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Abstract The correlation structure across assets and

opposite tail movements are essential to the asset allocation

problem, since they determine the level of risk in a posi-

tion. Correlation alone is not informative on the distribu-

tional details of the assets. Recently introduced TEDAS—

Tail Event Driven ASset allocation approach determines

the dependence between assets at different tail measures.

TEDAS uses adaptive Lasso-based quantile regression in

order to determine an active set of negative coefficients.

Based on these active risk factors, an adjustment for

intertemporal correlation is made. In this research, authors

aim to develop TEDAS, by introducing three TEDAS

modifications differing in allocation weights’ determina-

tion: a Cornish–Fisher Value-at-Risk minimization,

Markowitz diversification rule or naı̈ve equal weighting.

TEDAS strategies significantly outperform other widely

used allocation approaches on two asset markets: German

equity and Global mutual funds.

Keywords Adaptive lasso � Portfolio optimization �
Quantile regression � Value-at-Risk � Tail events

JEL Classification C00 � C14 � C50 � C58

Introduction

Asset allocation and security selection go hand in hand

with risk management. They are not only important con-

cepts in a quantitative finance and applied statistics, but

also significant determinants for long-term portfolio con-

struction for private and institutional investors. Absence of

significant correlation among various asset classes is the

essential motivation for traditional portfolio allocation. In

reality, some strategies contradict this principle, such as the

traditional 60 equity/40 bond portfolio approach: in recent

years, the correlation between the bond market and the

stock market was 0.98 (Geczy 2014). During the Global

Financial Crisis, the Endowment Model underperformed

due to increased correlation across assets, Swensen (2009).

The risk parity strategy recommended a significant allo-

cation to bonds amidst the implementation of quantitative

easing and performed poorly because of interest rate

volatility (Kazemi 2012; Nathan 2013).

A pillar in portfolio theory, mean-variance (MV) port-

folio optimization by Markowitz (1952) proposed to study

semi-variance even though the optimization was not

straightforward given the low computation power at that

time. As computing capacities increased, later models

incorporated optimization involving higher and time-

varying moments. The mean-variance and subsequent

refined models did not perform well during volatile peri-

ods. In the case the number of assets (p) exceeds the

number of observations (n) results of Markowitz portfolios
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are not stable: Bai et al. (2009) proved that the asset return

estimate given by the Markowitz MV model was always

larger than the theoretical return and the rate of the dif-

ference was related to p/n, the ratio of the dimension to the

sample size. Jobson et al. (1979) and Jobson and Korkie

(1980) showed that the Markowitz mean-variance efficient

portfolios were highly sensitive to p/n. They suggested to

shrink the number of estimators or assets. From this point

of view, the Least Absolute Shrinkage and Selection

Operator (LASSO) (Tibshirani 1996) provides a feasible

solution and good out-of-sample results of mean-variance

portfolios, see e.g. DeMiguel et al. (2009a), Fan et al.

(2012), Yen and Yen (2014) and Fastrich et al. (2015).

Taking into consideration observed return co-movement

spikes for strong negative-return times, modelling tail

dependence can be viewed as more flexible approach to

portfolio allocation. Härdle et al. (2014) introduced a new

asset allocation strategy, Tail Event Driven Asset Alloca-

tion (TEDAS). TEDAS exploits negative co-movement of

alternative assets in the tail with a core asset to hedge

downside risk. The subset of alternative or satellite assets

performs the role of downside protection. Successful pro-

tection of the portfolio by limiting the downside risk during

volatile periods allows the portfolio returns to recover

sooner. TEDAS, with smaller drawdowns, outperforms

more traditional methods that suffer larger drawdowns

during extreme events.

TEDAS can also be viewed as an application of the

core-satellite model, given that a subset of satellite assets is

chosen from a larger universe of assets. For big data, where

the number of possible alternatives is larger than the

number of observations, the adaptive LASSO quantile

regression (ALQR) is used to pursue variable selection and

measure relations between variables at tail quantiles

simultaneously. In order to deal with changing volatility

and correlation structure problem, Dynamic Conditional

Correlation (DCC) is used. TEDAS applies Cornish–Fisher

VaR (Value-at-Risk) measure for portfolio optimization,

utilizing accordingly higher moments of distributions of

asset returns, such as skewness and kurtosis. Here, we

extend TEDAS by introducing three modifications, which

we call ‘‘TEDAS gestalts’’: TEDAS basic, TEDAS naı̈ve,

which places equal weights on every satellite asset, and

TEDAS hybrid, which uses the most common Markowitz

mean-variance rule to select the weights.

In this paper, we provide an extensive empirical analy-

sis, and we compare the performance of the TEDAS

strategies with a wide range of benchmark portfolio

strategies, applied to global mutual fund and German stock

market data. TEDAS portfolios yield robust and consistent

results with various assets, time periods, parameter fre-

quencies, and in big and small data. Differently from

Härdle et al. (2014), in the analysis we introduce, portfolio

rebalancing framework assumes incorporation of transac-

tion costs.

The rest of the paper is organized as follows. In

‘‘TEDAS—Tail Event Driven ASset allocation strategy’’

section, we introduce the framework of TEDAS. In ‘‘The

choice of satellite assets and data description’’ and ‘‘Em-

pirical results’’ sections, we apply the methods to different

markets and compare the performance between different

models. In fifth presents the conclusion and discussion. All

codes and datasets are available as Quantlets on

Quantnet (Borke and Härdle 2016).

TEDAS: Tail Event Driven ASset allocation
strategy

The basic elements of TEDAS are presented in Härdle

et al. (2014). The proposed tool set has important impli-

cations for portfolio risk management and asset allocation

decisions. Along with the basic set-up, we propose two

modifications: TEDAS naı̈ve and TEDAS hybrid.

