioners is the equal 
risk contribution (ERC), where the objective is to equalize 
risk contributions from each asset to the portfolio (Roncalli 
2013). Empirical evidence proves that ERC portfolios per-
form better than other portfolio optimization schemes based 
on Sharpe ratios and average returns. Nevertheless, such a 
performance superiority seems exploitable under some spe-
cific circumstances, namely when using diversified asset 
classes (Maillard et al. 2010) and when asset classes have 
similar Sharpe ratios and constant correlation structures 
(Kaya and Lee 2012).

On the other hand, possible lack of portfolio diversifica-
tion due to its “genetic” propensity to overweight low-vola-
tility assets (Qian 2011) and potential biases in risk assess-
ment (volatility), especially during extreme events (Inker 
2011), can lead toward sub-optimal ERC portfolios. These 
two criticisms are of course strictly intertwined and con-
nected to the asset class universe that portfolio managers use 

in forming their expectations on parameter estimates, which 
translate into specific asset allocation decisions.

In this paper, we first explore how ERC portfolios perform 
relative to traditional risk-only (minimum variance portfo-
lio), risk–return (Markowitz portfolio) and 1/n schemes 
when changing and expanding the asset classes. Secondly, 
we introduce a novel approach in forming ERC portfolios 
in which: (1) we expand the investment universe based on 
subset ERC portfolios, each computing optimal weights over 
all possible subsets of m to n, with n > m , assets; (2) we real-
ize the corresponding ERC efficient frontier, using the full 
set of ERC portfolios and select the corresponding tangency 
portfolio using the regression-based approach introduced in 
Britten-Jones (1999). We prove that such a tangency port-
folio, we call Dynamic-ERC portfolio, mitigates the out-of-
sample estimation error in portfolio weights and better diver-
sify asset allocation against unpredictable extreme events.

The approach is theoretically consistent with the mutual 
fund separation theorem (Merton 1972), implying an invest-
ment in the tangency portfolio which should contain, first, 
the original securities only and, second, all assets (old and 
new). It is also computationally complimentary to Gillen 
(2016), who recently proposed the “subset optimization 
algorithm” in which many “subset portfolios” are first com-
puted by optimizing weights over a subset of only randomly 
selected securities from the full set, next naively weighting 
these subset portfolios.

As in Gillen (2016), we create a large number of subset 
portfolios in order to diversify the impact of estimation error 
across subsets, next computing the Dynamic ERC as the tan-
gency portfolio using the subset portfolio clusters as meta-
assets. In doing this, we realize a Markowitz–ERC mixing 
strategy, which reduces extreme negative and unpredictable 
events through diversification and allows to benefit from 
momentum.

In our experimental exercises, we prove that our 
Dynamic-ERC portfolio offers better risk-adjusted perfor-
mance relative to portfolio competitors.

In more depth, using data over the period from January 
2001 to August 2013, we implement a rolling backtest by 
running a comparative analysis between ERC portfolios and 
corresponding Markowitz, minimum variance and 1/n port-
folios, finding significant overperformance against the MV 
and 1/n approaches, but no clear statistical evidence rela-
tive to minimum variance. On the other hand, the tangency 
portfolio strongly overperforms the minimum variance com-
petitor as well as single ERC, Markowitz and 1/n portfolios, 
also offering higher diversification and low portfolio weight 
concentration (Herfindahl index).

To understand whether the empirical results are robust or 
purely incidental, we conduct both Monte Carlo simulation 
and bootstrapping analysis, thus taking into account, in one 
case (Monte Carlo simulation), only the first two moments 1  For a comprehensive list of key studies on RP, see Roncalli (2013).
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of the return distribution, and in the other (bootstrap analy-
sis), the entire return distribution, and then include extreme 
negative returns (e.g., Lehman collapse). Interestingly, boot-
strap analysis confirms significant overperformance of our 
approach versus all competing strategies, while Monte Carlo 
simulation does not confirm the overperformance versus MV 
portfolio. The reason is because the approach is well suited 
for mitigating the impacts from extreme negative and unpre-
dictable events, and these are replicated when bootstrapping 
the original dataset, while they are not with Monte Carlo 
simulation.

The rest of the paper is organized as follows. In “The 
equal risk contribution problem” section, we briefly intro-
duce the equal risk contribution approach and then pro-
pose our algorithmic method to realize the ERC universe 
and compute the tangency portfolio through Britten-Jones 
(1999). The theoretical framework is presented and dis-
cussed in “Theoretical motivations” section, while empiri-
cal experiments and computational results are in “Empirical 
experiments” section. This paper ends with “Conclusion” 
section.

The equal risk contribution problem

Setting the scene

As discussed in Maillard et al. (2010), the idea of the ERC 
strategy is to find a risk-balanced portfolio such that the risk 
contribution is the same for all assets of the portfolio. Spe-
cifically, let us start by defining w the vector of portfolio 
weights, � is the covariance matrix, and k = 1,… ,N  the 
number of asset classes used in forming the optimal portfo-
lio. Mathematically, the problem of finding the ERC portfo-
lio can be expressed as the following optimization problem:

s.t.:

where

s.t.:

The function f (�; �) is the objective function to be mini-
mized under the additional constraints ��� = 1 and 0 ≤ ak ≤ 1 
in which 

[
wk�wk

�(w)
]
= RCk is the risk contribution of asset 

k to the total portfolio risk �(w) , also expressed in matrix 
form as RCk = wk

(��)k

(����)1∕2
 . The ERC portfolio is obtained by 

(1)𝐰∗ = argmin f (𝐰; 𝐚)

(2)��� = 1 ∧ 0 ≤ wk ≤ 1

(3)f (�; �) =

N∑
k=1

(
wk�wk

�(w) − ak�(w)
)2

(4)��� = 1 ∧ 0 ≤ ak ≤ 1

setting ak = a ∀k in ak�(w) , which represents the risk budget 
allocated to asset k. Note the no short-sale restriction and 
weights summing to unity (Eq. (2)), as commonly imposed 
by many institutional investors.

As pointed out by Lee (2011), while in the MV optimiza-
tion global optimal solution is achieved thanks to the convex 
objective function,2 f (�; �) has multiple local optima and 
hence a numerical method may easily be trapped in sub-opti-
mal solutions. To overcome this problem, we can optimize a 
convex function and then modify the vector w by nonlinear 
constraints, in order to achieve the equally weighted risk 
contributions for all assets. More formally:3 

s.t.:

in which w is the vector of weights assigned to each asset, 
� is the covariance matrix and ak is the risk budget for the 
asset k.

Maillard et al. (2010) observe that ERC portfolio is an 
intermediary between the minimum variance and the equal 
weight portfolios, also proving that ERC portfolio is optimal 
when assuming a constant correlation matrix and supposing 
that the assets have all the same Sharpe ratio: Under these 
conditions, portfolio’s weights are the Sharpe ratio maximiz-
ing portfolio’s weights. However, when correlation differs or 
when assets have different Sharpe ratios, the ERC portfolio 
will be different from the maximum Sharpe ratio portfolio.

Another issue is about the risk preferences implied in the 
ERC approach. Indeed, as the ERC portfolios tend to favor 
low-beta and low idiosyncratic risk assets by construction 
(Maillard et al. 2010; Kaya and Lee 2012), investors may 
be perceived as risk seeking rather than risk averse in their 
search for return target. In our framework, this is not the 
case, since the objective function we use in the portfolio 
optimization problem assumes a strictly concave utility func-
tion, which, in turns, implies that investors are risk averse. 
This is true for ERC approach as well as for other portfolio 
competitors we consider in our study (MV and minimum 

(5)𝐰∗ = argmin
1

2
𝐰��w

(6)
RCk = RCj∀k,∀j ∧ ��� = 1 ∧ 0 ≤ wk ≤ 1 ∧ ��� = 1 ∧ 0 ≤ ak ≤ 1

2  Any locally optimal point of a convex problem is in fact (globally) 
optimal.
3  Computationally, the optimization problem is solved by finding the 
global minimum variance portfolio under the following constraints:

 

⎧⎪⎨⎪⎩

∑n

i=1
a
i
lnw

i
≥ c

�T = 1

0 ≤ w ≤ 1

  with c be an arbitrary constant (see Roncalli 2013). In this case, the 
problem is similar to a variance minimization subject to the same 
constraints in Eqs. (5) and (6).
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variance portfolios), as the corresponding objective func-
tions assume in all cases the same standard quadratic utility 
function.

Expanding the investment universe

As discussed in “Introduction,” ERC portfolios are expected 
to perform better than other portfolio optimization schemes 
when using diversified asset classes with: (1) similar Sharpe 
ratios, (2) constant correlation structures. As a result, one 
fundamental issue concerns the investable asset universe 
used in forming the equally weighted risk contribution 
portfolios.

