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Abstract
One of the most well-known theories of decision making under risk is expected util-
ity theory based on the independence axiom. The independence axiom postulates 
that decision maker’s preferences between two lotteries are not affected by mixing 
both lotteries with the same third lottery (in identical proportions). The probabilis-
tic independence axiom (also known as the cancelation axiom) extends this classic 
independence axiom to situations when a decision maker chooses in a probabilis-
tic manner (i.e., she does not necessarily prefer the same choice alternative when 
repeatedly presented with the same choice set). Probabilistic choice may occur for 
a variety of reasons such as unobserved attributes of choice alternatives, impreci-
sion of preferences, random errors/noise in decisions. According to probabilistic 
independence axiom, the probability that a decision maker chooses one lottery over 
another does not change when both lotteries are mixed with the same third lottery 
(in identical proportions). This paper presents a model of probabilistic binary choice 
under risk based on this probabilistic independence axiom. The presented model 
generalizes an incremental expected utility advantage model of Fishburn (Int Econ 
Rev 19(3):633–646, 1978) and stronger utility model of Blavatskyy (Theory Decis 
76(2):265–286, 2014).
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Traditional theories of decision making under risk such as expected utility (von 
Neumann and Morgenstern 1947) are based on a binary preference relation as a 
primitive of choice. A decision maker with deterministic preferences generally1 
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chooses the same choice alternative when repeatedly presented with the same choice 
set except for the special case of indifference between two or more most preferred 
choice alternatives. Yet, decision makers often choose in a probabilistic manner, i.e., 
they do not necessarily stick to the same choice alternative when repeatedly pre-
sented with the same choice set within a short period of time. For example, Camerer 
(1989, p. 81) reports that 31.6% of experimental subjects reverse their preferences 
over risky lotteries. Starmer and Sugden (1989, p. 170) report that 25.8% (28.3%) 
of experimental subjects reveal inconsistent preferences over risky lotteries with 
positive (negative) outcomes when presented with an identical binary choice within 
a short period of time. Hey and Orme (1994, p. 1296) find the average inconsist-
ency rate of 25% for binary choice under risk. Ballinger and Wilcox (1997, p. 1100) 
report a median switching rate of 20.8% for binary choice under risk.

Probabilistic choice may occur for a variety of reasons such as unobserved 
attributes of choice alternatives (e.g., McFadden 1976), imprecision of preferences 
(Falmagne 1985; Butler and Loomes 2007, 2011), random errors/noise in deci-
sions (e.g., Fechner 1860; Hey and Orme 1994). The main approaches to modeling 
probabilistic choice are random utility (also known as random preference or random 
parameter) approach (e.g., Falmagne 1985; Loomes and Sugden 1995), Fechner’s 
(1860) model of random errors (also known as strong utility), Luce’s (1959) choice 
model (also known as strict utility or multinomial logit), an incremental expected 
utility advantage model of Fishburn (1978), a constant error (tremble) model of 
Harless and Camerer (1994), the stronger utility model of Blavatskyy (2014), and 
the contextual utility model of Wilcox (2008, 2011).

One of the most well-known theories of decision making under risk is expected 
utility theory first proposed by Bernoulli (1738/1954) for resolving the St. Peters-
burg paradox. Expected utility theory gained momentum in microeconomics after 
von Neumann and Morgenstern (1947, Chapter 3 and Appendix) developed its first 
behavioral characterization. Von Neumann and Morgenstern (1947) imposed their 
behavioral assumptions (axioms) on a binary preference relation with a key assump-
tion being the independence axiom. The independence axiom postulates that deci-
sion maker’s preferences between two lotteries are not affected by mixing both lot-
teries with the same third lottery (in identical proportions).

When decision makers choose in a probabilistic manner, a probabilistic analogue 
of this axiom is the probabilistic independence axiom (cf. Blavatskyy 2014, axiom 
4, p. 277), which is also known as the cancelation axiom (cf. Fishburn 1978, axiom 
A3, p. 636) or linearity (cf. Gul and Pesendorfer 2006, p. 128). According to the 
probabilistic independence axiom, the probability that a decision maker chooses 
one lottery over another does not change when both lotteries are mixed with the 
same third lottery (in identical proportions). Existing models of probabilistic choice 
under risk that satisfy this axiom include the  binary random expected utility (cf., 
Loomes 2005, p. 306), an incremental expected utility advantage model of Fishburn 
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(1978), a constant error model of Harless and Camerer (1994), and the stronger util-
ity model of Blavatskyy (2014).2 These models, however, combine the probabilis-
tic independence axiom with other assumptions that are arguably less intuitively 
appealing compared to the independence axiom. This paper considers a model of 
probabilistic choice that purely satisfies the probabilistic independence axiom (with-
out any additional non-standard assumptions) and generalizes the above-mentioned 
models of probabilistic binary choice under risk.