The TEDAS strategy is based on a simple idea widely

used in practice—core-satellite approach. The core of

portfolio (or core asset) consists of passive investments that

track major market indices, e.g. the DAX30 or S&P500 (in

practice the role of core can play exchange traded fund—

ETF). Initially, the portfolio consists of the core asset only.

The core portfolio is chosen by the fund manager, and the

satellite assets are chosen by TEDAS to limit the downside

risk of the core portfolio during extreme events.

At a high level, TEDAS consists of two related stages.

The first stage is an asset selection. Portfolio constituents

are selected using the tail event approach. The tail depen-

dence of core and satellite assets is identified via an

adaptive LASSO quantile regression (ALQR), Zheng et al.

(2013). At the second stage, portfolio selection, portfolio

weights for active assets are determined.

The fund manager performs following steps at the first

stage to select portfolio constituents.

1. Consider a data vector Y 2 RT of core asset log-returns

and a matrix X 2 RT�p of satellites’ log-returns, T is a

number of all observations and number of assets in the

initial set.

2. For each period t ¼ n; . . .; T obtain empirical s-quan-

tiles q̂s ¼
def

F�1
n ðsÞ from the core log-returns’ empirical

distribution Fn, where sj¼1;...;5 ¼ ð0:05; 0:15; 0:25;

0:35; 0:50Þ, where n is equal to the width of the

moving window and p[ n.

3. Determine core asset log-return rt, set st ¼ bFnðrtÞ.
4. Select st according to the right-hand side q̂sj;t in:

rt � q̂s1;t
or q̂s1;t

\rt � q̂sj;t .
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5. Obtain the ALQR estimator by Zheng et al. (2013) for

b̂st ;kn using the observations Xt 2 Rt�nþ1;...;t�p,

Yt 2 Rt�nþ1;...;t�1

b̂adapt
st ;kn

¼ arg min
b2Rp

X
n

i¼1

qsðYt � X>
t bÞ þ knkx̂>bk1 ð1Þ

ALQR is applied to select relevant hedging assets for a

new portfolio. This technique allows simultaneously to

solve two challenges for portfolio managers. It shrinks

the high-dimensional universe of satellite assets to

potential candidates for portfolio’s constituents: the L1

penalty knkx̂>bk1 in (1) nullifies ‘‘excessive’’ coeffi-

cients. ALQR also provides information concerning

the dependence between the core portfolio and satel-

lites at different quantiles (for various s). Additional

technical details are in ‘‘Adaptive LASSO Quantile

regression (ALQR)’’ section.

6. Choose XJ
t , where J is the index set corresponding to

negative coefficients b̂adapt
st ;kn

. These assets with negative

ALQR coefficients (formula 1), i.e. assets adversely

moving with the core for chosen level of a tail event,

are constituents of a new rebalanced portfolio.

At the second stage, portfolio selection, the manager

determines portfolio weights vector bwt for assets selected

during the first stage. TEDAS offers three alternative ways

to solve this task, and we refer to them as TEDAS gestalts

(Table 1). Depending on the volatility-modelling method

and the portfolio weights’ optimization rule, three TEDAS

gestalts can be applied. The TEDAS basic gestalt employs

the dynamic conditional correlation model (DCC) to

account for time-varying covariance structure and corre-

lation shifts in returns’ covariance, see Engle (2002),

Franke et al. (2015). The weights of satellites are defined

based on the Cornish–Fischer Value-at-Risk (VaR) mini-

mization rule, Favre and Galeano (2002) (‘‘Cornish–Fisher

VaR optimization section’’).

The TEDAS naı̈ve gestalt assigns to every satellite asset

an equal portfolio weight.

The TEDAS hybrid gestalt employs the simplest

approach to estimate the covariance structure of assets’

returns, the historical covariance matrix. Portfolio weights

are calculated according to classical mean-variance opti-

mization procedure with long-only constraint (Markowitz

diversification rule), Markowitz (1952). Calculation details

are in ‘‘Mean-variance optimization procedure (Markowitz

diversification rule)’’ section.

At the second stage, the fund manager performs fol-

lowing steps.

7. Apply one of TEDAS Gestalts to XJ
t , selected on step

6, obtain vector of weights ŵt to invest in each

security.

8. Determine the realized portfolio wealth for t þ 1

Wtþ1 ¼ Wt � expðŵ>
t X

J
t Þ ð2Þ

For the construction of TEDAS portfolios, we use the

following rebalancing rules. The initial portfolio wealth is

W0 ¼ $1. If one of inequalities in step 4 holds, the fund

manager sells the core asset and buys satellite assets XJ

from step 6 in proportions, estimated on step 7. In case XJ

are not chosen, i.e. there are no adversely moving satellites,

investor keeps the cash position and the value of the

portfolio does not change in comparison with the previous

period. When none of inequalities in step 4 holds, the

manager fully invests into the core index. The rebalancing

strategy assumes that 1%1 of portfolio wealth is used to pay

transaction fees.

The choice of satellite assets and data description

We apply TEDAS strategies for core assets from two large

international stock markets: German DAX30 and American

S&P 500. Small- and middle-size companies are recog-

nized as more nimble, fast growing, and more able to adapt

to changes to technology than their bloated, plodding large

competitors. Due to these reasons, small- and mid-cap

stocks are highly attractive for portfolio managers and

investors. Academic literature counts vast number of

papers documenting and analysing outperformance of

small- and mid-cap stocks. Banz (1981) found smaller

firms (small caps) have had higher risk-adjusted fs, on

average, than larger firms. Reinganum (1981) observed

portfolios based on firm size or earnings/price ratios

experienced average returns systematically different from

those predicted by the CAPM. For an extensive literature

review concerning a size effect, we refer to, for example,

Crain (2011). Over the last decade, global and German

small and mid-caps have been relatively strong again and

outperformed large caps (Fig. 1). The existence of size

effect and the benefits of diversification (see e.g. Bender

et al. 2015) justify utilization of small- and mid-cap stocks

in portfolio construction strategies.

