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Abstract This paper investigates how welfare losses for facing high-order risk

increases change when the risk environment of the decision maker is altered. To that

aim, we define the nth-order utility premium as a measure of pain associated with

facing the passage of one risk to a more severe one and we examine some of its

properties. Changes in risk are expressed through the concept of stochastic domi-

nance of order n. The paper investigates more particularly welfare changes of

merging increases in risk, first ignoring background risks, then taking them into

account. Merging increases in risk may be beneficial or not, depending on whether

background risks are considered and how. The paper also provides conditions on

individual preferences for superadditivity of the nth-order utility premium. The

results confirm the importance and usefulness of two analytical concepts: mixed risk

aversion and risk apportionment.
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1 Introduction

The issue of how the presence of multiple risks modifies individual behaviour in the

face of another risk has been leading to a prolific literature during the last decades.1

Most of these studies use monetary measures to analyse behaviour towards risk, the

most well known being the Arrow–Pratt risk premium2 and the willingness to pay

(Pratt 1988). More recently, a few papers have used non-monetary measures to

provide new behavioural results in the face of risks. In particular, the concept of

utility premium originally introduced by Friedman and Savage (1948) has regained

interest. For instance, Eeckhoudt and Schlesinger (2006) rely on the utility premium

to propose a unified approach explaining the meaning of the signs of the successive

derivatives of the utility function. Eeckhoudt and Schlesinger (2009) also re-

examine the properties of the utility premium and explain the relevance of this tool

for decision-making. Menegatti (2011) examines the relationship between the risk

premium and the utility premium and showed that both measures do not overlap: the

risk premium can be a mistaken measure of the reduction in utility caused by risk.

Starting from the utility premium, Crainich and Eeckhoudt (2008) and Courbage

and Rey (2010) turn to higher orders by introducing non-monetary measures of

prudence and temperance. Such non-monetary measures not only offer alternative

tools to analyse the individual loss of welfare due to the presence of risks, but also

allow for much simpler conditions on individual preferences to predict behaviour

towards risks.3

An issue of great importance when dealing with measures of risks is how these

measures react to a riskier environment. In particular, knowing how welfare losses

of facing increases in risk change as a function of the number of risk exposures

offers crucial knowledge on how individuals react to riskier environment. Our

objective is to address these issues, starting from very general definitions of

increases in risk and of loss of welfare. For this reason, the paper defines the ‘‘nth-

order utility premium’’ as a measure of pain associated with facing the passage from

one risk to a worse one, with changes in risk expressed through the concept of

stochastic dominance of order n.

Our nth-order utility premium is not new. It was used before, without being given

a name, in Eeckhoudt et al. (2009) in their proof of Theorem 3 and in Ebert et al.

1 See Eeckhoudt and Gollier (2013) for a review.
2 Arrow (1970) , Pratt (1964).
3 Note, however, that a well-known deficiency of the utility premium compared to the risk premium is its

inadequacy for interpersonal comparisons. This is due to the fact that the utility premium is not unique

under linear transformations of the utility function. To circumvent this difficulty, Crainich and Eeckhoudt

(2008) introduced the monetary utility premium—the utility premium divided by the marginal utility. Li

et al. (2014) and Huang and Stapleton (2015) have used the monetary utility premium to derive

comparative risk aversion results. In this paper, we do not address interpersonal comparisons of loss of

welfare.
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(2017) in their proof of Theorem 2. But we define it here explicitly and our main

objective in this paper is to derive some of its key properties.

Motivated by the work of Eeckhoudt and Gollier (2001) on the properties of

monetary measures for risk, we first address the issue of whether the pain for facing

multiple risk changes is greater or less than the sum of the pains for facing each risk

change independently. This issue should not be confused with the concept of mutual

aggravation of risk changes developed in Ebert et al. (2017). In their work, an

individual faces two risks that are deteriorating and the issue is whether facing the

two changes in risk simultaneously is more painful than the sum of the pains for

facing each change in risk one by one (see their Eq. (1)). They obtain that this is

indeed the case. There is mutual aggravation of risk changes (Theorem 2), and even

greater mutual aggravation when the risk changes are more severe (Theorem 3). In

our case, we want to focus on a mathematical property of our nth-order utility

premium and we consider two different situations where an individual exposed to

one risk faces an aggravation of this risk. The question arises: is the non-monetary

measure of the two risk changes together greater or less than the sum of the

monetary measures of each individual risk change4? In economic life, this question