The remainder is organized as follows. Section 1 presents our mathematical nota-
tion and formulates the probabilistic independence axiom. Section  2 presents our 
model of probabilistic choice derived purely from this axiom. Section 3 compares 
the goodness of fit of this model to that of other existing models using experimental 
data collected by Loomes and Sugden (1998). Section 4 presents an insurance exam-
ple. Section 5 concludes.

1 � Mathematical notation and probabilistic independence axiom

We work in the classic framework of von Neumann and Morgenstern (1947). Let 
X denote a finite non-empty set of n ∈ ℕ outcomes. An outcome x ∈  X can be a 
consumption bundle, a portfolio of financial assets, a stream of intertemporal out-
comes, a behavioral strategy, a health state, the afterlife (cf. Pascal 1670) etc. Choice 
alternatives are risky lotteries—probability distributions over the set of outcomes X. 
Let L(p1,…,pn) denote a (simple) lottery that yields outcome xi ∈ X with probability 
pi ∈ [0,1], i ∈ {1,…,n}, 

∑n

i=1
pi = 1. The set of all lotteries is denoted by L . For any 

two lotteries L
(
p1,… , pn

)
∈ L and L�

(
q1,… , qn

)
∈ L and probability α ∈ [0,1] let 

αL + (1 − α)L′ denote a compound lottery that yields outcome xi ∈ X with probabil-
ity αpi + (1 − α) qi, i ∈ {1,…,n}.

Finally, for any two distinct3 lotteries L ∈ L and L� ∈ L, L� ≠ L, let 
P(L,L′) ∈ [0,1] denote the probability that a decision maker chooses lottery L over 
lottery L′ in a direct binary choice. For example, P(L,L′) = 1 represents a strict pref-
erence for lottery L over lottery L′, i.e., a decision maker always chooses L over L′. 
Similarly, P(L,L′) = 0 represents a strict preference for lottery L′ over lottery L, i.e., 
a decision maker never chooses L over L′. Finally, P(L,L′) ∈ (0,1) represents a deci-
sion maker who sometimes chooses lottery L and sometimes lottery L′ when facing 
a binary choice between L and L′.

We assume that a binary choice probability function P ∶ L × L → [0, 1] satisfies 
the probabilistic independence axiom (Axiom 1). This axiom appears as Axiom A3 
(cancelation) in Fishburn (1978, p. 636) and axiom 4 in Blavatskyy (2014, p. 277). 
Gul and Pesendorfer (2006, p. 128) use a more general notion of linearity that is 

2  Fechner’s (1860) model of random errors and Luce’s (1959) choice model satisfy a weaker version of 
the probabilistic independence axiom, which is known as the common consequence independence (cf. 
Blavatskyy 2008, Axiom 4, p. 1051).
3  An outside observer cannot observe choice decisions when a decision maker faces a binary choice 
between two identical lotteries.
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equivalent to Axiom 1 if we restrict their choice sets to binary choice sets consid-
ered in this paper. Note that Axiom 1 becomes the classic independence axiom of 
expected utility theory if P(L,L′) = 1 is interpreted as a strict preference for L over L′ 
and P(L,L′) ∈ (0,1) is interpreted as indifference between L and L′. Thus, Axiom 1 
generalizes the classic independence axiom.

Axiom 1  (Probabilistic independence axiom) P(L,L′) = P(αL + (1  −  α)L″, 
αL′ + (1  −  α)L″) for any three lotteries L, L�, L�� ∈ L, L� ≠ L, and any probability 
α ∈ (0,1].

2 � A model of probabilistic binary choice under risk

Let us consider any two distinct lotteries L
(
p1,… , pn

)
∈ L and L�

(
q1,… , qn

)
∈ L. 