The empirical analysis of TEDAS application to equity

market focuses on the German stock market. The universe

of potential hedging assets consists of 123 constituents of

indices SDAX, MDAX and TecDAX—small- and mid-cap

stocks. The collected data cover 157 trading weeks from 1

January 2013 to 5 January 2016 (Source: Datastream). The

1 To define the rate, we turn to Edelen et al. (2013), who report that,

on average, the equity mutual funds in their sample incur 0.80% of

fund value annually in trading costs per unit. Commission charges

schedule, which was obtained from Barclays Stockbrokers, proves the

feasibility of such rate as well.
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performance of TEDAS strategy for German equity market

was analysed on 77 eighty-week moving windows.

The role of mutual funds in world economy has

increased in the 20 years. As of 2015, US$ 37.2 trillion was

invested in regulated open-end fund assets worldwide and

US$ 17.8 trillion in US mutual funds (Investment company

institute 2016). In addition, mutual funds account for 88%

of investment companies in total. The popularity of mutual

funds is due to their perceived safety compared to alter-

natives, notably stocks. This perception has resulted in a

situation where almost half specifically, 44.1% of US

households have participated in such funds in the end of

2015. The number of mutual funds also grows up rapidly.

The number of regulated worldwide open-ended funds

amounted 52 746 in 1999 and reached 100 494 in the end

of 2015. (European Fund and Asset Management Associ-

ation 2016). All this underlines the sheer size and the

importance of the US mutual find market which, therefore,

should provide us with an important test case for the

evaluation of the performance of TEDAS strategy and

show whether TEDAS can handle cases of big data.

The potential of diversification, an important determi-

nant for asset allocation, makes mutual funds attractive for

institutional and retail investors. In the 2015 US market,

41% of all industry assets were held by domestic equity

funds and an additional 15% by world equity funds, those

that invest significantly in shares of non-US corporations.

Moreover, Bond funds held 21% of US mutual fund,

whereas money market funds, hybrid funds and other funds

such as those that invest primarily in commodities held the

remainder (23%). Finally, it has been observed that in the

US there has been a tendency towards equity mutual funds

regarding portfolio diversification, which means increased

investment rates in foreign (non-US) markets (Investment

company institute 2016).

For our mutual funds’ study, we use the data on monthly

returns net of management commissions, which is provided

by Lipper of Thomson Reuters. Our empirical analysis uses

monthly returns on a sample of global equity mutual funds

over the 25-year period from December 1990 to December

2015 (300 monthly log-returns). We require funds to have

contiguous returns time series over the chosen testing time

period. Thus, our final data sample for TEDAS strategies

analysis include monthly returns of 739 actively managed

equity mutual funds, covering 180 moving windows with

length 120 months. Figure 2 illustrates a geographical

Table 1 TEDAS gestalts
TEDAS gestalt Dynamics modelling Weights optimization

TEDAS naı̈ve NO Equal weights

TEDAS hybrid NO Mean-variance optimization of weights

TEDAS basic DCC volatility CF-VaR optimization
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Fig. 1 Daily cumulative returns of World (upper panel) and German

(lower panel) MSCI Large Cap index (black) against MSCI Mid Cap

index (red), MSCI Small and Mid Cap/mixture index (blue) and

MSCI Small Cap index (green) from January 2006 to December 2015.

(Color figure online)
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focus assignment of the mutual funds in our testing sample,

defined by the predominant country or region of the fund’s

portfolio (mutual fund holds at least 50% of its assets in a

specific country/region). The majority of mutual funds is

concentrated on American and European markets, signifi-

cantly fewer—on Asian markets.

To compare the performance of TEDAS strategies with

the protective put hedging approach, we used information

about prices of European-style put options of DAX 30 for

period from 15 July 15 2014 to 18 December 2015 and

S&P 500 for period from October 2002 to December 2015

(Source: Datastream).

Empirical results

Results for German equity market

The comparison of the three TEDAS gestalts with the core

DAX30 index is given in Fig. 3. All three TEDAS strate-

gies demonstrate almost equal results in terms of cumula-

tive return. At the end of the analysed time span, these

strategies yield 153–159% of cumulative return taking into

account 1% of transaction fees (the cumulative returns

reach even 208–216% without the transaction costs).

We provide a comparative analysis of TEDAS perfor-

mance with three alternative widely used strategies: mean-

variance strategy, 60/40 portfolio and risk parity portfolio.

The rebalancing setting is equivalent for all benchmark and

TEDAS portfolios. The mean-variance portfolio selection

is a common benchmark for every newly introduced

asset allocation strategy. The traditional Markowitz port-

folio optimization approach as has been shown in the

previous literature has some drawbacks especially for the

case when p[ n. The portfolio formed by using the clas-

sical mean-variance approach always results in extreme

portfolio weights (Jorion 1985) that fluctuate substantially

over time and perform poorly in the sample estimation (for

example, Frankfurter et al. 1971; Simaan 1997; Kan and

Zhou 2007) as well as in the out-of-sample forecasting.