To handle this issue, we start characterizing a generic 
set of n asset classes by using a combinatorial expansion 
mechanism through which we generate all possible portfo-
lios consisting of a series of asset class subsets.

Mathematically, having n asset classes we impose a mini-
mum of m asset classes to be included in the portfolio. 
Therefore, the combinations available to the investor, upon 
which she/he next proceeds with the optimization process, 
lie within the space [m; n] and can be determined through the 

binomial coefficient 
(
n

k

)
=

n!

k!(n−k)!
 where k = n − m.

Based on this argument, we then expand the investment 
universe by realizing piecemeal portfolio combinations with 
[k + 1, k + 2,… , k + (n − k)] asset classes and then obtain a 
total of

portfolios with m < n . Suppose, as we arbitrarily put in our 
empirical experiment, that m = 4 and n = 8 , the resulting 

(7)Q =

n∑
k=m

(
n!

k!(n − k)!

)

number of possible portfolios forming the investment uni-
verse is 163.

In such a doing, we can next proceed by solving the port-
folio optimization problem taking into account all feasible 
combinations.

ERC tangency portfolio

The combinatorial mechanism through which we expand 
the investable universe allows us to look at ERC portfolios 
as risky asset classes to be combined in forming the optimal 
ERC portfolio. To do this, we follow the regression-based 
approach introduced in Britten-Jones (1999) running an 
ordinary least squares (OLS) regression of a constant vec-
tor of 1s onto a set of risky asset excess returns without an 
intercept term. As proven in Theorem 1 (Britten-Jones 1999, 
p 658), the corresponding estimated scaled (so that weights 
sum to one) coefficient vector is the tangency portfolio 
whose returns are located in terms of least squares distance 
as closely as possible in mean–standard deviation space to 
the arbitrage return vector 1, which is highly desirable as 
the portfolio has positive return with zero sample standard 
deviation, and then it is sample efficient.

The procedure executed within the ERC universe needs, 
of course, a parsimonious number of “covariates” to use 
in the artificial OLS regression. We then realize equally 
weighted beta-sorted ERC portfolios using the CAPM-based 
beta estimated through the following equation,

where rit is the return of the ith ERC with 
∑

i = Q at time t 
and rBt is the return on the portfolio-specific benchmark B 
at time t, while �it is the error term at time t for portfolio i.

Computationally, we first proceed by estimating the roll-
ing CAPM-based betas according to Algorithm 1.

(8)rit = �i + �irBt + �t
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Based on this routine, we then obtain a Q × (T − v) matrix 
of rolling betas B:

(9)� =

⎡
⎢⎢⎢⎣

��1

⋮

��(T−v)

⎤
⎥⎥⎥⎦

At this point, the tangency portfolio is computed on a 
monthly basis by running the Britten-Jones (1999) auxiliary 
OLS regression, while constraining the coefficients to be 
nonnegative and to sum to 1, based on Algorithm 2.

with

the CAPM-based betas on the i portfolios in period t with 
t = (v + 1), … , T .

Next, we construct beta-sorted portfolio deciles on each 
element of the matrix B deciles as

which denotes the dth equally beta-sorted portfolio of Nd 
single f ERC pertaining to the same decile at time t with 
t = (v + 1), … , T  and d = 1, … , D ≡ 10.

The returns on the D portfolio deciles at time t in 
t = (v + 1), … , T  are denoted by the D elements of the 
vector ���t:

The (T − v) observations of the returns of the erc portfo-
lio deciles are next combined in the following D × (T − v) 
matrix:

(10)��t =
[
�1t,… , �it,… , �Qt

]

(11)ERCdt =
1

Nd

Nd∑
f=1

ERCft

(12)����t =
[
erc1t,… , ercit,… , ercDt

]

(13)���t =

⎡⎢⎢⎢⎢⎢⎢⎣

����1

⋮

����t

⋮

����(T−v)

⎤⎥⎥⎥⎥⎥⎥⎦

where 1 is the vector of 1 s and �t is the vector of portfolio 
loadings at time t.

Theoretical motivations

In this section, we provide theoretical motivations of the pro-
posed approach and discuss on the connections with recent 
portfolio theory literature. Firstly, the model we propose is 
consistent with Ukhov (2006), who studies the mean–vari-
ance optimization problem when adding a new risky asset 
to the existing investment universe deriving the analytical 
relation between the original and the new minimum vari-
ance frontiers. Secondly, the approach is also contextualized 
within the issue on portfolio weights’ estimation error, as 
the subset portfolio generation mechanism reduces the indi-
vidual subset portfolio weights’ variance, thereby increasing 
portfolio diversification.

Expanding the investment universe

The first theoretical reason why the proposed approach is 
expected to be outperforming relative to competing portfolio 
strategies relates to the impact on covariances and tangency 
portfolio when expanding the asset set. As proven by Ukhov 
(2006), when adding a new asset to the original investment 
universe, the novel efficient frontier can be related to the 
original one through covariance matrix partitioning. Analyti-
cally, having m risky assets and adding another a risky asset 
with m-vector of covariances with the original risky assets 
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�ma =
(
�1a, �2a,… , �ma

)�

 , and �2
a
 denoting the variance of 

the a-asset, the novel covariance matrix is

where �(m) is the covariance matrix of the original m assets. 
The analytical relation between �(m) and �(m+1) , which 
involves matrix manipulation in order to compute the inverse 
of the covariance matrix,4 leads to identify the point of tan-
gency of the two frontiers where no wealth is invested in the 
new asset. Commenting the properties of this point of tan-
gency, Ukhov (2006) extends the two mutual fund theorem 
of Merton (1972),5 proving that given m original assets and 
adding a new one, to span the frontier the investor cannot 
simply sell some shares in each of the two mutual funds 
and use the proceeds to buy the new asset, but she/he needs 
a third mutual fund investing in all assets in the economy. 
With such a third fund, the investor re-allocates between the 
two original funds and the new fund.

The characterization of the effect of increasing the asset 
space leads the tangency portfolio (TP) of the expanded 
asset space to dominate the global minimum variance port-
folio (GMV), as the variance of the complete subset portfo-
lio that minimizes portfolio variance declines monotonically 
in subset portfolio size. To put this point into perspective, 
let us consider the following numerical example with two 
securities in two scenarios and next add a third security to 
finally explore the location in the risk–return space of the 
TP and GMV.6

Input parameters are reported in Table 1, and efficient 
frontiers in both scenarios with two and three securities are 
reported in Fig. 1. Note that TP dominates GMV in terms 
of expected reward-to-volatility ratio in both scenarios with 
2 and 3 assets. 

As is clear, the expanded efficient frontier depends on the 
expected return on the new assets as well as on the modified 
covariance structure. Certainly, the implication of this result 
is extremely relevant for our problem, since we theoretically 
explain why mean–variance maximizer should invest in the 
tangency portfolio of the expanded frontier, as it is expected 
to outperform GMV through better diversification effects 
also taking into account expected returns of the new assets. 

(14)
∑
(m+1)

=

(
�(m) �ma

�

′

ma
�2
a

)
,

According to the mutual fund separation theorem (Merton 
1972), such a portfolio will reflect the need to, first, invest 
in the original securities only and, second, hold additional 
funds for investing in all assets (old and new).

Out‑of‑sample estimation error

A second reason why our methodology is expected to be ex 
ante efficient is because of the effect on the out-of-sample 
estimation error of portfolio’s weights. To make the point 
clear, let us consider first Kan and Zhou (2007), who show 
that portfolio weights can be thought as function of the 
observed data and, as such, they suffer from estimation error. 
More formally, if we denote by w∗ the vector of optimal 
weights, namely the weights computed based on the true 
parameters, and by ŵ the vector of the estimated weights, 
those computed based on the observed data, then a strictly 
positive expected loss function can be obtained by compar-
ing expected utility from w∗ and ŵ:

Moreover, the authors show that when T > N + 2 , 
||�wi

|| > |||w∗
i

||| ; therefore, investors who do not know the true 
parameters and estimate from the data tend to take bigger 
positions in the risky assets than those who know the true 
parameters.

The results of Kan and Zhou (2007) are generalized in 
Gillen (2016), who shows that averaging the weights from 
many subset portfolios reduces the total sampling error in 
the complete subset portfolio. In fact, by averaging across 
subset portfolios, each subset portfolio’s weight is scaled 
by m∕n , where m ≪ n is the subset security size and n the 
complete set of securities.