For convenience, we number outcomes so that pi≥ qi for all i ∈ {1,…,k} and qj> pj 
for all j ∈ {k + 1,…,n} for some k ∈ {1,…,n − 1}. Note that if lotteries L and L′ are 
distinct and probabilities of all possible outcomes in each lottery sum up to one then 
there is at least one outcome i ∈ {1,…,k} such that pi> qi and there is at least one 
outcome j ∈ {k + 1,…,n} such that qj> pj.

Proposition 1  Axiom 1 holds if and only if for any two distinct lotteries 
L
(
p1,… , pn

)
∈ L and L�

(
q1,… , qn

)
∈ L.

where F ∶ [0, 1]n−2 → [0, 1] is an arbitrary function.
The proof is presented in “Appendix”.
Any two distinct lotteries L ∈ L and L� ∈ L, L� ≠ L can be represented as a vec-

tor in the unit simplex in [0,1]n−1. Consider pairs of lotteries that are represented 
by parallel vectors. When are choice probabilities in these pairs the same across all 
pairs? According to Proposition 1 this holds if and only if the choice probabilities 
satisfy the probabilistic independence Axiom 1. Figure 1 illustrates model (1) in the 
probability simplex for lotteries over n = 4 outcomes. Model (1) can be interpreted 
as a reduced-form econometric model where choice probabilities depend only on 
lotteries’ parameters (probabilities of various outcomes).

(1)

P
�
L, L�

�
= F

�
p1 − q1∑k

i=1

�
pi − qi

� ,… ,
pk−1 − qk−1∑k

i=1

�
pi − qi

� , qk+1 − pk+1∑n

j=k+1

�
qj − pj

� ,… ,
qn−1 − pn−1∑n

j=k+1

�
qj − pj

�
�
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3 � Lotteries over three outcomes (n = 3)

The simplest non-trivial4 decision under risk is when lotteries have only three out-
comes (n = 3). For a binary choice between a relatively riskier lottery L, which yields 
the least desirable outcome with probability p1 and the most desirable outcome 
with probability p2, and a relatively safer lottery L′, which yields the least desirable 
outcome with probability q1 < p1 and the most desirable outcome with probability 
q2 < p2, model (1) becomes

where F ∶ [0, 1] → [0, 1] is an arbitrary function. For example, the stronger utility 
model of Blavatskyy (2014) is a special case of Eq. (2) when function F takes the 
form

where Φ is the cumulative distribution function of the standard normal distribution,5 
σ > 0 is a free parameter that is interpreted as the variance of random errors and 
u ∈ [0,1] is a free parameter that is interpreted as the Bernoulli utility of the middle 

(2)P
(
L, L�

)
= F

(
p1 − q1

p1 − q1 + p2 − q2

)

(3)F(x) = Φ

(
1 − u − x

�[1 − u − (1 − 2u)x]

)
,

probability of x3

       probability of x2

L′

P(L,L′)=P(L″,L‴) iff LL′ǁL″L‴

L‴ L

L″ probability of x1

Fig. 1   Illustration of model (1) in the probability simplex for lotteries over n = 4 outcomes

4  i.e., when one lottery does not first-order stochastically dominate the other.
5  Other possible distributions of random errors are detailed in Blavatskyy (2014, p. 270).
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outcome (under conventional normalization6). On top of the probabilistic independ-
ence Axiom 1, the  stronger utility model of Blavatskyy (2014) employs an addi-
tional assumption that binary choice probabilities depend only on the difference in 
contextual probability equivalents (Blavatskyy 2014, Axiom 5, p. 278).7 The intui-
tion of this additional assumption is quite simple—the higher is the contextual prob-
ability equivalent of L compared to that of L′, the more L is likely to be chosen over 
L′. From an empirical point of view this additional assumption can be evaluated by 
eliciting contextual probability equivalents and testing whether binary choice prob-
abilities are positively correlated with greater differences in contextual probability 
equivalents.

As another example, an incremental expected utility advantage model of Fish-
burn (1978) is a special case of Eq. (2) when function F takes the form

where ρ > 0 is a free noise parameter and u ∈ [0,1], as before, denotes the Bernoulli 
utility of the middle outcome (under conventional normalization). Model (4) also 
coincides with the model of probabilistic choice proposed by Blavatskyy (2011, 
2012) with a power function φ. On top of the  probabilistic independence Axiom 
1, the  incremental expected utility advantage model of Fishburn (1978) employs 
an additional assumption that the odds of binary choice probabilities depend only 
on the ratio of contextual probability equivalents. The intuition of this additional 
assumption is the following—the higher is the contextual probability equivalent 
of L compared to that of L′, the better are the odds that L is chosen over L′. From 
an empirical point of view this additional assumption can be evaluated by elicit-
ing contextual probability equivalents and testing whether the odds of binary choice 
probabilities are positively correlated with greater ratios of contextual probability 
equivalents.