Great number of studies provide various observations

and suggestions concerning reasons driving MV opti-

mization estimate so far away from its theoretic counter-

part. Vast majority of authors believe that the reason

behind this outcome is that the ‘‘optimal’’ return is formed

by a combination of returns from an extremely large

number of assets (see e.g. McNamara 1998). Efficiency of

Markowitz optimization procedure depends on whether the

expected return and the covariance matrix can be estimated

accurately. In our comparative study, we used portfolio

covariance matrix modelled by the basic orthogonal

GARCH method to solve the dynamic Markowitz risk-re-

turn optimization problem. The orthogonal GARCH model

(MV OGARCH) was first proposed in Alexander (2001),

and is based on principal components analysis (PCA).

60/40 portfolio allocation strategy implies the investing

of 60% of the portfolio value in stocks (often via a broad

index such as S&P500) and 40% in government or other

Fig. 2 Geographical focus of mutual funds
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high-quality bonds, with regular rebalancing to keep pro-

portions steady. German market’s 60/40 portfolio is con-

structed with DAX30 and eb.rexx Government Germany

index, which contains the 25 most liquid German govern-

ment bonds with residual maturities of between 1.5 and

10.5 years.

The risk parity portfolio strategy is based on allocation

by risk, not by capital. In this case, the portfolio manager

defines a set of risk budgets and then computes the weights

of the portfolio such that the risk contributions match the

risk budgets. We employ so-called equal risk contribution

(ERC) portfolios. The idea of the ERC strategy is to find a

risk-balanced portfolio with equal risk contributions for all

assets (for details, see e.g. Maillard et al. 2010).

The comparison of cumulative returns achieved with

TEDAS naı̈ve and alternative strategies, demonstrated in

Fig. 4, shows that TEDAS performs significantly better

than other considered approaches (Table 2).

A rebalancing of the portfolio to hedge the core asset

occurred 38 times (marked with black dots in Fig. 3) out of

77 moving-window estimation periods. Table 2 summa-

rizes the performance of portfolio strategies in terms of

cumulative returns as well as in terms of risk. All present

indicators specify the TEDAS naı̈ve portfolio strategy as

the most attractive for investors: it reaches 257% of

cumulative return providing at the same time the highest

excess return, 0.46%, for the extra volatility. In general

TEDAS strategies show better risk-adjusted returns than all

Jun14 Sep14 Jan15 Jun15 Oct15 Jan16
Time

1

1.5

2

2.5

3
C

um
ul

at
iv

e 
re

tu
rn

Jun14 Sep14 Jan15 Jun15 Oct15 Jan16
Time

1

1.5

2

2.5

3

Jun14 Sep14 Jan15 Jun15 Oct15 Jan16
Time

1

1.5

2

2.5

3

Jun14 Sep14 Jan15 Jun15 Oct15 Jan16
Time

-0.2

-0.1

0

0.1

0.2

lo
g-

re
tu

rn

Jun14 Sep14 Jan15 Jun15 Oct15 Jan16
Time

-0.2

-0.1

0

0.1

0.2

Jun14 Sep14 Jan15 Jun15 Oct15 Jan16
Time

-0.2

-0.1

0

0.1

0.2

Fig. 3 Weekly cumulative returns (upper panel) and log-returns

(lower panel) of portfolio strategies with the following colour code:

DAX30 index (black), TEDAS basic (red), TEDAS naı̈ve (blue) and

TEDAS hybrid (green) strategies applied to German stocks from 15

July 2013 to 5 January 2016. (Color figure online)
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Fig. 4 Weekly cumulative returns (upper panel) and log-returns

(lower panel) of portfolio strategies with the following colour code:

TEDAS naı̈ve (blue), MV OGARCH (magenta), 60/40-portfolio

(violet) and ERC (orange) applied to German stocks from 15 July

2013 to 5 January 2016. (Color figure online)
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other analysed benchmarks and have comparatively the

same level of risk. Based on results of the Wilcoxon

signed-rank test (Table 3), we find three TEDAS strategies

do not significantly differ from each other, but the differ-

ence from other benchmarks is statistically significant.

Hence, TEDAS strategies performance is mainly driven by

the asset selection decision rather than the portfolio

selection decision.

Figure 5 (upper panel) shows the distribution of the size

of hedging subset XJ , equal the number of assets with

negative ALQR b-coefficients for different quantiles. In

most of cases, the number of selected satellites is less than

five, which indicates the practical applicability of this

strategy and the simplicity of portfolio rebalancing. Fur-

thermore, we analyse how frequently certain stocks were

selected as satellites. The results are presented in Fig. 5

(lower panel). More frequently small stocks (first 50 stocks

in the graph) and stocks of high-tech companies (last 30

stocks) hedge the core. This conclusion is also confirmed

by Table 4, which lists the most frequently used satellites

from German stocks. The majority of them belongs to

small capitalization companies.

Figure 6 shows the densities of the returns of stocks

listed in Table 4, the core asset DAX30 and, for compar-

ison, the normal distribution. Most of satellites has lep-

tokurtic and left-skewed distributions. More frequently

Table 2 Strategies risk and performance measures overview: German stocks sample

TEDAS basic TEDAS naı̈ve TEDAS hybrid ERC 60/40 portfolio MV OGARCH DAX30

Volatility 0.03 0.03 0.03 0.02 0.02 0.02 0.03

Skewness -0.34 0.48 -0.34 0.09 -0.29 0.30 -0.22

Kurtosis 8.44 5.29 8.27 3.27 2.80 2.66 2.84

VaR 5% -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.05

Expected shortfall 5% -0.06 -0.04 -0.06 -0.04 -0.04 -0.04 -0.06

Sharpe ratio 0.40 0.46 0.40 0.26 0.06 0.17 0.05

Maximum drawdown 0.12 0.07 0.12 0.08 0.14 0.10 0.21

Cumulative return 2.57 2.59 2.53 1.58 1.08 1.38 1.11

Table 3 Difference between TEDAS and benchmark strategies: Wilcoxon test p values