Following the same reasoning, our procedure generates 
a large number of subset portfolios in order to diversify 
the impact of estimation error across subsets. However, we 
improve the estimation error minimization by clustering the 
full set of subset portfolios based on their systematic risk 
exposure toward a specific benchmark (beta deciles as clus-
ters), next averaging the weights across subsets in the same 
cluster. In such a doing, we then reduce the individual subset 
portfolio weights’ variance, thereby reducing the sampling 
error in portfolio weights. Once reduced the estimation error, 
the tangency portfolio we compute using the subset portfolio 
clusters as meta-assets is therefore expected to be ex post 
the optimal portfolio in the mean–variance space. Through 
our Dynamic-ERC portfolio, we realize a Markowitz–ERC 
mixing strategy, providing a way to reduce extreme negative 
and unpredictable events through diversification (ERC-com-
ponent), while benefiting from buying winners and selling 
losers (Markowitz-component).

(15)E
[
L
(
w
∗, ŵ

)]
= U

(
w
∗
)
− E

[
U
(
ŵ

)]
.

4  See Lemma 1 and Proposition 1 of Ukhov (2006).
5  Merton (1972) proves that given n risky assets, there are two 
mutual funds formed with these assets, such that all risk-averse 
(mean–variance utility maximizers) individuals will be indifferent in 
choosing between portfolios from among the original n assets or from 
these two funds.
6  The two scenarios correspond to the numerical example used in 
Ukhov (2006), pg. 199.
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To explore this intuition in more depth, in the next sec-
tion we run an empirical experiment with ERC portfolios 
compared with GMV, Markowitz and 1/n competitors.

Empirical experiments

Data

As in Kohler and Wittig (2014), we focus on the risk contri-
bution of asset classes, rather than individual assets within 
an asset class. The investable universe we use in forming 
ERC, MV, global minimum variance and 1/n portfolios con-
sists of 8 asset classes selected to proxy the global investable 
universe available to RP-based portfolio managers operat-
ing, in particular, in Europe. At the same time, we also run 
preliminary analyses on their correlation structures to avoid 
severe multicollinearity. The data were collected over the 
period from January 1996 to August 2013.

The list of the 8 asset classes (and their proxies) includes: 
(1) Euro Bond Market (JPMorgan Government Bond Index 
EMU); (2) Euro Equity Market (STOXX Europe 600 Index); 
(3) US Equity Market (S&P 500); (4) Equity Emerging 
Markets (MSCI Emerging Markets Index); (5) Commod-
ity (Dow Jones-UBS Commodity Index Total Return); (6) 
Bond Emerging Markets (JPMorgan Government Bond 
Index-Emerging Markets Global); (7) High-Yield Bond 
Market (Barclays Global High-Yield Index); (8) US Corpo-
rate Bond Market (Barclays US Corporate Investment Grade 

Total Return Index). Summary statistics and correlations of 
the 8 asset classes are given in “Appendix”.7

ERC and portfolio competitors

Based on the listed 8 asset classes, we first expand the invest-
able universe according to Eq. (7) setting m = 4 and n = 8 . 
Then ,  t he  resu l t ing  feas ib le  por t fo l ios  a re 
Q =

∑8

k=4

�
8!

4!(8−4)!

�
= 163 . We next realize the correspond-

ing 163 ERC portfolios following the procedure outlined in 
“Setting the scene” section over 60-month rolling window 
estimation in an out-of-sample exercise 

[
t�−60;t�−1

]
 . Within 

each of the fixed monthly rolling time windows, we estimate 
covariance matrix and mean returns, to be then used to com-
pute portfolio weights for the month τ, thus obtaining a pure 
out-of-sample back-testing. The first estimation of w is for 
January 2001, using the monthly returns over the period 
from December 1995 to December 2000. Next, the matrix 
� is recalculated on a monthly basis by using a rolling time 
window of 60 observations following an exponential weight-
ing mechanism to assign greater weight to more recent 
observations.8 We use the same computational scheme to 

Table 1   Numerical example—
input parameters

The table reports the parameter inputs for three securities in two scenarios. E(R) and SD are the expected 
return and the standard deviation, respectively

Risk and return

Scenario 1 Scenario 2

Security # E(R) (%) SD (%) E(R) (%) SD (%)

1 16 15 10 15
2 18 20 20 35
3 14.5 23 − 5 90

Security # 1 2 3

Correlations—Scenario 1
 1 1 0.1 0.25
 2 0.1 1 0
 3 0.25 0 1

Correlations—Scenario 2
 1 1 0.2 0.5
 2 0.2 1 0.45
 3 0.5 0.45 1

7  Summary statistics and correlations are computed over the entire 
time period 1996–2013, as well as in specific sub-periods: 1996–
2000 (dot-com bubble); 2001–2007 (great moderation); 2007-2008 
(global financial crisis); 2009–2011 (European sovereign debt crisis); 
2012–2013 (post-Draghi “whatever it takes” speech).
8  The weights v assigned to each observation are calculated by the 
following formula: v

i
=

exp(i−T)�∑T

i=1
exp(i−T)�

 where � is equal to 3
T
 , which corre-

sponds approximately to a decay factor � = 0.95 . To test the robust-
ness of � we performed a bootstrap procedure with 10,000 draws 
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estimate global minimum variance (GMV), mean variance 
(MV) and 1/n portfolios.

In doing this, we follow the common practice of esti-
mating monthly rolling window covariance matrix (e.g., 
DeMiguel et al. 2009) as a forward-looking estimate of the 
future covariance matrix, while controlling for heteroskedas-
ticity and volatility clustering. In fact, as also recently proven 
in Zakamulin (2015), exponentially weighted covariance 
matrix, popularized by the RiskMetrics™ group, proves to 
be an efficient method to provide robust covariance matrix 
estimates, thereby reducing forecasting error and portfolio 
tracking error. While Zakamulin (2015) finds that GARCH 
seems to perform slightly better than exponentially weighted 
covariance matrix, we are also aware that in medium-/

Fig. 1   GMV and TP on the 
expanded efficient frontier. The 
figure reports efficient frontiers 
generated with 2 and 3 assets 
using data in Table 1 cor-
responding to Scenario 1 and 
Scenario 2. For both scenarios, 
we report the tangency portfolio 
with 2 (OPT2) and 3 (OPT3) 
assets with corresponding 
reward-to-volatility ratio (RTV), 
as well as for global minimum 
variance portfolios with 2 
(GMV2) and 3 (GMV3) assets

SCENARIO 2

SCENARIO 1

from the rolling window containing 60 monthly observations and 
based on these values we recomputed the � matrix and its corre-
sponding weights vector for each draw. We then used the vector of 
average weights based on the resampling to rebalance the portfolios 
and compared the results with original weights and returns. Our 
results, not reported in the text but available upon request, confirmed 
the robustness of the � estimation with tight differences in weights 
and returns between original and bootstrapped portfolios.

Footnote 8 (continued)
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long-time horizons GARCH tends to perform poorly (Lau-
rent et al. 2012). For this reason, we implemented an expo-
nentially weighted covariance matrix estimation.

Moreover, to estimate expected returns in forming MV 
portfolios, we used an equally weighted moving average 
approach, since there is a common consensus that expected 
returns are notoriously difficult to predict, and sophisticated 
forecasting techniques are usually prone to higher estimation 
errors. On this point, Goyal and Welch (2008) observe that 
“the evidence suggests that most models are unstable or even 
spurious. Most models are no longer significant even in-
sample,” and then suggest that models do not help investors 
seeking to use the predictability when forming portfolios.9

The global minimum variance portfolio

GMV is computed by solving the following constrained opti-
mization problem:

s.t.:

where w is the vector of portfolio weights, � is the covari-
ance matrix and k = 1, … , N the number of asset classes 
used in forming the optimal portfolio. The constraints in (17) 
are because we impose no short-sale restriction and weights 
sum to unity as for ERC portfolios.

The mean variance portfolio

MV portfolio is computed by maximizing the return to vola-
tility ratio of the portfolio using the same constraints as in 
the GMV (no short-sale and weights sum to 1), with a risk 
target equal to the ERC standard deviation:

s.t.:

where w is the vector of portfolio weights, � is the covari-
ance matrix, � is the vector of mean returns and �ERC is the 
volatility of the corresponding ERC portfolio in terms of 
both size (number of assets) and investable universe (asset 

(16)�∗ = argmin
1

2
����

(17)��� = 1 ∧ 0 ≤ wk ≤ 1

(18)�∗ = argmax
���√
����

(19)
√
���� ≡ �ERC ∧ ��� = 1 ∧ 0 ≤ wk ≤ 1

class typologies). The constraint 
√
�′�� ≡ �ERC is intro-

duced to make ERC comparable with Markowitz in a homo-
geneous risk–return setting and corresponds to the standard 
deviation of the homolog ERC.10

The 1/n portfolio

The 1/n strategy involves holding a portfolio weight w =
1

n
 

each of the n risky assets. This strategy completely ignores 
the moments’ estimation (then it ignores the data), only 
relating to the old wisdom for which in a world that is 
uncertain, where prediction power lacks, the best strategy is 
to hold assets in equal amounts (de Jong 2018). DeMiguel 
et al. (2009) explore almost all sophisticated extensions of 
the Markowitz rule and find that none is consistently better 
than the 1/n rule in terms of Sharpe ratio. This is because 
1/n rule is less prone to estimation error than more sophisti-
cated approaches. The 1/n strategy is a natural candidate to 
compare with ERC portfolios, since the equal risk contribu-
tion approach mimics the diversification effect of equally 
weighted portfolios, as commented before.

