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ABSTRACT Both of the building blocks of the Treynor ratio (TR), the expected return and the

portfolio beta, depend on the investment horizon. This raises a natural question: how to com-

pare two portfolios using TR over different horizons? Previous studies show that there may be a

ranking reversal. That is, one portfolio may look attractive at a short horizon but not at a longer

horizon. We theoretically show that the ranking reversal is due to the compounding of simple

returns. We propose to calculate the TR using log-returns, not simple returns. Since the multi-

period log-returns are additive, there is no ranking reversal. We empirically corroborate the

theory using portfolio of bonds, large and small stocks. Using robust bootstrapped estimates,we

are the first to provide TR of several popular test assets over a long horizon (up to 30 years).
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INTRODUCTION
‘‘Don’t put all your eggs in one basket’’; that

is, through portfolio diversification one

achieves the best risk-return tradeoff. This is

the guiding principle of asset allocation. This

principle has led to a growing literature of

performance metrics. For example, the
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Sharpe ratio (Sharpe, 1966) trades off

expected excess return for risk measured by

volatility. The Sortino ratio (Sortino and

Price, 1994) is similar to the Sharpe ratio

where the risk depends on the downside

deviation. Omega ratio (Keating and

Shadwick, 2002) and Kappa ratio (Kaplan

and Knowles, 2004) measure risk by the

lower partial moments of excess returns. The

implication of the metrics is simple: the

higher the better. That is, investors should

allocate assets in portfolios with the highest

Sharpe, Sortino, Omega and Kappa ratios.

Another such metric is the Treynor ratio

(TR). In this article, we analyze the Treynor

ratio’s implications for asset allocation.

Jack Treynor was one of the first to derive

a performance metric that depended on the

risk-return profile of a portfolio (Treynor,

1965). He posed a simple question: how to

evaluate portfolio performance with the

market effect subtracted? The result is the

TR:

TR hð Þ ¼ E R hð Þ½ � � Rf hð Þ
b hð Þ : ð1Þ

The term E R hð Þ½ � is the expected

portfolio return; the term Rf hð Þ is the risk-

free rate, and the term b hð Þ is the portfolio

beta. We write the three terms as a function

of the investment horizon h to emphasize

that each term is horizon dependent. For

example, E R 5ð Þ½ � is the 5-year expected

return for an investment horizon of 5 years.

The horizon dependence of the numerator

E R hð Þ½ � � Rf hð Þ is natural – we anticipate

the expected returns to increase with the

investment horizon. Although understudied,

the market risk, as measured by b, is also

horizon dependent (Levhari and Levy, 1977).

As a result, the TR is horizon dependent

as well (Levhari and Levy, 1977; Hodges et al,

2002).

To understand the impact of the

investment horizon, consider the following

example. Jane, a 50-year-old investor, is

looking to invest in two funds: VTSMX

(Vanguard Total Stock Market Index Fund)

and NAESX (Vanguard Small Capitalization

Index Fund). She is 15 years from

retirement. Figure 1 shows the b (calculated

by Morningstar) for the two funds across

different horizons. For all horizons, NAESX

has a higher b than VTSMX. This result is

expected. After all, NAESX is weighted

heavily by small cap stocks, and VTSMX is

Figure 1: Morningstar b across different horizons for two funds: VTSMX (Vanguard Total Stock Market Index
Fund) and NAESX (Vanguard Small Capitalization Index Fund) as of August 19, 2015.
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weighted heavily by large cap stocks.

Additionally, since VTSMX represents the

overall market, it has a b of one across all

horizons.

Figure 2 shows the TR across different

horizons. Due to the 15-year investment

horizon, Jane finds it optimal to invest in

NAESX. Her choice is different from

another investor John who is 5 years from

retirement. Since the TR of VTSMX is

higher than NAESX at a 5-year horizon,

John would optimally choose VTSMX. That

is, both Jane and John choose differently.

The difference in choice is not because the

inherent risky of the two funds. The

difference is simply due to horizon. Hodges

et al (2002) lucidly capture the problematic

implications:

Betas and Treynor ratios computed from

annual returns will not be valid for long-run

investors.

In this paper, we theoretically explain the

different choices by Jane and John. After the

explanation, we offer a solution that resolves

the undesirable effect of horizon on the TR.