arises when the benefits obtained for merging independent entities (or firms) are

considered. More specifically, we examine the following question: knowing that

separate entities will be subject to high-order risk increases, is it beneficial for the

owner of these entities to merge them or not? It turns out that mixed risk aversion, as

defined by Caballé and Pomansky (1996), is key to the answer.5

This question is addressed in two steps. In the first step, the entities are

considered as entirely separated, i.e. managed independently, with the consequence

that each of them is unaffected by the risk level of the other. In this case, it turns out

that merging the changes in risk is not beneficial under mixed risk aversion. In a

second step, we recognize that the decision maker is the owner of both entities,

which leads to introduce a link between them. The risk of each entity is now a

background risk for the other entity. We obtain that, in this case, merging the risks

may be beneficial if the risk situation of each entity is transparent: the definition of

background risk takes into account, for each entity, the increase in risk for the other

entity.

These results on risk merging under conditions of changes in risk are new. But

they may easily be related to other literature in the economics of risk. The result in

the absence of background risk implies a result for a related but different issue, the

superadditivity or subadditivity of the nth-order utility premium. A measure is said

to be superadditive or convex in the number of risks if the measured value of two

risks is superior to the sum of the values of each risk, the opposite holding for

subadditivity. Superadditivity/subadditivity sheds light on whether risks are self-

aggravating for individuals. For instance, Eeckhoudt and Gollier (2001) show that

risk vulnerability (see Gollier and Pratt 1996) is a sufficient condition for

4 See our equation (16) below.
5 This is not unexpected, given the role of mixed risk aversion in the link between expected utility and

nth-order stochastic dominance. See, e.g. Theorem 1 in Eeckhoudt et al. (2009). Mixed risk aversion is

also required to obtain the results of mutual aggravation in Ebert et al. (2017).
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superadditivity of the risk premium. The concept of subadditivity of risk measures

has also become popular by the concept of coherent risk measures defined by

Artzner et al. (1999). A (monetary) measure is said to be coherent if it satisfies four

axioms, among which subadditivity. In our case, the paper shows that the nth-order

utility premium is superadditive under mixed risk aversion.

The results in presence of background risk bring us closer to the question

examined by Ebert et al. (2017). Indeed, starting from a different angle, we

reproduce their result of mutual aggravation. But not necessarily so. Depending on

how background risk is defined, one can obtain either mutual aggravation or mutual

mitigation of risk changes. The two results offer reinterpretations of the preference

for combining ‘‘good’’ with ‘‘bad’’ introduced by Eeckhoudt et al. (2009). In the

same manner, we also rely on this latter paper to show under which conditions the

nth-order utility premium increases when the decision maker’s initial wealth

becomes riskier. This result provides another reinterpretation of the preference for

combining ‘‘good’’ with ‘‘bad’’, while generalizing Courbage and Rey (2010).

The paper is organized as follows. Section 2 introduces the benchmark model for

non-monetary measures of risk and in particular the nth-order utility premium.

Section 3 presents our main results. It addresses the conditions on individual

preferences for welfare changes due to risk merging. It also provides the answer to

the question of whether the nth-order utility premium is superadditive or

subadditive. Section 4 investigates the effects of background risk, first by

examining the impact of a riskier initial wealth on the nth-order utility premium,

then by introducing background risk in the evaluation of risk merging. Under

appropriate conditions, it also provides the link with the work of Ebert et al. (2017).

Finally, Sect. 5 offers a short conclusion.

2 The benchmark model

2.1 Non-monetary measures in the face of risks

Non-monetary measures in the face of risks stem from the work of Friedman and

Savage (1948) who used expected utility theory to define risk aversion and

introduced two ways for its measure. The two measures reflect the subjective cost of

risk for a risk averter.

Let an individual’s final wealth be represented by x þ ~� where x (x[ 0) denotes

the initial wealth of the individual and ~� is a zero-mean random variable.6 The first

measure of risk aversion in the face of the risk ~� at wealth level x is a monetary

measure, the risk premium pðx; ~�Þ, and is such that

E½uðx þ e�Þ� ¼ uðx � pðx; ~�ÞÞ; ð1Þ

where u denotes the individual’s von Neumann–Morgenstern utility function (with

u0ðxÞ� 0 8x) and E denotes the expectation operator. pðx; ~�Þ is the amount of money

6 We assume that the support of ~� is defined such that x þ � is in the domain of u.
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that the agent is ready to pay to get rid of the zero-mean risk e�. pðx; ~�Þ� 0 if and

only if the individual is risk averse (u00ðxÞ� 0 8x).