Comparative analysis of ERC, GMV, Markowitz 
and 1/n Portfolios

We first inspect and contrast the ERC universe with the 
corresponding minimum variance, Markowitz and 1/n uni-
verses, exploring each of all possible asset combinations 
inside the space of feasible portfolios. Specifically, we com-
pare one-to-one the 163 ERC portfolios with corresponding 
GMVs, MV and 1/n portfolios. In so doing, we measure the 
extra performance of each ERC portfolio against the corre-
sponding competitor, which act as ERC-specific benchmark 
in a CAPM framework.

Over the entire period January 2001–August 2013, we 
compute the Jensen’s alpha by regressing each ERC onto the 
corresponding GMV, MV and 1/n, namely

with i = 1,… , 163 and b = GMV, MV, 1∕n where ri denotes 
the ith ERC return, rb

i
 the return of the ERC-specific bench-

mark and α and β the Jensen’s alpha and the CAPM. This 
signifies that we run 163 × 3 = 489 regressions obtaining: 
(a) 163 alphas for the ERC versus GMV; (b) 163 alphas for 
ERC versus MV universe; (c) 163 alphas for the ERC versus 

(20)ri = �b
i
+ �ir

b
i
+ �b

i

10  To use as much data points as possible and assign more impor-
tance to recent observations, we computed the standard deviation of 
the ERC portfolios using their previous 23 daily observations, namely 
approximately reflecting the last month (in business days).

9  However, we leave the door open for better return predictions using 
emerging statistical approaches, such as machine learning. This issue 
will be the next step in our research agenda.
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1/n. The results of the comparative analyses are reported in 
Table 2.

ERC versus Markowitz

Consider first the ERC versus MV portfolio analysis. Table 2 
shows statistics about alphas and corresponding t statistics. 
On average, the annualized Jensen’s alpha is 1.86%, ranging 
from − 2.72% (min) to 3.89% (max). The overall mean is 
statistically significant, and the proportion of positive alphas 
over the 163 portfolio combinations ( Prob > 0 ) is 87.73%. 
Inspecting in more depth the statistical significance of these 
results, individual t-stats of alphas confirm the strong out-
performance of ERC relative to MV. On average, the t-stat is 
2.09 and the number of significant positive alphas at least at 
the 0.1 level is 104, while only one negative alpha is statisti-
cally significant. Hence, we confirm the strong dominance of 
the ERC frontier over the Markowitz portfolios.

ERC versus GMV

Consider now the ERC versus GMV comparison and look 
at alphas and t statistics in Table 2. Although Prob > 0 is 
80.98% with significant overall annualized mean alpha of 
0.30%, statistics on individual t-stat lead us to conclude that 

on a risk-adjusted basis ERC and GMV performances are 
not statistically different. In fact, only two positive alphas are 
statistically significant, thus indicating that while the ERC 
frontier is slightly over the GMV one, we cannot conclude 
for ERC dominance over the GMV portfolios. These find-
ings confirm Leote de Carvalho et al. (2012), who analyze 
different risk-only-based strategies over the period from 
1997 to 2010, finding that minimum variance shows the 
highest Sharpe ratio and behaves as one of the most efficient 
portfolios in terms of maximized returns per unit of risk over 
the last few decades.11

ERC versus 1/n

Finally, let us observe how ERC performs relative to the 
1/n rule. Alphas and t statistics in Table 2 document the 
strong performance superiority of ERC: Jensen’s alpha is 
positive for all 163 cases, of which 138 (approximately the 
85%) exhibit statistical significance at least at 0.1 level. We 
therefore confirm the findings of Maillard et al. (2010), who 
empirically prove that equally weighted portfolios are infe-
rior in terms of performance compared to ERC.

The ERC tangency portfolio

As discussed in “Theoretical motivations” section, tangency 
portfolio is expected to outperform GMV on the expanded 
efficient frontier in force of the mutual fund separation 
theorem (Merton 1972), which leads to better diversifica-
tion effect while taking into account expected returns of the 
new assets, and in force of portfolio weights’ estimation 
error minimization through the subset portfolio generation 
mechanism which translates into a better portfolio diversi-
fication. To compute tangency portfolios using the entire 
ERC universe of 163 portfolios, we implement Algorithm 1 
and Algorithm 2. As specified in “ERC tangency portfo-
lio” section, the benchmark in Eq. (8) is fund specific, as 
the tangency portfolio is conceived with the objective to 
outperform specific portfolio competitors. Based on our 
empirical findings, which prove that ERCs significantly 
outperform MV and 1/n competitors, while comparing with 
GMV the extra performance is not statistically significant 
for all but 1 ERC, we then choose the GMV as fund-specific 
benchmark in running Eq. (8). In more depth, we use the 
equally weighted average of the GMV portfolios generated 

Table 2   ERCs versus MVs, GMVs, (1/n)s

The table reports statistics on annualized Jensen’s alpha (Panel A) 
with corresponding t statistics (Panel B) computed for the 163 ERC 
portfolios over the period January 2001–August 2003 using as ERC-
specific benchmark the corresponding MV, GMV and 1/n portfolios. 
Min, Max, Mean, Median and SD are the minimum, the maximum, 
the average, the median and the standard deviation of alpha coef-
ficient, respectively. Prob > 0 is the ratio of positive alphas over the 
total (163). # of positive (negative) t* is the number of positive (nega-
tive) alphas out of 163 for which the corresponding t-stat is signifi-
cant at least at 0.1 level

versus GMVs versus MVs versus (1/n)s

Panel A: Annualized Jensen’s alpha
Min − 2.38% − 2.72% 0.69%
Max 1.73% 3.89% 3.51%
Mean 0.30% 1.86% 2.17%
t-stat (p-value) 5.8196 (0.000) 16.996 (0.000) 41.1299 (0.000)
Median 0.43% 2.18% 2.12%
SD 0.19% 0.40% 0.19%
Pr > 0 80.98% 87.73% 100.00%
Panel B: Jensen’s alpha t-statistics
Min − 1.79 − 1.8 0.53
Max 1.87 4.6 3.93
Mean 0.39 2.09 2.48
Median 0.48 2.62 2.55
# of positive t* 2 104 138
# of negative t* 1 1 0

11  Interestingly, the findings Leote de Carvalho et  al. (2012) are 
consistent with Fama and French (2004): Using ten value-weighted 
beta-sorted portfolios of US equities over the period 1928–2003, the 
authors prove that expected returns seem to be the same, no matter 
what the beta over the long run. It follows that, if expected returns 
are equal for all stocks, minimum variance is the portfolio that maxi-
mizes the ex ante Sharpe ratio.
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through the combinatorial mechanism of universe expansion 
(Eq. (7)):

with N = 163 as for ERC portfolios.
In running the procedure, we recompute weights one step 

ahead, thereby estimating the time-varying sequence of opti-
mal ten beta-sorted ERC portfolios to be next used to project 
the estimated weights onto the asset classes within each of 
the ten equally weighted portfolios of ERC portfolios. The 
portfolio of ERC portfolios we propose is thus dynamic by 
construction and this explains why we call Dynamic-ERC 
(D-ERC).