Our solution is deceivingly simple. We

suggest to compute the TR using log-returns

– not simple returns.

Log-returns provide a solution by

addressing the problem at its mathematical

root. On the one hand, when one uses simple

returns, the h-year multi-period return,

R hð Þ; aggregates multiplicatively. The

multiplicative feature causes the expected

excess return, the beta and the TR in turn to

depend on the horizon in a nonlinear

fashion. On the other hand, if one uses log-

returns, the multi-period return aggregates

additively. The additive feature causes the

expected excess return to increase linearly

with the horizon and the beta to be

independent of the horizon. Thus, the TR

increases linearly with the horizon, which

eliminates the ranking reversal.

This study makes three main

contributions. First, it provides a theoretical

model showing the effect of horizon on both

the beta and the TR. Levhari and Levy

(1977) were the first to show the adverse

effect of horizon on the TR. Hodges et al

(2003) empirically corroborate their theory.

Both of these studies measure TR using

simple returns. As far as we know, we are the

Figure 2: Treynor ratio across different horizons for two funds: VTSMX (Vanguard Total Stock Market Index Fund)
and NAESX (Vanguard Small Capitalization Index Fund) as of August 19, 2015.
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first to both theoretically and empirically

document the effect of horizon on the TR

calculated using log-returns. Specifically, we

show that the undesirable effect of TR is

overcome when the TR is calculated using

log-returns. That is, if both Jane and John

were to look at TR calculated using log-

returns, then they both would make the same

choice.

The second contribution concerns our

empirical analysis. Using bootstrapping with

replacement, we empirically test the theory

using large cap, small cap and corporate bond

returns. The data set is the same as the one

used by Hodges et al (2002). We are the first

to provide TR of several popular test assets

over a long horizon (up to 30 years). Taken

together, these two contributions show how

log-returns eliminate the undesirable effect of

horizon on the TR. The third contribution

concerns the cross section of TR. Consistent

with Hodges et al (2002), we show that

corporate bonds have the highest TR across

all horizons.

The implications of our study are

particularly useful for long horizon investors

like Jane. Particularly, we explicitly indicate

how the TR (calculated using simple returns)

leads to a wrong choice by Jane. The

implications of our study also concern the

portfolio composition of target-date

retirement funds (TRF). Typically, the TRF

portfolio becomes more conservative with

age. To be more specific, consider the

Vanguard Target Retirement 2045 Fund

(VTIVX). Even though corporate bonds

have the highest TR, the allocation to bonds

is less than 10% and the allocation to equity is

90%. In fact, all long-term TRFs

overwhelmingly overweigh equities relative

to bonds. Based on the TR performance

metric, this result is puzzling.

The paper proceeds as follows. In

Section ‘‘Theoretical model’’, we

theoretically clarify the effect of horizon on

the TR using both simple and log-returns. In

Section ‘‘Empirical test of the model’’, we

empirically corroborate our theory. Finally,

in Section ‘‘Conclusion’’, we provide

concluding remarks.

THEORETICAL MODEL
There are three traded assets at time t: a stock

with price PS(t), a market index with price

PM(t), and a money market account with

price PB(t). The h-period log changes in both

the stock price and the market are composed

of independent and normally distributed

increments:

LnPi t þ hð Þ � LnPi tð Þ ¼ li �
1

2
r2
i

� �
h

þ ri
Xn¼h

n¼1

ei t þ nð Þfori 2 S;Mf g

ð2Þ

The random variables eS tð Þ and eM tð Þ are

standard normal with mean zero, variance

one and correlation q.1 The parameters lS
and lM are the instantaneous drift rates of the

stock and the market index, while parameters

rS and rM are the instantaneous volatilities.