TEDAS basic TEDAS naı̈ve TEDAS hybrid ERC 60/40 portfolio MV OGARCH DAX30

TEDAS basic 1.00 0.88 0.52 0.00 0.00 0.00 0.00

TEDAS naı̈ve 0.88 1.00 0.68 0.00 0.00 0.00 0.00

TEDAS hybrid 0.52 0.68 1.00 0.00 0.00 0.00 0.00
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Fig. 5 Frequency of the number of assets in hedging subset XJ (upper panel) and selected assets (lower panel) for 4 different quantiles (German

stocks sample)
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used satellites show stronger deviations from the Gaussian

distribution. This result corresponds to previous findings,

e.g. Lee et al. (2006) demonstrate that the inclusion of

assets with skewed and leptokurtic returns enhances overall

portfolio returns. These assets provide the opportunity of

downside protection, especially during periods of high

volatility. Detailed information on the characteristics of

returns distribution is collected in Table 5, pointing out the

heavy tailed properties of distributions. With aim to

investigate the co-movement of satellites’ returns, we

compare correlations of returns separately for weeks on

which core asset moved up or down (Table 6). As it was

expected, correlations were slightly stronger during the

bear market periods. However, most small-cap stocks’

pairs exhibit low correlations.

All TEDAS gestalts, applied to the universe of German

stocks, outperform both traditional benchmark strategies,

such as Markowitz rule or 60/40 and more sophisticated

ones, such as the ERC model. Our analysis leads us to

believe that using the ALQR technique delivers good

results in reducing the dimensionality of the asset universe

for more effective portfolio allocation.

Results for global mutual funds

Since the number of satellites after filtering (p ¼ 739) is

very large, the length moving window for mutual funds

sample is adjusted to 120 months. We allocated 1 unit of

money in December 2000 using each strategy and

Table 4 The most frequently

selected satellites—German

Stocks

Company name Short ticker Index Industry Frequency

Sartorius AG Vz. SRTX TecDAX Industrial Machinery 20

Celesio AG CLS1X MDAX Drug Retailers 13

Hawesko Holding AG HAWX SDAX Specialty Retailers 9

Patrizia Immobilien AG P1ZX SDAX Real Estate Hold, Dev 5

GFK GFKX SDAX Media Agencies 3

Grenke AG GLJ SDAX Business Support Services (IT) 3

Kabel Deutschland Holding AG. KD8X MDAX Broadcast and Entertain 3
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Fig. 6 The probability density functions of the distributions of

weekly returns for the main 7 satellite German stocks with the

following colour code: SRTX (red), CLS1X (orange), HAWX

(amber), P1ZX (light green), GFKX (green), GLJX (light blue),

KD8X (blue) and DAX30 (black). A normal distribution with the

same mean and standard deviation as the returns on SRTX (red) is

displayed as a histogram in the background. The observation period is

from 1 January 2013 to 5 January 2016. (Color figure online)

Table 5 Descriptive statistics

on continuously compounded

weekly returns for 10 most

frequent satellites—German

stocks

SRTX CLS1X HAWX P1ZX GFKX GLJX KD8X

Maximum 0.16 0.18 0.11 0.12 0.08 0.08 0.13

Upper percentile 0.05 0.02 0.02 0.07 0.04 0.05 0.03

Median 0.01 0.00 0.00 0.01 0.00 0.01 0.00

Mean 0.01 0.00 0.00 0.01 0.00 0.01 0.00

Lower percentile -0.03 -0.02 -0.02 -0.04 -0.05 -0.04 -0.02

Minimum -0.09 -0.15 -0.09 -0.13 -0.14 -0.09 -0.09

Volatility 0.04 0.03 0.02 0.04 0.03 0.03 0.02
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calculated the 180 monthly cumulative returns until

December 2015.

As in the previous analysis, the outcomes of the three

TEDAS strategies are compared. From the end of 2000 to

the end of 2015, the TEDAS naı̈ve yields the highest return,

1193%. TEDAS basic and TEDAS hybrid set-ups show

similar returns of 1184 and 1175%, respectively (Fig. 7).

In order to check whether TEDAS is significantly better

than current popular methods, we employed the same four

benchmarks as in the case of German stocks. We con-

structed a 60/40 portfolio using S&P 500 and the Barclays

US treasury index. By comparing the TEDAS hybrid and

the benchmarks, we can tell that TEDAS demonstrates

superior results. The 60/40 strategy and ERC portfolios

have high correlation with the S&P 500, and these three

gave less than 150% of cumulative return over 15 years of

investment (Fig. 8). Signed-rank test p values (Table 7) are

all smaller than 5%, that indicates significant difference of

TEDAS strategies from benchmark portfolios, which lies in

line with German stocks sample results. Table 8 documents

an investigation of riskiness of strategies, proving that

higher absolute performance of TEDAS approach is sup-

plemented with better risk-adjusted performance metrics.

Figure 9 shows the frequency of the number of selected

mutual funds for four quantiles (0.05, 0.15, 0.25 and 0.35).

Unexpectedly, the number of selected satellites in most

cases is less than five, which is similar with the German

stocks data, which specifies a high efficiency of ALQR

method as a dimension shrinkage technique. It must be

noted that for different levels of tail events TEDAS port-

folio constituents differ significantly (Fig. 9 in the lower

panel), illustrating our assumption that linearly connected

assets are not necessary dependent in tails along with

varying dependence for different tail events. We analyse

geographical focus of frequently used mutual funds in

TEDAS portfolios in Table 9. Since our core asset is US

based, a quite evident result is that all TEDAS constituents

are mostly global or European market-orientated funds,

indicating benefits of international diversification (see

Driessen and Laeven 2007).