A constant error (tremble) model of Harless and Camerer (1994) is a special case 
of Eq. (2) when function F takes the form

where τ ∊ [0,0.5] denotes the probability of a tremble (constant error), u ∊ [0,1], as 
before, denotes the Bernoulli utility of the middle outcome and sgn(.) is the sign 
function. On top of the  probabilistic independence Axiom 1, the  constant error 
(tremble) model of Harless and Camerer (1994) restricts binary choice probabilities 
to only three values: τ, ½, and 1 − τ. The intuition of this additional restriction is 

(4)F(x) =
(1 − u)�(1 − x)�

(1 − u)�(1 − x)� + u�x�

(5)F(x) =
1

2
+
(
1

2
− �

)
sgn(1 − u − x)

7  For any two lotteries L,L� ∈ L, a contextual probability equivalent of lottery L is probability α ∈ [0,1] 
such that a decision maker is indifferent between L and a compound lottery that yields the least upper 
bound on L and L′ (in terms of the first-order stochastic dominance) with probability α and the greatest 
lower bound on L and L′ (in terms of the first-order stochastic dominance) with probability 1 − α. Under 
expected utility theory, contextual probability equivalents of any two lotteries should sum up to one.

6  i.e., utility of the least desirable outcome is zero and utility of the most desirable outcome is one.
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the following—a decision maker generally chooses accordingly to a deterministic 
preference relation but there is a constant probability of a tremble (when a decision 
maker chooses in contradiction to his or her preference). This additional restriction 
can be tested via cluster analysis.

Random expected utility of Gul and Pesendorfer (2006) is a special case of 
Eq.  (2) when function F is a decumulative distribution function of one minus the 
Bernoulli utility of the middle outcome (which is a random variable in the random 
utility/preference approach).

Additional axioms that are used in the literature (cf. Fishburn 1978; Gul and 
Pesendorfer 2006; Blavatskyy 2014) in conjunction with the probabilistic independ-
ence Axiom 1 essentially restrict the functional form of F(.) in model (2) to generate 
various models of probabilistic choice described above. Model (2) can be also inter-
preted as a reduced-form econometric model of the structural econometric models 
(3)–(5).

How much goodness of fit to the data is lost when a reduced-form economet-
ric model (2) with a linear function F(.) is used instead of the  non-linear struc-
tural econometric models (3)–(5)? The answer appears to be “not much” if we 
consider the data collected by Loomes and Sugden (1998).8 Figure  2 plots ratios (
p1 − q1

)
∕
(
p1 − q1 + p2 − q2

)
 on the horizontal axis and choice probabilities P(L,L′) 

on the vertical axis for 40 binary choice problems from Loomes and Sugden (1998), 
where one lottery does not first-order stochastically dominate the other lottery. 
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and u=0.795
model (4) with ρ=1.422 
and u=0.798
model (2) with linear 
F(x)= -1.0997x + 0.6806

Fig. 2   Goodness of fit to data collected by Loomes and Sugden (1998), the “£20 group”

8  Raw experimental data are reprinted in Tables 2a and 2b in Loomes et al. (2002, pp. 111–112), binary 
choice questions are presented in Fig. 2 in Loomes and Sugden (1998, pp. 587–588) as well as Table 1a 
in Loomes et al. (2002, p. 109).
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Black unconnected dots represent experimental data (averaged over two repetitions 
and 46 subjects from the “£20 group”). The dotted line on Fig. 2 represents model 
(2) with the best fitting linear function F(x) = − 1.0997x + 0.6806, which results in 
R2 = 0.678. The solid line on Fig. 2 represents model (3) with the best fitting param-
eters σ = 0.515 and u = 0.795, which results in R2 = 0.689. The dashed line on Fig. 2 
represents model (4) with the best fitting parameters ρ = 1.422 and u = 0.798, which 
results in R2 = 0.696. Thus, model (2) with a linear function F(.) fits the experimen-
tal data almost as well as non-linear models (3) and (4).