Additionally, we assume that the risk-free

rate is constant:

LnPB t þ hð Þ � LnPB tð Þ ¼ rf h: ð3Þ

Then h-period simple return RS
i hð Þ and

the log-return rLi hð Þ are

RS
i hð Þ � Pi hð Þ=Pi 0ð Þ � 1 and rLi hð Þ

� LnPi hð Þ � LnPi 0ð Þfori 2 S;M ;Bf g:
ð4Þ

When the horizon h is small, slight algebra

shows that RS
i hð Þ � rLi hð Þ. However, the

approximation gets worse with horizon. The

worsening of the approximation can be

better understood by analyzing the first two

moments of the simple and log-returns.2 The

expectation, the variance and the covariance

of the simple return depend nonlinearly on

the horizon h. That is, the statistical

properties of the simple returns, ironically,

are not so simple. The statistical properties of

the log-returns, on the other hand, are
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considerably simpler. The first two moments

of the log-returns are linear functions of the

horizon h:
With the expression for the moments at

bay, we define the TR using simple return as

TRS hð Þ � E RS hð Þ½ � � RB hð Þ
bS hð Þ

; ð5Þ

and the TR using log-return as

TRL hð Þ �
E rS hð Þ½ � � rB hð Þ þ V rS hð Þ½ �

2

bL hð Þ
; ð6Þ

where the betas are defined as

bS hð Þ ¼ COV RS hð Þ;RM hð Þ½ �
V RM hð Þ½ � and

bL hð Þ ¼ COV rS hð Þ; rM hð Þ½ �
V rM hð Þ½ � :

ð7Þ

The variance term in the numerator of

Eq. 6 is non-traditional. The term is

effectively a convexity adjustment that adjusts

for the differences in compounding between

simple and log-returns.3

After substituting the germane moments

in Eqs. 5 and 6, the TRS hð Þ becomes

and the TRL hð Þ becomes

TRL hð Þ ¼ h�
lS � rf
� �

rM
qrS

¼ h� TRL 1ð Þ:

ð9Þ

Equation 8 shows that TRS hð Þ depends

nonlinearly on the horizon h: The

nonlinearity causes non-monotonicity in

the TR as evinced in the introductory

example.4 Much simpler, Eq. 9 avoids the

nonlinearity. TRL hð Þ changes linearly with

the horizon: TRL hð Þ is a mono-tonic

function of the horizon, and no ranking

reversal occurs.

To understand the effect of horizon,

consider the TR of large and small cap stocks

in Figure 3. We use the large and small cap

stocks to be consistent with Hodges et al

(2002).5 First, take the case of TR calculated

using simple returns (dark filled columns).

Upon inspection, the ranking reversal is

clear. Large stocks underperform small stocks

for a horizon up to 4 years. In fact, the

magnitude of underperformance decreases

with horizon, so much so that it eventually

turns into overperformance. Now consider

the case of TR calculated using log-returns

(gray filled columns). There is no ranking

reversal. Large stocks underperform small

stocks for any horizon – there is no ranking

ambiguity. The magnitude of the

underperformance changes linearly with

horizon.

We conclude this section by highlighting

the theoretical implications of the model. In

the next section, we empirically test the

following hypotheses:

1. The beta calculated using simple

returns, bS hð Þ, changes nonlinearly

with horizon. The beta calculated

using log-returns, bL hð Þ, does not

change with horizon.

2. The TR calculated using simple

returns, TRS hð Þ, changes nonlinearly

with horizon. The TR calculated using

log-returns, TRL hð Þ, changes linearly

with horizon.

3. There is no ranking reversal with

TRL hð Þ:

TRS hð Þ ¼
exp lM � lSð Þhf g exp lShf g � exp rf h

� �� �
exp r2

Mh
� �

� 1
� �

exp qrSrMhf g � 1ð Þ ; ð8Þ
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EMPIRICAL TEST
OF THE MODEL
We test our theory using the same dataset

used by Hodges et al (2002). Specifically, we

use Ibbotson annual return data from 1928 to

2000 for portfolios of US Treasury bills,

long-term corporate bonds, (large) common

stocks and small stocks. Additionally, we also

test our theory against the Fama–French

value, size and industry portfolios across

different sample periods. To ensure that

sampling frequency does not change our

results, we also test our theory using daily,

weekly and quarterly data. The change in the

sampling frequency does not affect the results

qualitatively. To summarize, the empirical

predictions of the theory are robust.