The investigation of distributional characteristics for

separate satellites-mutual funds is provided in Fig. 10

supplemented with Table 10. Similar with German equity

market, mutual funds have more weight around zero and

negatively skewed. Kurtosis in most cases exceeds 150,

increasing tail risk (see Table 10). Significant deviation

Table 6 Pairwise satellite

stocks’ correlations of returns

separately for positive (upper

triangular matrix) and negative

(lower triangular matrix)

market-movement days, as

defined by returns on DAX30

SRTX CLS1X HAWX P1ZX GFKX GLJX KD8X

SRTX 0.10 -0.08 0.12 -0.08 -0.24 0.04

CLS1X 0.00 0.10 -0.22 -0.07 -0.11 -0.06

HAWX 0.16 -0.07 -0.06 0.08 0.11 -0.07

P1ZX 0.11 -0.09 0.09 0.05 0.20 -0.02

GFKX 0.08 0.03 0.19 0.20 0.33 0.00

GLJX 0.12 -0.16 0.31 0.32 0.24 0.15

KD8X -0.16 0.03 0.01 0.03 0.01 0.11
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Fig. 7 Monthly cumulative returns (upper panel) and log-returns

(lower panel) of portfolio strategies with the following colour code:

S&P 500 (black), TEDAS basic (red), TEDAS naı̈ve (blue) and

TEDAS hybrid (green) applied to mutual funds from December 2000

to December 2015. (Color figure online)
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from normal distribution can be explained by active man-

agement of mutual funds, which leads to a so-called alpha

benefit, that is, providing an abnormal return adjusted by

risk in the CAPM framework (see e.g. Lehmann and

Modest 1987; Matallin-Saez 2007). An active management

of mutual funds can be a potential explanation for a sig-

nificantly stronger co-movement of returns than on German

stock market, especially during the months with negative

dynamics (Table 11).

As an additional robustness test we compare TEDAS

strategy with a well-known hedging strategy—protective

put (PP). The basic idea of such strategy is that the holder

of a security buys a put option to guard against the loss in

case the price of the underlying asset drops. In our PP

strategy setting, we assume that the investor receives back

at least the investment into the core asset, which means the

strike price for the option contract is equal to the spot price

of the underlying asset—TEDAS core index—in the

beginning of investment period. For German equity data-

set, we used European-type put option on the core asset—

DAX30 index with maturity date in the end of December

2015. In case with global mutual funds dataset, seven

different consecutive European-style options hedge the

core—S&P 500 index. Maturity varies from 1 year to 3

2000 2004 2008 2012 2016

Time

0

5

10

15
C

um
ul

at
iv

e 
re

tu
rn

2000 2004 2008 2012 2016

Time

0

5

10

15

2000 2004 2008 2012 2016

Time

0

5

10

15

2000 2004 2008 2012 2016

Time

-0.3

-0.2

-0.1

0

0.1

lo
g-

re
tu

rn

2000 2004 2008 2012 2016

Time

-0.3

-0.2

-0.1

0

0.1

2000 2004 2008 2012 2016

Time

-0.3

-0.2

-0.1

0

0.1

Fig. 8 Monthly cumulative returns (upper panel) and log-returns

(lower panel) of portfolio strategies with the following colour code:

TEDAS naı̈ve (blue), MV OGARCH (magenta), 60/40-portfolio

(violet) and ERC (orange) applied to mutual funds from December

2000 to December 2015. (Color figure online)

Table 7 Difference between TEDAS and benchmark strategies: Wilcoxon test p values

TEDAS basic TEDAS naı̈ve TEDAS hybrid ERC 60/40 portfolio MV OGARCH S&P500

TEDAS basic 1.00 0.77 0.91 0.00 0.00 0.00 0.00

TEDAS naı̈ve 0.77 1.00 0.80 0.00 0.00 0.00 0.00

TEDAS hybrid 0.91 0.80 1.00 0.00 0.00 0.00 0.00

Table 8 Strategies risk and performance measures overview: mutual funds sample

TEDAS basic TEDAS naı̈ve TEDAS hybrid ERC 60/40 portfolio MV OGARCH S&P500

Volatility 0.03 0.03 0.03 0.05 0.02 0.04 0.06

Skewness 0.34 0.28 0.35 -1.60 -1.06 -0.03 -0.91

Kurtosis 4.52 4.20 4.52 8.60 6.80 3.02 7.03

VaR 5% -0.02 -0.03 -0.02 -0.09 -0.03 -0.05 -0.10

Expected shortfall 5% -0.04 -0.05 -0.04 -0.13 -0.04 -0.07 -0.15

Sharpe ratio 0.51 0.50 0.51 0.04 0.06 0.14 0.04

Maximum drawdown 0.14 0.16 0.14 0.58 0.24 0.39 0.64

Cumulative return 11.84 11.94 11.75 1.38 1.19 2.52 1.44
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Table 9 The most frequently

selected satellites—mutual

funds

Company name Short ticker Geographical focus Frequency

Swedbank Robur Ethica Global SWESVGB Global 9

ESPA Stock Vienna A EUR ESPASEV Austria 8

Lloyds Investment European GBP TSBEURI Europe exc UK 8

Oddo Immobilier CR-EUR ODDIMMC Europe 8

UTI Mastershare Unit Scheme-Income UPNGFAD India 5

Sydinvest Europa Ligeveagt & Value KL SYIEULVKL Europe 3

Lloyds Investment International GBP TSBITEI Global 2

Petercam L Equities Opportunity B PAEQOPP LX Global 2

Pioneer Funds Austria—Asia Stock A PACFSTK Asia Pacific 2
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Fig. 9 Frequency of the number of assets in hedging subset XJ (upper panel) and selected assets (lower panel) for 4 different quantiles (mutual