Figure 3 mirrors Fig. 2 for experimental data collected by Loomes and Sugden 
(1998) from the “£30 group”. The dotted line on Fig. 3 represents model (2) with the 
best fitting linear function F(x) = − 1.236x + 0.9136, which results in R2 = 0.534. The 
solid line on Fig. 3 represents model (3) with the best fitting parameters σ = 0.606 
and u = 0.671, which results in R2 = 0.529. The dashed line on Fig.  3 represents 
model (4) with the best fitting parameters ρ = 1.265 and u = 0.671, which results in 
R2 = 0.531. Thus, model (2) with a linear function F(.) fits the data from the “£30 
group” slightly better than non-linear structural models (3) and (4).

4 � Example: insurance

This section shows how a probabilistic choice model based on the probabilistic inde-
pendence Axiom 1 is applied to a decision problem of insurance coverage. Let us 
consider a decision maker with wealth w > 0 who faces a loss D ∊ (0,w) with prob-
ability π ∊ (0,1). This decision maker can buy actuarially fair insurance. If the deci-
sion maker decides to insure completely against the loss, he or she pays the insur-
ance premium πD and receives compensation D when the loss happens.
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Fig. 3   Goodness of fit to data collected by Loomes and Sugden (1998), the “£30 group”
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If the decision maker stays uninsured, he or she faces a binary lottery that yields 
w − D with probability π and w with probability 1 − π. If the decision maker insures 
completely, he or she receives w  −  πD for certain (regardless of the state of the 
world). According to model (2) based on the probabilistic independence Axiom 
1, the probability that the decision maker chooses no insurance coverage over full 
insurance is F(π). Special cases of model (2) are models (3)–(5), which specify the 
functional form of function F(.). According to models (3)–(5), the probability that 
the decision maker chooses to remain uninsured is greater than 50% if

where u is the normalized utility of the final wealth position in case of complete 
insurance. For a conventional Bernoulli utility function v, parameter u is given by 
Eq. (7):

Plugging Eq. (7) into inequality (6) we obtain the following result. The decision 
maker is more likely to remain uninsured rather than fully insured if inequality (8) 
holds:

Inequality (8) is known as Jensen’s inequality for a convex Bernoulli utility func-
tion v (Jensen 1906). Thus, a decision maker with a convex Bernoulli utility func-
tion is more likely to remain uninsured than fully insured. An analogous argument 
shows that a decision maker with a concave Bernoulli utility function is more likely 
to remain fully insured than uninsured.

5 � Conclusion

Expected utility theory is based on an intuitively appealing independence axiom. 
For example, in a dynamic choice, where earlier decisions influence the outcomes of 
subsequent decisions, only a decision maker who satisfies the independence axiom 
is dynamically consistent. Von Neumann and Morgenstern (1947) formulated the 
classic independence axiom for a (deterministic) binary preference relation over 
lotteries. Yet, empirical evidence suggests that decision makers choose under risk 
in a probabilistic rather than deterministic manner (when there is no transparent 
first-order stochastic dominance between lotteries.9) The probabilistic independ-
ence axiom is the analogue of its classic counterpart for probabilistic choice under 
risk. This axiom is used as a building block (in conjunction with other axioms) in 

(6)1 − u − 𝜋 > 0

(7)u =
v(w − �D) − v(w − D)

v(w) − v(w − D)

(8)(1 − 𝜋)v(w) + 𝜋v(w − D) > v(w − 𝜋D)

9  Carbone and Hey (1995), Loomes and Sugden (1998, Table 2, p. 591), and Hey (2001, Table 2, p. 14) 
find evidence of essentially deterministic choice when one lottery transparently dominates another lot-
tery.
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several models of probabilistic choice (cf. Fishburn 1978; Gul and Pesendorfer 
2006; Blavatskyy 2014).

This paper considers implications of the probabilistic independence axiom with-
out any additional behavioral assumptions (that are often less intuitively appealing 
than the principle of independence). The main theoretical result is that the proba-
bilistic independence axiom is equivalent to a model of probabilistic choice where 
choice probabilities depend only on the ratios of differences in probabilities of 
various outcomes between two lotteries. This model of probabilistic choice gen-
eralizes several existing models such as an incremental expected utility advantage 
model of Fishburn (1978) and stronger utility model of Blavatskyy (2014). In this 
generalized model, a decision maker chooses with the same probabilities across all 
pairs of lotteries that are represented geometrically by parallel vectors in the prob-
ability simplex (parallel vectors have constant ratios of differences in probabilities/
coordinates).