The second one is a non-monetary measure of risk aversion, the utility premium,

wAðx; ~�Þ:

wAðx;eeÞ ¼ uðxÞ � E½uðx þ eeÞ�: ð2Þ

wAðx;eeÞ measures the degree of ‘‘pain’’ associated with facing the risk ee, where pain
is measured by the loss in expected utility from adding the risk ee to wealth x. From

Jensen’s inequality, wAðxÞ� 0 if and only if u00ðxÞ� 0 8x:7

More recently additional non-monetary measures were introduced, based on the

definitions of higher-order risk attitudes, prudence and temperance. Prudence

(u000 � 0) first introduced by Kimball (1990) in a saving context is also known as risk

apportionment of order 3 in the sense of Eeckhoudt and Schlesinger (2006). These

authors show that for a prudent individual:

1

2
uðx � lÞ þ 1

2
E½uðx þ eeÞ� � 1

2
uðxÞ þ 1

2
E½uðx � l þ eeÞ�: ð3Þ

According to Eeckhoudt and Schlesinger’s terminology, a prudent individual prefers

the left-hand side term of Eq. (3) to the right-hand side term because the pains, the

sure loss �l (l[ 0) and the zero-mean risk ee, are better apportioned in the left-hand

side term than in the right-hand side term. In the left-hand side term the pains are

disaggregated while they are aggregated (concentrated in a single state of nature) on

the right-hand side term. The prudence utility premium as introduced by Crainich

and Eeckhoudt (2008), denoted wPðx;eeÞ, measures the increase in pain of facing the

risk ee in the presence of a sure loss l[ 0. This is defined as follows:

wPðx;eeÞ ¼ uðx � lÞ � E½uðx � l þ eeÞ� � ðuðxÞ � E½uðx þ eeÞ�Þ; ð4Þ

which is equivalent to

wPðx;eeÞ ¼ wAðx � l; ~�Þ � wAðx; ~�Þ: ð5Þ

Naturally, wPðx;eeÞ� 0 if and only if u000 � 0.

Temperance (u
0000 � 0), first introduced by Kimball (1992) in a context of risk

management in the presence of background risk, is known as risk apportionment of

order 4 in the sense of Eeckhoudt and Schlesinger (2006). It reflects a preference for

disaggregation of two independent zero-mean risks ~h and ~�. Eeckhoudt and

Schlesinger (2006) show that for a temperant individual:

1

2
E½uðx þ ~hÞ� þ 1

2
E½uðx þ eeÞ� � 1

2
uðxÞ þ 1

2
E½uðx � l þ ~hþ eeÞ� : ð6Þ

A temperant individual prefers the left-hand side term of Eq. (6) to the right-hand

side term because the pains are better apportioned. The temperance utility premium

7 We assume throughout this article that the utility function u is n-times differentiable. As usual, we

assume that the derivative of order k (8k� 1), denoted uðkÞðxÞ, has a constant sign in the domain of u:

uðkÞðxÞ� 0 or uðkÞðxÞ� 0 8x.
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as introduced by Courbage and Rey (2010), denoted wTðx;eeÞ, measures the increase

in pain of facing the risk ee in the presence of an independent zero-mean risk ~h. It
writes as follows:

wTðx;eeÞ ¼ E½uðx þ ~hÞ� � E½uðx þ ~hþ eeÞ� � ðuðxÞ � E½uðx þ eeÞ�Þ; ð7Þ

which is equivalent to

wTðx;eeÞ ¼ wAðx þ ~h; ~�Þ � wAðx; ~�Þ: ð8Þ

wTðx;eeÞ� 0 if and only if uð4Þ � 0:
Courbage and Rey (2010) suggested an extension of these measures to higher

orders defining the utility premium by iteration following Eeckhoudt and

Schlesinger (2006). Denoting wð2Þðx;eeÞ the Friedman and Savage (1948) utility

premium of Eq. (2), we can proceed from their remark by defining for all n even and

n� 2:

wðnþ1Þðx; ~�Þ ¼ wðnÞðx � l; ~�Þ � wðnÞðx; ~�Þ

with l[ 0 and

wðnþ2Þðx; ~�Þ ¼ wðnÞðx þ ~hn; ~�Þ � wðnÞðx; ~�Þ;

where ~hn is an independent random variable (i.e. random variables ~�; ~h2; ~h4; ~h6, are

mutually independent) and such that Eð~hnÞ ¼ 0. As an illustration, when n ¼ 2,

wðnþ1Þðx; ~�Þ corresponds to the prudence utility premium, wPðx; ~�Þ , and wðnþ2Þðx; ~�Þ
corresponds to the temperance utility premium, wTðx; ~�Þ, as defined by Eqs. (4) and

(7).