Performance

In Fig. 2, we report the portfolio value of D-ERC over the 
period from September 2003 to August 2013 and the values 

(21)rBt =
1

N

N∑
i=1

rGMV
i,t

for single ERC, GMV, MV and 1/n based on all the 8 asset 
classes together with the plain 60/40 benchmark computed 
as 60% equity (MSCI World) and 40% bonds (JPM Global 
Aggregate) with a monthly rebalancing. This comparative 
analysis gives us the first answer to the question involving 
the overperforming ability taking into account the com-
plete 8-asset-class universe. Note that over the inspected 
period, our D-ERC exhibits a rising path until May 2008, 
next exhibiting a negative performance during the Lehman 
crash, while just from February 2009 the performance 
turns positive with a new growing cycle until the period 
August 2011–June 2012, when contagion in Europe from 
the Greek crisis, and reinforced by the Ireland, Portugal, 
Spain and Italy debt and bank problems, spreads across 
markets. However, from the “whatever it takes” speech by 
the ECB president Mario Draghi of July 2012, the D-ERC 
again shows high positive performance until the end of the 
period. The portfolio value moved from 100 in August 2003 
to 225.37 in August 2013, against end-of-period portfolio 
values of 174.54 for ERC, 170.12 for 60/40, 158.36 for 
GMV, 152.72 for MV and 209.09 for 1/n. These data clearly 

Fig. 2   D-ERC and portfolio 
competitors. The figure shows 
the portfolio values of D-ERC, 
and the ERC, GMV, MV, 60/40 
and 1/n portfolios computed 
using the 8 asset classes over 
the period September 2003–
August 2013. The starting value 
for all portfolios is set at 100

Table 3   D-ERC performance metrics

The table reports statistics on performance metrics of D-ERC, together with: ERC, GMV, MV, 60/40 and 1/n computed using the 8 asset classes 
over the period September 2003–August 2013. Min, Max, Mean, StdDev, Skew and Kurt are the minimum, the maximum, the annualized arith-
metic average, the annualized standard deviation, the skewness and the excess kurtosis of the returns, respectively. Pr > 0 is the ratio of the 
number of positive returns over the total observations. Sharpe ratio is obtained using the US Generic Govt. 3-Month Yield. Jensen’s alpha is the 
annualized alpha (with corresponding p-value) computed against the five competitors used as benchmarks (8 assets ERC, 8 assets GMV, 8 assets 
MV, 60/40, 1/n)

D-ERC 8 assets ERC 8 assets GMV 8 assets MV 60/40 1/n

Min − 6.05% − 6.26% − 3.70% − 11.43% − 12.76% − 13.92%
Max 5.62% 3.92% 4.49% 3.71% 6.77% 7.78%
Meanyr 8.42% 5.73% 4.32% 4.83% 5.91% 7.83%
StdDevyr 7.39% 5.51% 3.91% 6.68% 10.75% 10.02%
Skew − 0.6384 − 1.1279 − 0.0738 − 2.2065 − 0.9329 − 1.287
Kurt 0.2335 2.9279 2.0328 11.6478 2.6438 5.445
Pr > 0 72.50% 67.50% 64.17% 65.83% 61.67% 70.00%
Sharpe ratio 0.267 0.217 0.201 0.140 0.116 0.180
Jensen’s alphayr (p-value) – 2.05% (0.1379) 4.57% (0.0374) 4.70% (0.0073) 5.38% (0.009) 3.70% (0.009)
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prove the strong overperformance of D-ERC in a “buy-and-
hold ‘till the end” perspective, while 1/n exhibits a final 
value approaching that of our D-ERC. To explore in more 
depth the risk-adjusted performance and better understand 
the behavior of all the investment schemes, in Table 3 we 
report performance statistics for D-ERC and the other port-
folio alternatives, which confirm the overall performance 
superiority on a risk-adjusted basis. The Sharpe ratio is the 
highest (0.267 vs. 0.217 for ERC, 0.201 for GMV, 0.140 
for MV, 0.116 for 60/40 and 0.180 for 1/n), and the number 
of positive returns over the period ( Prob > 0 ) is 72.50% of 
the total observations, which is greater than those shown by 
portfolio competitors (ERC: 67.50%; GMV: 64.17%; MV: 
65.83%; 60/40: 61.67%; 1/n: 70%). Interestingly, risk-only 
portfolios (D-ERC, ERC, GMV) exhibit moderate worst sce-
narios (Min) compared to risk–return (MV, 60/40) portfolios 
that show high excess kurtosis with low Sharpe ratios; 1/n 
exhibits the highest worst scenario (Min) with very high vol-
atility. Finally, by regressing the D-ERC returns against all 
competitors, we obtain significant positive Jensen’s alphas 
except for ERC, thus confirming the strong outperformance 
against almost all competitors. 

Even looking at monthly statistics, we then confirm the 
D-ERC overperformance, albeit the comparative analysis 

was carried out by only considering one out of the 163 pos-
sible portfolio combinations.

To better scrutinize the D-ERC performance inside single 
ERC, GMV, MV and 1/n universes, we run the CAPM-based 
equation, using as benchmark each of the 163 GMV, MV 
and 1/n portfolios, and then inspect alphas and t statistics. 
The results in Table 4 confirm the strong and significant 
outperformance of D-ERC: On average, the annualized 
alpha is 4.60, 3.61 and 3.91% relative to GMV, MV and 
1/n portfolios, respectively. All alphas are positive, ranging 
from (min–max) 3.62 to 6.14% (vs. GMV), 1.38 to 6.49% 
(vs. MV) and 2.65 to 5.38% (vs. 1/n) with all single t-stats 
significant at least at the 0.1 level when comparing against 
GMV and 1/n, while 149 out of 163 against MV.

The overall average of annualized alphas exhibited by 
D-ERC against single ERCs is positive (2.95%) with a range 
from 1.83% (min) to 5.38% (max). However, by exploring 
single t-stat values, 90 out of 163 appear to be statistically 
significant, that is, slightly more than 50% of all ERCs. This 
result is indicative of how the dynamic linear combination 
of single ERCs made through the Britten-Jones technology 
does not dominate the overall ERC universe, which is in a 
sense consistent with the inner philosophical rationale of the 
D-ERC, conceivable as the “coarse-grained” ERC universe, 
thus removing extremes in the multidimensional behavior of 
the ERC portfolios while catching up their main dynamics.

The important findings we obtain in this comparative 
analysis are related to the strong statistical significance of 
the D-ERC outperformance relative to the GMV and 1/n 
universe. Indeed, having found beforehand a not significant 
overperformance of the ERCs relative to the GMVs, we next 
moved on to questioning the real value offered by complex 
risk-only portfolios compared to simple risk-only solutions, 
finally proposing a Britten-Jones-based combination of beta-
sorted ERC portfolios as the best way to navigate through 
the ERC universe. And this is indeed the case, since our 
D-ERC portfolio is at the top of the possible portfolio alloca-
tion strategies in terms of risk-adjusted performance.

Robustness checks: bootstrap analysis and Monte Carlo 
simulation

To check the robustness of our approach, we run bootstrap 
analysis and Monte Carlo simulation. In fact, the results 
obtained and commented in the previous section could be 
incidental and reflecting the data used to run our experi-
ments. Bootstrap analysis allows us to take into account the 
entire return distributions of portfolios, then include extreme 
events (e.g., Lehman collapse) and therefore mimic the same 
dependence structure as the original data, while Monte Carlo 
simulation gives us insights on the robustness of the model 

Table 4   D-ERC versus ERCs, GMVs, MVs, (1/n)s

The table reports statistics on annualized Jensen’s alpha (Panel A) 
with corresponding t statistics (Panel B) computed by comparing the 
D-ERC with the 163 corresponding ERC, GMV, MV, and 1/n portfo-
lios over the period September 2003–August 2013. Min, Max, Mean, 
Median and StdDev are the minimum, the maximum, the average, the 
median and the standard deviation of alpha coefficient, respectively. 
% positive alpha is the ratio of positive alphas over the total (163). # 
of positive (negative) t* is the number of positive (negative) alphas 
out of 163 for which the corresponding t-stat is significant at least at 
0.1 level

ERCs GMVs MVs (1/n)s

Panel A: Annualized Jensen’s alpha
Min (%) 1.83 3.62 1.38 2.65
Max (%) 5.38 6.14 6.49 5.38
Mean (%) 2.95 4.60 3.61 3.98
Median (%) 2.74 4.64 3.48 3.99
StdDev (%) 0.21 0.13 0.32 0.58
% positive alpha 100.00 100.00 100.00 100.00
Panel B: Jensen’s alpha t-statistics
Min 1.13 1.93 1.13 1.72
Max 3.63 3.77 3.91 3.47
Mean 2.00 2.34 2.38 2.69
Median 1.70 2.23 2.39 2.70
StdDev 0.62 0.28 0.54 0.39
# of positive t* 90 163 149 163
# of negative t* 0 0 0 0
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using only the first two moments of the distributions. Both 
robustness checks are therefore interesting, as differences 
from the results of the two analyses are informative on the 
impacts of higher moment distributions.