A model of choice probabilities as a simple linear function of the ratios of dif-
ferences in probabilities of lottery outcomes fits experimental data collected by 
Loomes and Sugden (1998) equally well as non-linear structural models. This find-
ing supports the methodology of a reduced-form linear econometric regression 
based on the probabilistic independence axiom.

Models of probabilistic choice have a comparative advantage over determinis-
tic models when rationalizing the preference reversal phenomenon (Seidl 2002). A 
standard preference reversal is observed when a decision maker chooses the P-bet 
(a modest payoff with a high probability) over the $-bet (a large payoff with a small 
probability) in a direct binary choice but reveals a higher certainty equivalent for the 
$-bet than for the P-bet (e.g., Tversky et al. 1990). Models of binary (probabilistic) 
choice can be applied to valuations. Blavatskyy (2009, definition 1, p. 242) proposed 
the following definition of a probabilistic certainty equivalent. The probability that 
the certainty equivalent of a lottery L is less than or equal to x is the probability that 
a degenerate lottery that yields x for sure is chosen over L in a direct binary choice. 
If the P-bet and the $-bet yield the same expected utility, then a decision maker is 
equally likely to choose either of them in a direct binary choice. Median certainty 
equivalents of the P-bet and the $-bet are the same in this case. If the distribution of 
certainty equivalents is symmetric (as in Fechner’s (1860) or Luce’s (1959) choice 
model) then no systematic preference reversals occur. If the distribution of the cer-
tainty equivalent of the P-bet is negatively skewed and that of the $-bet positively 
skewed [as in models (3) and (4)], then there is a higher likelihood of standard pref-
erence reversals (Blavatskyy 2014, Sect. 4, pp. 274–276).
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Appendix

Proof of Proposition 1
Consider any two distinct lotteries L

(
p1,… , pn

)
∈ L and L�

(
q1,… , qn

)
∈ L 

such that pi≥ qi for all i  ∊  {1,…,k} and qj> pj for all j  ∊  {k + 1,…,n} for some 
k ∊ {1,…,n − 1}.

First, lottery L′(q1,…,qn) is a reduced-form of a compound lottery 
q1x� +

(
1 − q1

)
L�
1
, where x1 denotes a degenerate lottery that yields outcome x1 for 

sure and L′
1
 denotes lottery

Similarly, lottery L(p1,…,pn) is a reduced-form of a compound lottery 
q1x� +

(
1 − q1

)
L1, where L1 denotes lottery

If Axiom 1 holds then P
(
L, L�

)
≡ P

(
q
1

x
�
+

(
1 − q

1

)
L
1

, q
1

x
�
+

(
1 − q

1

)
L�
1

)
= P

(
L
1

, L�
1

)
.

Second, L′
1
 is a reduced-form of a compound lottery [

q2∕
(
1 − q1

)]
x
�
+

[
1 − q2∕

(
1 − q1

)]
L�
2
, where x2 denotes a degenerate lottery that 

yields outcome x2 for sure and L′
2
 denotes lottery

Similarly, lottery L1 is a reduced-form of a compound lottery [
q2∕

(
1 − q1

)]
x
�
+

[
1 − q2∕

(
1 − q1

)]
L2, where L2 denotes lottery

If Axiom 1 holds then P
(
L
1

, L
′
1

)
≡

P
([
q
2

∕
(
1 − q

1

)]
x� +

[
1 − q

2

∕
(
1 − q

1

)]
L
2

,

[
q
2

∕
(
1 − q

1

)]
x� +

[
1 − q

2

∕
(
1 − q

1

)]
L�
2

)
= P

(
L
2

, L�
2

)
.