Table 2 shows the summary statistics of

simple returns, while Table 3 shows the

summary statistics using log-returns. The first

two moments using both the simple and log-

returns for bonds and T-bills are similar in

magnitude. This is expected. Neither bonds

nor T-bills are volatile, and hence the

difference between the simple return and the

log-return is negligible over a ‘‘small’’

horizon. However, as we will show later, the

first two moments are quite different as the

horizon increases. The mean of small stock

returns is the most different when one uses

Figure 3: This figure shows the difference in the TR between large and small stocks.

Table 1: This Table calculates the first and the second moments of the simple and log-returns

Moments Simple return Log-return

Expectation
Stock E RS hð Þ½ � ¼ exp lshf g � 1 E rS hð Þ½ � ¼ lS � 1

2 r
2
S

� �
h

Market E RM hð Þ½ � ¼ exp lMhf g � 1 E rM hð Þ½ � ¼ lM � 1
2r

2
M

� �
h

Bond RB hð Þ ¼ exp rf hf g � 1 rB hð Þ ¼ rf h
Variance

Stock V RS hð Þ½ � ¼ exp 2lshf g exp r2Sh
� �

� 1
� �

V rS hð Þ½ � ¼ r2Sh
Market V RM hð Þ½ � ¼ exp 2lMhf g exp r2Mh

� �
� 1

� �
V rM hð Þ½ � ¼ r2Mh

Covariance
Stock and Market COV RS hð Þ;RM hð Þ½ � ¼ exp lS þ lMð Þhf g

exp qrSrMhf g � 1ð Þ
COV rS hð Þ; rM hð Þ½ � ¼ qrSrMh
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simple returns relative to log-returns. With

simple returns, the mean is approximately

17% and with log-returns, the mean is

around 11%. The difference in magnitude is

due to the variance – small stocks are the

most volatile.

In Table 4, we show the multi-period

beta using both simple and log-returns. We

follow the bootstrapping with replacement

procedure of Hodges et al (1997) to calculate

beta over different horizons, b hð Þ. Suppose

that the horizon is 20 years. Using sampling

with replacement, we generate 250, 20-year

excess returns (both log and simple). While

calculating the 20-year return, we compound

appropriately. The number 250 is consistent

with Hodges et al (1997). From the set of

250, 20-year returns, we calculate a point

estimate of both bS hð Þ and bL hð Þ.
We repeat the procedure 100,000 times

and get 100,000 estimates of bS hð Þ and

bL hð Þ. Since this portion is computationally

intensive, we run the program on a graphics

card. Also, we use parallel computing. The

number 100,000 is a lot higher than the one

used by Hodges et al (1997); this number

ensures high degree of accuracy. We report

the average value of bS hð Þ and bL hð Þ from

the 100,000 estimates.

Two observations are in order. First,

consider the beta calculated using simple

returns. The multi-period beta for large and

small stocks increases with horizon and the

beta of bonds decreases. The 30-year bS for

corporate bonds is approximately zero, while

the 30-year bS for large stocks increases

gradually from approximately one to about

1.09. The bS for small stocks experiences a

steeper rise: it increases from 1.34 to 5.34 in

30 years. The dramatic evolution of the beta

for the three assets expectedly leads to

complex TR behavior. Now, consider the

beta calculated using log-returns. Consistent

with the theory, the multi-period beta for the

three assets does not change with horizon.

Table 5 shows the multi-period TR using

simple and log-returns. Again, we use

bootstrapping with replacement to calculate

the TR. Here, several observations can be

made. First, there is a ranking reversal. Small

stocks outperform large when the investment

horizon is small, and the relative ranking

changes as the horizon increases. The ranking

reversal takes place when the TR is

calculated using simple returns. Second, there

is no ranking reversal when the TR is

calculated using log-returns. Third, corporate

bonds have the highest TR, consistent with

Table 2: This Table shows the first four moments and market covariance of different asset classes using Ibbotson
annual return data from 1928 to 2000. The moments are calculated using simple returns

Mean Variance Covariance

US T-bills 0.0387 0.0010 -0.0001
Corporate bonds 0.0599 0.0077 0.0040
Large stocks 0.1266 0.0409 0.0405
Small stocks 0.1743 0.1145 0.0537
Market 0.1238 0.0401 0.0401

Table 3: This Table shows the first four moments and market covariance of different asset classes using Ibbotson
annual return data from 1928 to 2000

Mean Variance Covariance

US T-bills 0.0375 0.0009 0.0000
Corporate bonds 0.0550 0.0063 0.0035
Large stocks 0.1017 0.0374 0.0372
Small stocks 0.1172 0.0940 0.0491
Market 0.0994 0.0370 0.0370

The moments are calculated using log-returns.