More specifically, for bootstrap analysis we randomly 
resampled 1553 daily returns of the 8 asset classes (about 
6-year horizon) from the entire data sample 1996–2013, next 
using 48-month rolling windows to realize, on a monthly 
basis, all the 163 subset ERC, GMV, MV, 1/n portfolios. 
Based on the ERC portfolios, we assembled the D-ERC 
using Algorithms 112 and 2, finally computing the risk-
adjusted performance against all the portfolio competitors 
by estimating the CAPM-based equation using as bench-
mark each of the 163 GMV, MV and 1/n portfolios. We run 
this procedure 1000 times, thereby obtaining 1000 Jensen’s 
alphas for each competitor. Monte Carlo simulation was run 
following the same procedure, but instead of randomly resa-
mpling from the original data sample, we simulated returns 
for the 8 original asset classes through a Brownian motion 
process using their covariance structure and their return 
averages computed over the entire time horizon 1996–2013. 
Table 5 presents the results showing annualized mean of 
Jensen’s alphas and corresponding t test. Bootstrap analysis 
confirms significant overperformance of D-ERC versus all 
competing strategies, with mean alphas ranging from 0.69 
to 1.60% and all p-values close to zero. Differently, Monte 
Carlo simulation does not confirm the overperformance ver-
sus MV portfolio, and ERC shows a lesser robustness rela-
tive to bootstrap analysis with mean alpha 0.30% and p-value 
around 0.04; GMV and 1/n show results similar to those 
obtained through bootstrap analysis. The higher robustness 

of bootstrap analysis, which mimics the same structure of 
the original sample, indicates that D-ERC is particularly 
appropriate to mitigate impacts from extreme negative and 
unpredictable events, such as the Lehman collapse. We then 
conclude that the results obtained from our empirical experi-
ments are not a consequence of the data used but reflect the 
robustness of our approach, and then confirm the intuitions 
discussed in “Theoretical motivations” section.

Portfolio diversification

The final feature we inspect relates to portfolio diversifica-
tion of the D-ERC. As we discussed before, the expected 
outperformance of the tangency portfolio is massively based 
on better diversification effect according to the mutual fund 
separation theorem (Merton 1972) and reduced portfolio 
weights’ out-of-sample estimation error.

As a portfolio of ten beta-sorted portfolios of the 163 
ERCs, the regression-based coefficients obtained through 
the constrained Britten-Jones auxiliary OLS are used to 
spread out over the 8 asset classes the implied asset alloca-
t i o n  o f  D - E R C .  A s  c o m m e n t e d  b e fo r e 
RD - ERC,t =

∑D

d=1
bdtERCdt where b are the Britten-Jones 

c o n s t r a i n e d  r e g r e s s i o n  c o e f f i c i e n t s  a n d 
ERCdt =

1

Nd

∑Nd

f=1
ERCft denotes the dth equally beta-sorted 

portfolio of Nd single fth ERC pertaining to the same decile 
at time t with t = (v + 1), … , T  and d = 1, … , D ≡ 10 . 
The return of a single fth ERC is the weighted average of the 
Nd asset returns ERCft =

∑Nk

k=1
wk,tRk,t where Nk denotes the 

number of assets used in running the ERC algorithm and Rk,t 
the corresponding return of the kth asset class at month t. 
Based on this mathematical characterization, we can then 
reformulate the equation for the D-ERC return at time t as:

and focus on bdt
1

Nd

∑Nd

f=1

∑Nk

k=1
wk,t for each k asset class, 

which gives the implied D-ERC portfolio loadings at time t.
Using Eq. (22), we inspect the implied diversification 

of D-ERC compared to that offered by the 8 assets ERC, 
GMV, MV and 1/n competitors. The portfolio diversification 
is explored based on different indicators over the estimation 
period. The first measure is the diversification ratio (Chouei-
faty and Coignard 2008) computed as the ratio of the port-
folio’s weighted average volatility to its overall volatility:

where �′
p is the transposed vector of weights of portfolio 

p, σ is the 1 × 8 vector of standard deviations of the 8 asset 

(22)RD - ERC,t =
∑D

d=1
bdt

1

Nd

Nd∑
f=1

Nk∑
k=1

wk,tRk,t,

(23)Dp =
��

p�

�p
,

Table 5   D-ERC robustness checks

The table reports results on bootstrap analysis (Panel A) and Monte 
Carlo simulation (Panel B). Annualized mean and standard deviation, 
as well as the corresponding t-stat, are based on the 1000 replications 
for both analyses

ERCs GMVs MVs (1/n)s

Panel A: Bootstrap analysis
Meanyr (%) 0.69 1.60 0.69 0.94
StdDevyr (%) 4.70 6.59 5.89 2.99
t-stat 4.62 7.66 3.71 9.91
p-value 0.0000 0.0000 0.0002 0.0000
Panel B: Monte Carlo simulation
Meanyr (%) 0.30 1.65 0.20 0.97
StdDevyr (%) 4.54 6.55 5.59 3.01
t-stat 2.07 7.96 1.16 10.21
p-value 0.0392 0.0000 0.2481 0.0000

12  We used 252 daily observations to compute CAPM-betas to pro-
ceed with the equally weighted beta-sized ERC portfolios.
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classes, and �p is the standard deviation of the portfolio p. 
To compute this ratio, we use the averages of asset weights 
over the inspected period. The diversification ratio is at the 
core of the concept of diversification as it compares the risk 
without the covariance term (numerator) to the portfolio risk 
including the covariance terms. This reflects in ratios greater 
than or equal to one (for long-only portfolios) and equals 
unity for a single asset portfolio.

The diversification level can also be assessed focusing on 
portfolio concentration through the Herfindahl index. We use 
the normalized version proposed in Maillard et al. (2010) 
by computing

where hp,t =
∑n

i=1

�
w
p

i,t

�2

 is the Herfindahl index for portfo-
lio p at time t and wp

i,t
 are the weights of asset i at time t for 

portfolio p with n the number of assets in the portfolio. HIp,t 
ranges from 0 (maximum diversification) to 1 (no 
diversification).

Our third measure derives from Blume and Friend (1975), 
who measure the diversification as the deviation from the 
market portfolio weights. In our study, instead of measur-
ing the sum of squared portfolio weights from those of the 
market portfolio, we focus on the risk contribution of each 
asset by computing the deviation of each asset risk contribu-
tion from 1/n. Computationally, we calculate the root sum of 
squared asset risk contribution from ERC as follows:

with

with ��
p(i) denoting the transposed vector of portfolio 

weights with all zeros except for ith asset class, σ the 1 × 8 
vector of standard deviations of the 8 asset classes and �p the 
standard deviation of portfolio p. RC is measured by using 
the averages of asset weights over the inspected period.

In Table 6, we report results on the three measures used 
to assess the portfolio diversification. D-ERC is the portfo-
lio with the highest diversification ratio, followed by ERC, 
GMV, 1/n and MV. The same conclusion is confirmed by the 
HI index, except for 1/n which is by construction the portfo-
lio with the lowest value, thus indicating low concentration 
in portfolio weights for D-ERC. All statistics of the index in 
terms of mean, median, standard deviation, min and max are 
less than portfolio competitors, again with the exception of 

(24)HIp,t =
hp,t − 1∕n

1 − 1∕n
,

(25)�p =

[
n∑
i=1

(
RC(�)p(i) − 1∕n

)2
]1∕2

,

(26)RCp(i) =
��

p(i)��p

�p
,

1/n, and also for ERC when considering standard deviation 
and max. The main message from these features is in favor 
of the dynamic combination realized through the Britten-
Jones regression using the beta-sorted ERCs. As expected, 
the proposed procedure enhances portfolio diversification, 
thereby reflecting on better risk-adjusted performance.

The �p measure tells us a quite expected story about risk 
asset contribution, with the single ERC showing the highest 
diversification and D-ERC exhibiting asset risk contribu-
tions ranging from 11.72 to 17.60% excluding Bond Euro, 
which contributes 0.27% to total portfolio risk. This is the 
main difference relative to GMV and MV, which have risk 
contributions of 78.66% (GMV) and 19.85% (MV) for the 
same bond asset class. Finally, when contrasting D-ERC 
with 1/n the highest difference in terms of asset class risk 
contribution is for Equity Emerging Markets, the contribu-
tion is 17.60% for D-ERC while for 1/n the contribution is 
27.70%.

Conclusion

In this study, we explore the RP paradigm focusing on the 
ERC approach, shedding light on how these portfolios per-
form relative to global minimum variance, mean–variance 
and 1/n portfolios, also proposing a novel approach based 
on an expansion mechanism of all feasible ERC, to be next 
assembled within a tangency portfolio consistent with the 
mutual fund separation theorem (Merton 1972) and con-
ceived with the end to minimize the out-of-sample portfolio 
weights’ estimation error. By generating a large number of 
subset ERC portfolios, thus diversifying the impact of esti-
mation error across subsets, we improve the estimation error 
minimization by clustering the full set of subset portfolios 
based on their systematic risk exposure toward a specific 
benchmark (beta deciles as clusters). Finally, we compute 
the tangency portfolio using the subset portfolio clusters 
as meta-assets, thus generating our D-ERC model which is 
therefore expected to be ex post the optimal portfolio in the 
mean–variance space through better portfolio diversification 
also taking into account expected returns of assets.