Iterating such application of Axiom 1 for the first k outcomes we obtain that 
P
(
L, L�

)
= P

(
Lk, L

�
k

)
, where Lk denotes lottery

and L′
k
 denotes lottery

(
0,

q2

1 − q1
,… ,

qn

1 − q1

)

(
p1 − q1

1 − q1
,

p2

1 − q1
,… ,

pn

1 − q1

)

(
0, 0,

q3

1 − q1 − q2
,… ,

qn

1 − q1 − q2

)

(
p1 − q1

1 − q1 − q2
,

p2 − q2

1 − q1 − q2
,

p3

1 − q1 − q2
,… ,

pn

1 − q1 − q2

)

�
p1 − q1

1 −
∑k

i=1
qi

,… ,
pk − qk

1 −
∑k

i=1
qi

,
pk+1

1 −
∑k

i=1
qi

,… ,
pn

1 −
∑k

i=1
qi

�

⎛⎜⎜⎜⎝
0,… , 0
⏟⏟⏟

k

,
qk+1

1 −
∑k

i=1
qi

,… ,
qn

1 −
∑k

i=1
qi

⎞⎟⎟⎟⎠
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Lottery Lk is a reduced form of a compound lottery

where xk+1 denotes a degenerate lottery that yields outcome xk+1 for sure and Lk+1 
denotes lottery

Similarly, lottery L′
k
 is a reduced form of a compound lottery

where L�
k+1

 denotes lottery

Axiom 1 then implies P
(
Lk, L

�
k

)
= P

(
Lk+1, L

�
k+1

)
.

Iterating such application of Axiom 1 for the remaining n − k − 1 outcomes we 
obtain that P

(
L, L�

)
= P

(
Ln, L

�
n

)
 where Ln denotes lottery

and L′
n
 denotes lottery

The last non-zero probability in lottery Ln is one minus the sum of the first 
k − 1 probabilities:

The last probability in lottery L′
n
 is one minus the sum of the proceeding 

n − k − 1 probabilities:

Lk ≡
pk+1

1 −
∑k

i=1
qi

x
k+1 +

�
1 −

pk+1

1 −
∑k

i=1
qi

�
Lk+1

�
p1 − q1

1 −
∑k

i=1
qi − pk+1

,… ,
pk − qk

1 −
∑k

i=1
qi − pk+1

, 0,
pk+2

1 −
∑k

i=1
qi − pk+1

,… ,
pn

1 −
∑k

i=1
qi − pk+1

�

L�
k
≡

pk+1

1 −
∑k

i=1
qi

x
k+1 +

�
1 −

pk+1

1 −
∑k

i=1
qi

�
L�
k+1

⎛⎜⎜⎜⎝
0,… , 0
⏟⏟⏟

k

,
qk+1 − pk+1

1 −
∑k

i=1
qi − pk+1

, ,
qk+2

1 −
∑k

i=1
qi − pk+1

… ,
qn

1 −
∑k

i=1
qi − pk+1

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝
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i=1

�
pi − qi

� ,… ,
pk − qk∑k

i=1

�
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� , 0,… , 0
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,
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r=1

pr − qr∑k

i=1
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Thus, P(L,L′) can be written as function (1) of n − 2 probabilities, where func-
tion F ∶ [0, 1]n−2 → [0, 1] denotes the probability that a decision maker chooses 
lottery Ln over lottery L′

n
.****

References

Agranov, M., and P. Ortoleva. 2017. Stochastic choice and preferences for randomization. Journal of 
Political Economy 125 (1): 40–68.

Ballinger, P., and N. Wilcox. 1997. Decisions, error and heterogeneity. Economic Journal 107: 
1090–1105.

Bernoulli, D. 1738. Specimen theoriae novae de mensura sortis. Commentarii Academiae Scientiarum 
Imperialis Petropolitanae; translated in Bernoulli, D. (1954) Exposition of a new theory on the 
measurement of risk. Econometrica 22: 23–36.

Blavatskyy, Pavlo. 2008. Stochastic utility theorem. Journal of Mathematical Economics 44 (11): 
1049–1056.

Blavatskyy, Pavlo. 2009. Preference reversals and probabilistic choice. Journal of Risk and Uncer-
tainty 39 (3): 237–250.

Blavatskyy, Pavlo. 2011. A model of probabilistic choice satisfying first-order stochastic dominance. 
Management Science 57 (3): 542–548.

Blavatskyy, Pavlo. 2012. Probabilistic choice and stochastic dominance. Economic Theory 50 (1): 
59–83.