2.2 The nth-order utility premium

While Courbage and Rey (2010) suggested to define utility premia of higher orders

by iteration of the previous utility premia defined in a context of specific lotteries,

our objective in this paper is to introduce a very general way to define the utility

premium at higher orders and to disclose its properties. Our definition uses the

concept of stochastic dominance of order n.

Let us consider two risky situations: a first situation represented by the random

variable Y and a second one represented by the random variable X. We assume that

X and Y are independent, and that Y dominates X via nth-order stochastic dominance

(X �n�SD Y).

The concept of nth-order stochastic dominance is defined as follows.8 Consider Y

and X with F and G, respectively, their two cumulative distribution functions of

wealth, defined over a probability support contained within the interval ½a; b�.
Define F1 ¼ F and G1 ¼ G. Now define Fkþ1ðzÞ ¼

R z

a
FkðtÞdt and Gkþ1ðzÞ ¼

8 See for example Jean (1980, 1984) or Ingersoll (1987).
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R z

a
GkðtÞdt for k� 1 . The variable Y dominates X via nth-order stochastic dominance

(X �n�SD Y) if FnðzÞ�GnðzÞ for all z, and if FkðbÞ�GkðbÞ for k ¼ 1; 2; . . .; n.

When the n � 1 moments of X and Y are equal, nth-order stochastic dominance

coincides with Ekern (1980)’s concept of increase in nth-order risk ðX �n YÞ. Ekern
(1980)’s definition includes the case of mean-preserving increase in risk of

Rothschild and Stiglitz (Rothschild and Stiglitz 1970) as well as the case of increase

in downside risk defined by Menezes et al. (1980). These cases represent,

respectively, a second-degree and a third-degree increase in risk.

We want to define the non-monetary measure of the cost of facing the risk

transition, i.e. the passage from Y to X where Y dominates X via n th-order stochastic

dominance (X �n�SD Y). Let us define the function w as follows:9

wðx; Y ;XÞ ¼ E½uðx þ YÞ� � E½uðx þ XÞ�: ð9Þ

The function w(x; Y, X) measures the degree of pain associated with facing the

passage from the risk Y to the less favourable one, X, when the decision maker’s

initial wealth is x. We formulate the following definition.

Definition Given two independent risks, Y and X such that Y dominates X via nth-

order stochastic dominance (X �n�SD Y), the function w defined as wðx; Y;XÞ ¼
E½uðx þ YÞ� � E½uðx þ XÞ� is named the ‘‘nth-order utility premium’’10. It measures

the degree of pain due to the aggravating nth-order stochastic dominance risk.

We first observe that, from Ingersoll (1987), wðx; Y;XÞ� 0 for all x if and only if

ð�1Þð1þkÞ
uðkÞ � 0 8k ¼ 1; . . .; n. Note that ð�1Þð1þkÞ

uðkÞ � 0 8k � 1 means that all

odd derivatives of u are positive and all even derivatives of u are negative.

Following Brockett and Golden (1987) and according to Caballé and Pomansky

(1996), an individual with such a utility function is said to be mixed risk averse.

Hence, for all order n, the nth-order utility premium of a mixed risk averse agent is

always positive. In other words, such an individual always incurs a pain when facing

the passage from the risk Y to a less favourable one X dominated via nth-order

stochastic dominance. If the utility function u satisfies ð�1Þð1þkÞ
uðkÞ � 0

8k ¼ 1; . . .; n, we will label u as mixed risk averse from order 1 to n.

An important particular case of the nth-order utility premium corresponds to the

case where, using the terminology introduced by Eeckhoudt et al. (2009), Y and X

are lotteries, respectively, combining: ‘‘good’’ with ‘‘bad’’ in both states and ‘‘good

with good’’ in one state and ‘‘bad with bad’’ in the other state. Obviously, the

terminology introduced by Eeckhoudt et al. (2009) is very close to the concept of

risk apportionment in Eeckhoudt and Schlesinger (2006). Eeckhoudt and Sch-

lesinger (2006) defined risk apportionment of order n (n� 1), by imposing

9 We assume throughout this article that the support of any random variable ~z is defined such that x þ z is

in the domain of u.
10 The nth-order utility premium was already used by Eeckhoudt et al. (2009) as well as by Ebert et al.