funds sample)
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Fig. 10 The probability density functions of the distributions of

weekly returns for the main 10 satellite mutual Funds with the

following colour code: ORBOPEF (red), SWESVGB (orange),

ESPASEV (amber), TSBEURI (light green), ODDIMMC (green),

UPNGFAD (light blue), SYIEULVKL (blue), TSBITEI (dark blue),

PAEQOPP LX (purple), PACFSTK (violet) and S&P500 (black). A

normal distribution with the same mean and standard deviation as the

returns on SWESVGB (orange) is displayed as a histogram in the

background. The observation period is from December 1990 to

December 2015. (Color figure online)
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years, and the hedging put option was chosen based on

appropriate strike price of the option contract available in

the market. Cumulative returns of PP strategies include

prices of option contracts. Figure 11 exhibits comparison

results of PP approach with TEDAS naı̈ve strategy for both

samples: German stocks and mutual funds. It is clear that

for our samples and chosen testing periods, protective put

strategy underperforms in comparison with TEDAS port-

folio as well as with other benchmark portfolios.

Table 11 Pairwise satellite

stocks’ correlations of returns

separately for positive (upper

triangular matrix) and negative

(lower triangular matrix)

market-movement days, as

defined by returns on S&P500

1 2 3 4 5 6 7 8 9 10

1 ORBOPEF 0.09 0.14 -0.05 0.10 0.07 0.13 -0.06 0.26 0.12

2 SWESVGB 0.01 0.04 0.00 0.02 0.11 0.05 -0.00 0.08 0.06

3 ESPASEV 0.27 0.66 0.07 0.05 0.05 0.10 0.06 0.26 0.09

4 TSBEURI 0.13 0.83 0.78 0.06 -0.02 0.03 1.00 0.14 0.09

5 ODDIMMC 0.28 0.62 0.76 0.70 0.18 0.05 0.04 0.18 0.09

6 UPNGFAD 0.13 0.48 0.52 0.57 0.49 0.05 -0.04 0.31 0.32

7 SYIEULVKL 0.12 0.67 0.63 0.76 0.66 0.42 0.02 0.18 0.08

8 TSBITEI 0.13 0.78 0.70 0.82 0.56 0.52 0.66 0.11 0.08

9 PAEQOPP LX 0.08 0.64 0.74 0.75 0.75 0.46 0.69 0.58 0.41

10 PACFSTK 0.10 0.26 0.20 0.24 0.16 0.22 0.18 0.14 0.20

2001 2005 2009 2013 2017

Time

1

2

3

4

5

6

7

8

9

10

11

12

C
um

ul
at

iv
e 

re
tu

rn

Jun14 Sep14 Jan15 Jun15 Oct15 Jan16

Time

1

1.5

2

2.5

3

C
um

ul
at

iv
e 

re
tu

rn

Fig. 11 Cumulative returns of TEDAS naı̈ve (blue), core index (black) and PP (purple) strategies applied to German stocks sample from 15 July

2014 to 18 December 2015 (left) and mutual funds from October 2002 to December 2015 (right). (Color figure online)

Table 10 Descriptive statistics on continuously compounded monthly returns of satellites—mutual funds

Maximum Upper percentile Median Mean Lower percentile Minimum Volatility

ORBOPEF 0.10 0.03 0.00 0.01 -0.02 -0.11 0.02

SWESVGB 0.19 0.08 0.01 0.01 -0.06 -0.25 0.06

ESPASEV 0.17 0.07 0.01 0.00 -0.08 -0.45 0.07

TSBEURI 0.14 0.07 0.01 0.01 -0.06 -0.31 0.06

ODDIMMC 0.16 0.06 0.01 0.00 -0.06 -1.60 0.11

UPNGFAD 0.33 0.10 0.00 0.00 -0.12 -0.57 0.10

SYIEULVKL 0.18 0.07 0.00 0.00 -0.06 -1.37 0.10

TSBITEI 0.11 0.06 0.01 0.00 -0.05 -0.18 0.04

PAEQOPP LX 0.15 0.06 0.01 0.01 -0.05 -0.30 0.05

PACFSTK 1.56 0.07 0.00 0.00 -0.08 -0.25 0.11
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Conclusion

This study represents an extensive empirical analysis of the

performance of asset allocation strategies based on the

TEDAS approach applied to global mutual funds and

German stocks. TEDAS focuses on the co-movement of

the core and the universe of satellite assets during extreme

events. The degree of extremeness is defined by empirical

quantile of returns distribution. Reduction in the universe

of satellite assets to a manageable subset and at the same

time having the properties of negative correlation with the

core during extreme event is an innovative approach in

asset allocation.

The main contribution of this paper is to demonstrate the

practical significance of the TEDAS tool set for both

institutional and private investors in various settings. We

conducted an empirical study on the performance of

TEDAS strategy applied to multiple configurations of core

and satellites. TEDAS incorporates ‘‘least absolute

shrinkage and selection’’ which does variable selection and

shrinks noise coefficients to zero and simultaneously dis-

closes causal relationships between tail events of the

benchmark asset and the covariate hedge funds returns in

the high-dimensional framework. TEDAS selects portfolio

weights through the minimization of the portfolio objective

risk function modelled as the variance–covariance Value-

at-Risk adjusted for higher portfolio return distribution

moments such as skewness and kurtosis via the Cornish–

Fisher expansion; the variance–covariance return structure

is allowed to be time-varying and is modelled with the

dynamic conditional correlation (DCC) approach to cap-

ture the effect of possible asymmetric volatility clustering.