Blavatskyy, Pavlo. 2014. Stronger utility. Theory and Decision 76 (2): 265–286.
Butler, David J., and Graham C. Loomes. 2007. Imprecision as an account of the preference reversal phe-

nomenon. American Economic Review 97 (1): 277–297.
Butler, David J., and Graham C. Loomes. 2011. Imprecision as an account of violations of independence 

and betweenness. Journal of Economic Behavior & Organization 80: 511–522.
Camerer, Colin F. 1989. An experimental test of several generalized utility theories. Journal of Risk and 

Uncertainty 2 (1): 61–104.
Carbone, E., and J. Hey. 1995. A comparison of the estimates of EU and non-EU preference functionals 

using data from pairwise choice and complete ranking experiments. Geneva Papers on Risk and 
Insurance Theory 20: 111–133.

Chew, S., L. Epstein, and U. Segal. 1991. Mixture symmetry and quadratic utility. Econometrica 59: 
139–163.

Falmagne, Jean-Claude. 1985. Elements of psychophysical theory. New York: Oxford University Press.
Fechner, Gustav. 1860. Elements of psychophysics. New York: Holt, Rinehart and Winston.
Fishburn, Peter. 1978. A probabilistic expected utility theory of risky binary choices. International Eco-

nomic Review 19 (3): 633–646.
Gul, F., and W. Pesendorfer. 2006. Random expected utility. Econometrica 71 (1): 121–146.
Harless, D., and C. Camerer. 1994. The predictive utility of generalized expected utility theories. Econo-

metrica 62: 1251–1289.
Hey, J.D. 2001. Does repetition improve consistency? Experimental Economics 4: 5–54.
Hey, John D., and Chris Orme. 1994. Investigating generalisations of expected utility theory using experi-

mental data. Econometrica 62: 1291–1326.
Jensen, J. 1906. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica 

30 (1): 175–193.
Loomes, Graham. 2005. Modelling the stochastic component of behaviour in experiments: some issues 

for the interpretation of data. Experimental Economics 8: 301–323.
Loomes, Graham, and Robert Sugden. 1995. Incorporating a stochastic element into decision theories. 

European Economic Review 39: 641–648.

qn − pn∑n

j=k+1

�
qj − pj

� = 1 −

n−1�
s=k+1

qs − ps∑n

j=k+1

�
qj − pj

�



34	 The Geneva Risk and Insurance Review (2021) 46:21–34

Loomes, Graham, and Robert Sugden. 1998. Testing different stochastic specifications of risky choice. 
Economica 65: 581–598.

Loomes, Graham, Peter Moffatt, and Robert Sugden. 2002. A microeconomic test of alternative stochas-
tic theories of risky choice. Journal of Risk and Uncertainty 24: 103–130.

Luce, R.D. 1959. Individual choice behavior. New York: Wiley.
Machina, M. 1985. Stochastic choice functions generated from deterministic preferences over lotteries. 

Economic Journal 95: 575–594.
McFadden, D. 1976. Quantal choice analysis: A survey. Annals of Economic and Social Measurement 5: 

363–390.
Pascal, Blaise. 1670. Pensées de M. Pascal sur la religion et sur quelques autres sujets, qui ont esté trou-

vées après sa mort parmy ses papiers. édition de Port-Royal, Paris, chez Guillaume Desprez.
Seidl, C. 2002. Preference reversal. Journal of Economic Surveys 16: 621–655.
Starmer, Chris, and Robert Sugden. 1989. Probability and juxtaposition effects: An experimental investi-

gation of the common ratio effect. Journal of Risk and Uncertainty 2: 159–178.
Tversky, A., P. Slovic, and D. Kahneman. 1990. The causes of preference reversal. American Economic 

Review 80: 204–217.
von Neumann, John, and Oscar Morgenstern. 1947. Theory of games and economic behavior, 2nd ed. 

Princeton: Princeton University Press.
Wilcox, N. 2008. Stochastic models for binary discrete choice under risk: A critical primer and econo-

metric comparison. In Research in experimental economics, vol. 12, ed. J.C. Cox and G.W. Har-
rison, 197–292. Bingley: Emerald.

Wilcox, N. 2011. Stochastically more risk averse: A contextual theory of stochastic discrete choice under 
risk. Journal of Econometrics 162: 89–104.


	Probabilistic independence axiom
	Abstract
	1 Mathematical notation and probabilistic independence axiom
	2 A model of probabilistic binary choice under risk
	3 Lotteries over three outcomes (n = 3)
	4 Example: insurance
	5 Conclusion
	References