(2017) without being given a name. However, Harris Schlesinger referred to this utility premium as the

‘‘comparative utility premium’’ during a presentation of an earlier version of Ebert et al. (2017) at the

2013 EGRIE seminar in Paris.
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preferences over simple lotteries11 Risk apportionment of order n is equivalent to

the condition signfuðnÞg ¼ ð�1Þðnþ1Þ
which can be interpreted as a preference for

harms disaggregation at order n. These higher-order risk attitudes entail a preference

for combining relatively good outcomes with bad ones and can be interpreted as a

desire to disaggregate the harms of unavoidable risks and losses12Eeckhoudt et al.

(2009) generalized Eeckhoudt and Schlesinger (2006) and established that a

decision maker exhibiting risk apportionment prefers not to group the two relatively

‘‘bad’’ lotteries in the same state, where ‘‘bad’’ is defined via higher-order stochastic

dominance. Such a decision maker prefers combining ‘‘good’’ with ‘‘bad’’ in each

state of nature. They derived in particular the following theorem:

Theorem (Eeckhoudt et al. 2009) Suppose that Yi dominates Xi via ni th-order

stochastic dominance for i ¼ 1; 2 and suppose that X1;X2; Y1; Y2 are mutually

independent risks. The 50–50 lottery ½X1 þ Y2; Y1 þ X2� dominates the 50–50 lottery

½X1 þ X2; Y1 þ Y2� via ðn1 þ n2Þ th-order stochastic dominance.

Thus, in their work, our Y and X above may be represented by the following 50–

50 lotteries

Y ¼ ½X1 þ Y2; Y1 þ X2� and X ¼ ½X1 þ X2; Y1 þ Y2� ð10Þ

where n1 þ n2 ¼ n. The basic idea is that a decision maker with a utility function u

such that ð�1Þð1þkÞ
uðkÞ � 0 8k ¼ 1; . . .; n will allocate the state-contingent risks in

such a way as not to group the two ‘‘bad’’ risks in the same state, where ‘‘bad’’ is

defined via ith-order stochastic dominance. Such an individual prefers the 50–50

lottery ½X1 þ Y2; Y1 þ X2� to the 50–50 lottery ½X1 þ X2; Y1 þ Y2�:

1

2
E½uðX1 þ Y2Þ� þ

1

2
E½uðY1 þ X2Þ��

1

2
E½uðX1 þ X2Þ� þ

1

2
E½uðY1 þ Y2Þ�: ð11Þ

The passage from Y to X creates a loss of utility due to the aggregation of the harms.

In such a case, our nth-order utility premium measures the degree of pain due to the

passage from Y to X.

Other particular cases of the nth-order utility premium are the various premia

defined in the previous sub-section for which Y dominates X via nth-order Ekern’s

dominance (X �n Y). Indeed, following Ekern (1980), if X �n Y then wðx; Y ;XÞ� 0

for all x if and only if ð�1Þð1þnÞ
uðnÞ � 0. For instance, when Y ¼ 0 and X is a zero-

mean background risk, X ¼ ~� with Eð~�Þ ¼ 0, the function w writes as

wðx; 0; ~�Þ ¼ uðxÞ � E½uðx þ ~�Þ� ¼ wAðx;eeÞ. This is the 2nd-order utility premium

introduced by Friedman and Savage (1948) to define the non-monetary risk aversion

measure: wðx; 0; ~�Þ� 0 if and only if the individual is risk averse (u00 � 0). When Y

and X are defined as equiprobable lotteries, they are particular cases of lotteries

defined by Eq. (10). For instance, when Y and X are defined as equiprobable lotteries

11 These lotteries were characterized by Roger (2011) who established that they only differ by their

moments of order greater than or equal to n. See also Ebert (2013).
12 See also the experimental results obtained by Deck and Schlesinger (2010, 2014).
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describing an increase in downside risk (Menezes et al. 1980): Y ¼ ½�l; ~�� and