In our experimental exercise, we first generate the space 
of all possible portfolios using subsets of 4-to-8 asset classes 
and look inside the resulting ERC universe by running the 
relative performance analysis contrasting the ERC portfolios 
with GMV, MV and 1/n competitors. In doing this, we prove 
that ERCs significantly outperform against Markowitz and 
1/n alternatives. However, the tangency portfolio realized 
through a regression-based approach (Britten-Jones 1999) 
dominates alternative asset allocation schemes in terms of 
risk-adjusted performance and portfolio diversification. 
The robustness of our results was checked through boot-
strap analysis and Monte Carlo simulation, both confirming 
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that the results are not a consequence of the data used. We 
attribute the significant outperformance of D-ERC versus 
the portfolio alternatives to the Markowitz–ERC nature of 
the strategy, which provides a way to reduce unpredictable 
negative events through diversification (ERC-component), 
while benefiting from buying winners and selling losers 
(Markowitz-component).

Appendix: Asset class benchmarks

In this Appendix, we report summary statistics and correla-
tions computed for the 8 indices we used as benchmarks for 
the asset class universe used to realize ERC, GMV, MV and 
1/n portfolios. Statistics and correlations are computed over 
different time intervals.

Tables 7 and 8 report, respectively, summary statistics 
and correlation structures computed for different time inter-
vals over the entire period from January 1996 to August 
2013 of the 8 asset classes used in forming portfolios in 
our empirical analysis. We first note, as expected, high 
correlations between equity-based indices especially dur-
ing stress scenarios (2007–2008 and 2009–2011). Despite 
the increasing integration of equity markets as shown by 
correlation structures computed for different time periods 
reported in the table, European and US equity indices have 

been notwithstanding included in the dataset, since they are 
representative of the two main equity markets taken into 
account by portfolio managers.

The Euro government bonds market index plays an impor-
tant role in portfolio construction, as it tends to act as “port-
folio stabilizer” for two reasons. First, as given in Table 7, 
the index exhibits low volatility also across time with a range 
of 1.1–1.4%. Second, the index contributes substantially to 
the portfolio diversification, as proven by looking at correla-
tions with equity markets (except for the periods 1996–2000 
and 2012–2013). Similarly, the US Corporate Bond Mar-
ket index contributes to better diversifying portfolios, as it 
shows stable returns (Table 7) and sometimes negative cor-
relations (Table 8). However, the index differs from govern-
ment bond dynamics, especially during periods of corporate 
default clustering as in 2007–2011, when returns dynamics 
were mostly driven by credit spreads.

High-Yield and Emerging Market bond indices are two 
important asset classes, especially in the short run. While 
descriptive statistics and correlations show that the two indi-
ces seem to deliver the same risk-adjusted profile with high 
correlations, in the short run they may differ significantly in 
terms of risk and returns (see, e.g., Table 7, 1996–2000 and 
2012–2013). Another interesting feature of the High-Yield 
bond index concerns the high correlation with equity mar-
kets with spikes during extreme negative returns of equities, 

Table 6   Portfolio diversification

The table reports statistics on portfolio diversification for D-ERC, and the ERC, GMV, MV and 1/n portfo-
lios computed using the 8 asset classes over the period September 2003–August 2013. Panel A reports the 
risk contribution for each of the 8 asset classes. Diversification ratio (Eq. (23)) and the Distance to Perfect 
ERC (Eq. (25)) are in Panel B. Statistics relative to mean, median, standard deviation, minimum and maxi-
mum of the normalized Herfindahl index (Eq. (24)) are in Panel C

D-ERC 8 Assets ERC 8 Assets GMV 8 Assets MV 1/n

Panel A: Risk contribution
1. Euro Bond Market (%) 0.27 11.21 78.66 19.85 − 0.06
2. Euro Equity Market (%) 11.72 12.87 7.55 2.45 14.60
3. US Equity Market (%) 13.17 12.88 4.69 2.10 15.50
4. Equity Emerging Markets (%) 17.60 12.07 0.11 14.98 27.70
5. Commodity (%) 16.35 13.50 3.27 8.52 16.20
6. Bond Emerging Markets (%) 13.45 12.49 1.78 21.37 8.97
7. High-Yield Bond Market (%) 17.12 14.24 3.11 18.41 12.36
8. US Corporate Bond Market (%) 10.31 10.74 0.81 12.33 4.73
Total (%) 100 100 100 100 100.00
Panel B: Diversification measures
Diversification ratio 1.7161 1.6595 1.4707 1.2239 1.3508
Distance to Perfect ERC 0.1479 0.0304 0.7100 0.1997 0.2211
Panel C: Risk contribution
Average 0.0981 0.1777 0.6717 0.3164 0.0000
Median 0.0599 0.1640 0.7002 0.2939 0.0000
StdDev 0.0999 0.0837 0.1029 0.0986 –
Min 0.0177 0.0572 0.4568 0.1592 0.0000
Max 0.4207 0.3435 0.8120 0.5975 0.0000
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as was the case during the period from 2007 to 2008. This 
pattern is contrasting with correlations between Investment 
Grade bonds and equity markets that remained low during 
times of negative equity returns (see correlations with the 
Euro, the US and Emerging Markets equity indices during 
the period 2007–2008).

The emerging market bond index shows higher correla-
tions relative to equity than relative to fixed income, and 

the Emerging Markets equity index has shown increasing 
correlations with the Euro and US equity markets as capital 
market integration became substantial across countries.

Finally, data in tables confirm that commodity acts as 
an important asset class portfolio diversifier due to its low 
or negative correlation with traditional asset classes over 
the long term. However, during periods of economic down-
turn, such as in the late 2000s, commodities’ correlation 

Table 7   Asset class benchmarks 
summary statistics

Summary statistics are computed using the 8-asset-class benchmarks: Asset1 is the Euro Bond Market, 
Asset2 is the Euro Equity Market, Asset3 is the US Equity Market, Asset4 is the Equity Emerging Mar-
kets, Asset5 is Commodity, Asset6 is Bond Emerging Markets, Asset7 is the High-Yield Bond Market, 
and Asset8 is the US Corporate Bond Market. Mean, Volatility (standard deviation), Median, Skew and 
(excess) Kurtosis are computed using the monthly returns. The Sharpe ratio is computed using the US 
Generic Govt. 3-month Yield as risk-free rate

Time interval Summary statistics Asset1 Asset2 Asset3 Asset4 Asset5 Asset6 Asset7 Asset8

1996–2000 Mean 0.5% 1.9% 1.5% 0.1% 0.7% 1.2% 0.6% − 0.1%
Volatility 1.0% 4.7% 4.6% 8.1% 4.1% 4.9% 2.8% 4.2%
Median 0.5% 2.7% 1.9% 0.8% 0.7% 2.1% 1.0% − 0.6%
Skew − 0.39 − 0.82 − 0.75 − 0.88 0.14 − 3.06 − 2.95 1.12
Kurtosis − 0.27 0.94 0.95 2.00 − 0.47 15.62 15.41 2.44
Sharpe Ratio 0.56 0.39 0.33 0.01 0.16 0.24 0.22 − 0.01

2001–2007 Mean 0.4% 0.4% 0.3% 1.9% 0.8% 0.9% 0.8% 0.2%
Volatility 1.0% 4.5% 3.9% 5.7% 3.9% 2.1% 2.2% 3.2%
Median 0.5% 1.4% 1.0% 2.5% 1.0% 1.2% 1.3% 0.2%
Skew − 0.19 − 0.80 − 0.51 − 0.71 − 0.04 − 0.38 − 0.61 − 0.29
Kurtosis − 0.66 1.19 0.62 0.33 − 0.34 0.32 2.29 0.50
Sharpe Ratio 0.41 0.08 0.09 0.33 0.21 0.45 0.37 0.08

2007–2008 Mean 0.7% − 3.4% − 2.5% − 3.2% − 1.9% − 0.3% − 1.5% 1.4%
Volatility 1.3% 5.5% 5.5% 10.6% 8.9% 4.9% 5.7% 4.4%
Median 0.7% − 1.9% − 0.7% − 3.8% − 3.1% 0.7% − 0.4% 1.1%
Skew 0.72 − 0.32 − 1.10 − 0.53 − 0.38 − 2.20 − 1.78 0.97
Kurtosis 0.91 − 0.68 1.29 0.16 − 0.22 6.95 4.82 1.67
Sharpe Ratio 0.50 − 0.62 − 0.45 − 0.30 − 0.21 − 0.06 − 0.26 0.32

2009–2011 Mean 0.2% 1.0% 1.3% 1.8% 0.7% 1.3% 1.9% 1.4%
Volatility 1.4% 5.0% 5.4% 7.5% 5.1% 2.1% 3.5% 3.9%
Median 0.3% 0.6% 1.8% 0.2% 1.4% 1.4% 1.9% 1.4%
Skew 0.21 0.18 − 0.27 0.24 − 0.47 − 0.33 0.16 − 1.13
Kurtosis 0.84 0.72 − 0.58 − 0.27 1.60 0.90 0.48 1.74
Sharpe Ratio 0.15 0.20 0.24 0.24 0.14 0.61 0.53 0.36