A strong case to calculate the Treynor ratio using log-returns
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Hodges et al (2002). That is, at least from a

TR perspective, corporate bonds are the best

investment. That being said, their

outperformance does not seem to be well

known. In fact, their outperformance is often

ignored. For example, the allocation to bonds

is less than 15% for most TRFs.

CONCLUSION
Hodges et al (2002) empirically highlight a

problematic feature of the TR. They show

that the horizon affects the TR in a complex

manner. The TR, for example, may decrease

with the horizon. More importantly, there

may be a ranking reversal. Namely, it may

appear that one stock outperforms the other

at an annual horizon, but that the opposite

holds true at a 5-year horizon. These

problematic features are due to

compounding. The TR performance metric,

which is traditionally calculated using simple

returns, is biased because both the expected

return and the beta change nonlinearly with

horizon. The bias casts doubt on the use of

TR for asset allocation.

In this paper, we offer a simple solution.

We recommend that investors calculate the

TR using log-returns. By using log-returns,

we eliminate the negative effect of

compounding. With our change, we show

that the betas and Treynor ratios computed

from annual returns will indeed be valid for

long-run investors.

NOTES
1. Equation 2 implies that both the stock and the market

index dynamics follow a correlated geometric Brownian

motion process. Additionally, without loss of generality,

we ignore dividends. We can consider dividends by

assuming that they are reinvestment back in the asset.

2. The derivation is standard and is available upon request.

The expectation and the variance of the simple returns are

calculated using a simple application of the moment

generating function of a normally distributed random

variable. The covariance term is slightly more complicated.

It involves application of the moment generating function

of a bi-variate normal random variable.

3. The convexity adjustment term is necessary to calculate

the risk premia [see equation 12 in Campbell (2003)].

4. Equation 8 is also isomorphic to the multi-period TR as

defined in Eq. 4 of Hodges et al (2002). Our formula

implicitly assumes that the stock increments take place in

continuous time while their formula assumes that time is

discrete. When both the independent and dependent

Table 4: This Table calculates the portfolio beta using both simple and log-returns for corporate bonds, large
stocks and small stocks

Horizon Corporate bonds Large stocks Small stocks

bS bL bS bL bS bL

1 0.1020 0.0960 1.0100 1.0047 1.3406 1.3257
3 0.0883 0.0959 1.0153 1.0047 1.4763 1.3248
5 0.0764 0.0961 1.0206 1.0046 1.6259 1.3246
10 0.0535 0.0956 1.0339 1.0046 2.0697 1.3253
15 0.0374 0.0960 1.0475 1.0046 2.6294 1.3262
30 0.0130 0.0956 1.0889 1.0046 5.3437 1.3256

Table 5: This Table calculates the TR using both simple and log-returns for corporate bonds, large stocks and
small stocks

Horizon Corporate bonds Large stocks Small stocks

TRS TRL TRS TRL TRS TRL

1 0.2141 0.2205 0.0870 0.0823 0.1012 0.0952
3 0.8687 0.6874 0.3046 0.2467 0.3384 0.2857
5 1.8614 1.1560 0.5932 0.4111 0.6319 0.4762
10 6.9510 2.3153 1.7709 0.8226 1.7221 0.9518
15 20.3368 3.4856 4.0192 1.2332 3.6464 1.4279
30 231.1610 7.0978 29.9566 2.4674 24.6048 2.8555
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variables in a regression are additive, the correlaton

coefficient is independent of the horizon [see Eq. 6 in Jea

et al (2005)]. Our expression for bL hð Þ is an elaboration of

their result.

5. We calibrate the model to match the moments in Table 1

of Hodges et al (2002). Specifically, rf = 3.78%;

lsmall = 15.93%; lLarge = 12.18%; lM = 11.60%;

rM = 17.02%, qsmall 9 rsmall = 22.95% and

qLarge 9 rLarge = 17.60%.
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