The results of three modifications of TEDAS adopted in

this study are robust. Nevertheless, there is clearly room for

further additional research. Theory says that TEDAS basic

and TEDAS hybrid should perform better than TEDAS

naı̈ve. However, we do not observe it in our empirical

study. This finding lies in line with previous researches:

e.g. DeMiguel et al. (2009b) demonstrated underperfor-

mance of fourteen MV models in comparison with 1/

N rule. Possible solution to such issue could be, for

instance, incorporation of time-varying modelling of higher

portfolio moments as in Ghalanos et al. (2015).

The testing of TEDAS strategy for global mutual funds

and German equity data leads to conclusion that TEDAS is

meaningful for geographically different markets (global

and Germany), using weekly and monthly returns as well

as for different levels of dimensionality of the assets uni-

verse. This paper demonstrates the power of the TEDAS

strategy for different asset markets, such as equity, mutual

funds and hedge funds (Härdle et al. (2014)). Furthermore,

compared with four conventional benchmark allocation

approaches, TEDAS cumulative returns are significantly

higher. Investigation of risk-adjusted TEDAS returns also

demonstrates better results than other benchmark

strategies.

Technical Appendix

Adaptive LASSO Quantile regression (ALQR)

Introduced in Bassett and Koenker (1978) quantile

regression (QR) estimates conditional quantile functions–

models in which quantiles of the conditional distribution of

the response variable are expressed as functions of

observed covariates (see Koenker and Hallock 2001).

L1-penalty is considered to nullify ‘‘excessive’’ coeffi-

cients (Belloni and Chernozhukov 2011). Simple lasso-

penalized QR optimization problem is:

b̂s;k ¼ arg min
b2Rp

X
n

i¼1

qsðYi � X>
i bÞ þ kkbk1 ð3Þ

The adaptive Lasso in Zou (2006) yields a sparser solution

and is less biased. Using this result, Zheng et al. (2013)

replaced L1-penalty by a re-weighted version:

b̂adapt
s;kn

¼ arg min
b2Rp

X
n

i¼1

qsðYi � X>
i bÞ þ knkx̂>bk1 ð4Þ

here s 2 ð0; 1Þ is a quantile level, qsðuÞ ¼ ufs� Iðu\0Þg
piecewise loss function, kn regularization parameter.

Weights x̂ ¼ 1=jb̂initj, b̂init is obtained from (3). In TEDAS

set-up, Y 2 Rn represents core log-returns (DAX or

S&P500 indices) and X 2 Rn�p—satellites’ log-returns

(German stocks or mutual funds), p[ n. The choice of the

regularization parameter is critical. In the quantile regres-

sion literature, two criteria are used the Bayes information

criterion (BIC) (Schwarz 1978; Lee et al. 2014) and the

cross-validation criterion (e.g. Belloni and Chernozhukov

2011; Zou 2006). In TEDAS application, BIC is applied to

choose kn parameter.

Cornish–Fisher VaR optimization

A modification of VaR via the Cornish–Fisher (CF)

expansion (Cornish and Fisher 1960) improves its precision

adjusting estimated quantiles for non-normality. To obtain

asset allocation weights, the following VaR-minimization

problem is solved (for details, see Favre and Galeano 2002;

Härdle et al. 2014):
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minimize
w2Rd

Wtf�qaðwtÞ � rpðwtÞg

subjectto w>
t l ¼ lp;w

>
t 1 ¼ 1;wt;i � 0

ð5Þ

here Wt ¼
def

W0 �
Qt�1

j¼1 w
>
t�jð1 þ rt�jÞ, ~w, W0 initial wealth,

r2
pðwÞ ¼

def
w>
t Rtwt,

qaðwtÞ ¼
def

za þ ðz2
a � 1Þ SpðwtÞ

6
þ ðz3

a � 3zaÞ
KpðwtÞ

24

� ð2z3
a � 5zaÞ

SpðwtÞ2

36
;

ð6Þ

here SpðwtÞ is skewness of the portfolio, KpðwtÞ excess

kurtosis of the portfolio, za Nð0; 1Þ a-quantile. If SpðwtÞ,
KpðwtÞ are zero, then the problem reduces to the Markowitz

case.

Mean-variance optimization procedure (Markowitz

diversification rule)

Mean-variance optimization procedure is based on four

inputs: the weights of total funds invested in each security

wi; i ¼ 1; . . .; d, the expected returns l approximated as

averages r, volatilities (standard deviations) ri associated

with each security and covariances rij; j ¼ 1; . . .; d; i 6¼ j

between returns. Portfolio weights wi are obtained from the

quadratic optimization problem, see Brandimarte (2006,

p. 74)

minimize
w2Rd

r2
pðwtÞ ¼

def
w>
t Rwt

subjectto w>
t l ¼ rT ;

X
d

i¼1

wi;t ¼ 1;

wi;t � 0

ð7Þ

where R 2 Rd�d is the covariance matrix for d portfolio

asset returns and rT is the ‘‘target’’ return for the portfolio

assigned by the investor.
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Franke, J., W.K. Härdle, and C.M. Hafner. 2015. Statistics of

Financial Markets: An Introduction, 4th ed. Berlin: Springer.

Frankfurter, G.M., H.E. Phillips, and J.P. Seagle. 1971. Portfolio

Selection: The Effects of Uncertain Means, Variances and

Covariances. Journal of Financial and Quantitative Analysis 6:

1251–1262.

Ghalanos, A., E. Rossi, and G. Urga. 2015. Independent Factor

Autoregressive Conditional Density Model. Econometric

Reviews 34(5): 594–616.

Geczy, C. 2014. The New Diversification: Open Your Eyes to

Alternatives. Journal of Portfolio Management. doi:10.3905/

jpm.2014.40.5.146.
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