2012–2013 Mean 0.6% 1.3% 1.5% 0.4% − 0.3% 0.4% 1.0% − 0.9%
Volatility 1.1% 3.0% 3.1% 4.8% 3.9% 2.3% 1.9% 3.3%
Median 0.8% 1.7% 2.1% 0.3% 0.4% 1.0% 1.4% − 1.2%
Skew − 0.27 − 1.12 − 0.63 − 0.10 − 0.33 − 0.73 − 0.84 0.11
Kurtosis − 0.41 1.35 0.47 1.52 − 0.01 0.05 0.27 − 0.46
Sharpe Ratio 0.51 0.44 0.50 0.08 − 0.08 0.15 0.53 − 0.27

1996–2013 Mean 0.4% 0.7% 0.7% 0.8% 0.5% 0.9% 0.8% 0.3%
Volatility 1.1% 4.8% 4.6% 7.3% 4.7% 3.4% 3.1% 3.8%
Median 0.5% 1.5% 1.3% 1% 0.8% 1.3% 1.2% 0.2%
Skew − 0.04 − 0.60 − 0.61 − 0.75 − 0.56 − 3.05 − 1.80 0.31
Kurtosis 0.45 0.79 0.85 1.74 1.83 20.98 10.42 1.26
Sharpe Ratio 0.20 0.10 0.11 0.08 0.05 0.20 0.18 0.03
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with other asset classes, especially equity, tended to sharply 
increase. Note that commodity delivered equity-like perfor-
mance over the long run, albeit with significant variations in 
recent decades. Specifically, such an asset class experienced 
the best performance relative to equity and fixed income 
during times of high inflation (2001–2007), thus helping in 
mitigating the negative effects of inflation risk.

References

Asness, C., A. Frazzini, and H.L. Pedersen. 2012. Leverage aversion 
and risk parity. Financial Analysts Journal 68 (1): 47–59.

Blume, M., and I. Friend. 1975. The asset structure of individual 
portfolios and some implications for utility functions. Journal of 
Finance 30 (2): 585–603.

Britten-Jones, M. 1999. The sampling error in estimates of mean-
variance efficient portfolio weights. Journal of Finance 54 (2): 
655–671.

Choueifaty, Y., and Y. Coignard. 2008. Toward maximum diversifica-
tion. The Journal of Portfolio Management 35 (1): 40–51.

Clarke, R., R. de Silva, and S. Thorley. 2013. Risk parity, maximum 
diversification, and minimum variance: An analytic perspective. 
The Journal of Portfolio Management 39 (3): 39–53.

de Jong, M. 2018. Portfolio optimisation in an uncertain world. Journal 
of Asset Management 19 (4): 216–221.

DeMiguel, V., L. Garlappi, and R. Uppal. 2009. Optimal versus naïve 
diversification: How inefficient is the 1/n portfolio strategy? 
Review of Financial Studies 22 (5): 1915–1953.

Fama, E.F., and K.R. French. 2004. The capital asset pricing model: 
Theory and evidence. The Journal of Economic Perspectives 18 
(3): 25–46.

Gillen, B. J. 2016. Subset optimization for asset allocation. Pasadena, 
US: California Institute of Technology, Social Science Working 
Paper no. 1421.

Goyal, A., and I. Welch. 2008. A comprehensive look at the empirical 
performance of equity premium prediction. Review of Financial 
Studies 21 (4): 1455–1508.

Green, R.C., and B. Hollifield. 1992. When will mean-variance port-
folios be well diversified? Journal of Finance 47 (5): 1785–1809.

Inker, B. 2011. Dangers of risk parity. The Journal of Investing 20 
(1): 90–98.

Jobson, J.D., and B. Korkie. 1980. Estimation for Markowitz efficient 
portfolios. Journal of American Statistical Association 75 (371): 
544–554.

Jurczenko, E., T. Michel, and J. Teiletche. 2013. Generalized risk-based 
investing. SSRN Electronic Journal. https​://doi.org/10.2139/
ssrn.22059​79.

Kan, R., and G. Zhou. 2007. Optimal portfolio choice with parameter 
uncertainty. Journal of Financial and Quantitative Analysis 42 
(3): 621–656.

Kaya, H., and W. Lee. 2012. Demystifying risk parity. New York: Neu-
berger Berman LLC.

Kohler, A., and H. Wittig. 2014. Rethinking portfolio rebalanc-
ing: Introducing risk contribution rebalancing as an alternative 
approach to traditional value-based rebalancing strategies. Journal 
of Portfolio Management 40 (3): 34–46.

Laurent, S., J.V. Rombouts, and F. Violante. 2012. On the forecast-
ing accuracy of multivariate GARCH models. Journal of Applied 
Econometrics 27 (6): 934–955.

Lee, W. 2011. Risk-based asset allocation: A new answer to an old 
question? Journal of Portfolio Management 37 (4): 11–28.

Lee, W. 2014. Constraints and innovations for pension investment: The 
cases of risk parity and risk premia investing. Journal of Portfolio 
Management 40 (3): 12–19.

Leote de Carvalho, R., X. Lu, and P. Moulin. 2012. Demystifying 
equity risk–based strategies: A simple alpha plus beta descrip-
tion. Journal of Portfolio Management 38 (3): 56–70.

Lindberg, C. 2009. Portfolio optimization when expected stock returns 
are determined by exposure to risk. Bernoulli 15 (2): 464–474.

Maillard, S., T. Roncalli, and J. Teiletche. 2010. The properties of 
equally-weighted risk contributions portfolios. Journal of Port-
folio Management 36 (4): 60–70.

Markowitz, H. 1952. Portfolio selection. The Journal of Finance 7 
(1): 77–91.

Merton, R. 1972. An analytic derivation of the efficient portfolio 
frontier. Journal of Financial and Quantitative Analysis. 7 (4): 
1851–1872.

Merton, R.C. 1980. On estimating the expected return on the market. 
Journal of Financial Economics 8 (4): 323–361.

Michaud, R. 1989. The Markowitz optimization enigma: Is ‘optimized’ 
optimal? Financial Analysts Journal 45 (1): 31–42.

Qian, E. 2011. Risk parity and diversification. The Journal of Investing 
20 (1): 119–127.

Roncalli, T. 2013. Introduction to risk parity and budgeting., Financial 
mathematics series London: Chapman & Hall/CRC.

Ukhov, A.D. 2006. Expanding the frontier one asset at a time. Finance 
Research Letters 3 (3): 194–206.

Zakamulin, V. 2015. A test of covariance-matrix forecasting methods. 
Journal of Portfolio Management 41 (3): 97–108.

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Roberto Savona  is Associate Professor of Banking and Finance at the 
Department of Economics and Management, University of Brescia, 
Italy. After receiving his Ph.D. in Financial Intermediation from Uni-
versity of Udine—Italy (2002), he was visiting at the Haas School of 
Business at the University of California, Carroll School of Manage-
ment at the Boston College, Department of Statistics at the University 
of California, and European Central Bank. He served as a Member of 
the Board of Directors of the European Financial Management Asso-
ciation (EFMA) 2010–2013 and as a Member of the Steering Com-
mittee of Macro-prudential Research Network (MaRs)—European 
Central Bank 2012–2014. He was Primary Coordinator of the FP7 
European Project SYRTO funded by the EC 2013–2016. His research 
activities are focused on models of asset management, international 
finance, systemic risk, risk management, machine learning in finance 
and economics.

Cesare Orsini  graduated in Quantitative Finance from the LUISS Uni-
versity of Rome, Italy, in 2012. In 2013, he joined Epsilon SGR as a 
researcher. Since 2014, he has become a Portfolio Manager as a part 
of the Quantitative Investments Team at Epsilon SGR. Currently, he is 
a Ph.D. Candidate at the Catholic University of Milan in the Depart-
ment of Economics. His research activities are focused on asset pricing, 
empirical finance, quantitative strategies and portfolio choice.

https://doi.org/10.2139/ssrn.2205979
https://doi.org/10.2139/ssrn.2205979

	Taking the right course navigating the ERC universe
	Abstract
	Introduction
	The equal risk contribution problem
	Setting the scene
	Expanding the investment universe
	ERC tangency portfolio

	Theoretical motivations
	Expanding the investment universe
	Out-of-sample estimation error

	Empirical experiments
	Data
	ERC and portfolio competitors
	The global minimum variance portfolio
	The mean variance portfolio
	The 1n portfolio

	Comparative analysis of ERC, GMV, Markowitz and 1n Portfolios
	ERC versus Markowitz
	ERC versus GMV
	ERC versus 1n

	The ERC tangency portfolio
	Performance
	Robustness checks: bootstrap analysis and Monte Carlo simulation
	Portfolio diversification


	Conclusion
	References