X ¼ ½0;�l þ ~��, i.e. Y1 ¼ 0, Y2 ¼ 0, X1 ¼ �l and X2 ¼ ~�, the function w writes as

wðx; Y;XÞ ¼ 1

2
wPðx; ~�Þ; ð12Þ

where wPðx; ~�Þ is the prudence utility premium defined by Crainich and Eeckhoudt

(2008). Here w(x; Y, X) is the 3rd-order utility premium. It measures the degree of

pain due to the passage from Y to X with X �3 Y . When Y and X are defined as the

following equiprobable lotteries: Y ¼ ½~h; ~�� and X ¼ ½0; ~hþ ~�� where ~h and ~� are

independent and zero-mean random variables, i.e. Y1 ¼ 0, Y2 ¼ 0, X1 ¼ ~h and

X2 ¼ ~�, the function w writes as

wðx; Y ;XÞ ¼ 1

2
wTðx; ~�Þ; ð13Þ

where wTðx; ~�Þ is the temperance utility premium defined by Courbage and Rey

(2010). Here w(x; Y, X) is the 4th-order utility premium. It measures the degree of

pain due to the passage from Y to X with X �4 Y .

3 Merging changes in risks and the superadditivity of the nth-order
utility premium

Ebert et al. (2017) offered a reinterpretation of Eeckhoudt et al. (2009)’s results

expressed in Eq. (11) by showing that mixed risk aversion ensures mutual

aggravation of risk changes, i.e. the decision maker’s trait of perceiving two risk

changes as mutually aggravating. They rewrote Eq. (11) equivalently as

E½uðY1 þ Y2Þ� � E½uðX1 þ X2Þ��
�

E½uðY1 þ Y2Þ� � E½uðX1 þ Y2Þ�
�

þ
�

E½uðY1 þ Y2Þ� � E½uðY1 þ X2Þ�
�

;
ð14Þ

i.e. the utility from avoiding both risk changes at once is greater than the utility from

avoiding the first risk change (passage from Y1 to X1) plus the utility from avoiding

the second risk change (passage from Y2 to X2). According to Ebert et al. (2017),

mutual aggravation means that experiencing risks increases one at a time is com-

paratively better than having to face two risk increases at once. This is useful for

risk management applications, in particular, as shown in the web appendix to their

paper. Using the nth-order utility premium, Eq. (14) can be rewritten as13

wðx; Y1 þ Y2;X1 þ X2Þ�wðx; Y1 þ Y2;X1 þ Y2Þ þ wðx; Y2 þ Y1;X2 þ Y1Þ: ð15Þ

In this section, we consider a related but different issue. We consider a change in the

risk environment of the decision maker that corresponds to the process of merging

13 Note that both Theorem 2 in Ebert et al. (2017) and our Proposition 1 below assume mixed risk

aversion. But their theorem uses Liu (2014)’s theorem, a more general condition, while we use stochastic

dominance. We also assume that Y1 and Y2 are dominated by zero at order 2.
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changes in risks. More specifically, we consider a change in risk defined as the

passage from Y1 to X1 and from Y2 to X2 with X1 �n1�SD Y1 and X2 �n2�SD Y2 where

risks Y1, Y2, X1 and X2 are mutually independent and where Y1 �2�SD 0 and

Y2 �2�SD 0. We wonder under which conditions on the utility function u the non-

monetary cost of the total change in risk (passage from ðY1 þ Y2Þ to ðX1 þ X2Þ) is
larger than the sum of the non-monetary costs of each change in risk (passage from

Y1 to X1 and independently passage from Y2 to X2Þ. More formally, we wonder what

properties of u ensure the following inequality:

wðx; Y1 þ Y2;X1 þ X2Þ�wðx; Y1;X1Þ þ wðx; Y2;X2Þ: ð16Þ

If Y1 and Y2 are both dominated by zero at order 2, the following proposition

provides conditions for such a comparison (see proof in the Appendix).

Proposition 1 Consider mutually independent random variables X1, X2, Y1 and

Y2, such that X1 �n1�SD Y1, X2 �n2�SD Y2, Y1 �2�SD 0 and Y2 �2�SD 0. Then the

nth-order utility premium satisfies wðx; Y1 þ Y2;X1 þ X2Þ�wðx; Y1;X1Þ þ
wðx; Y2;X2Þ for all mixed risk-averse utility functions u from order 1 to n1 þ n2,

8n1 � 2, 8n2 � 2.

Proposition 1 means that welfare is reduced by merging changes in risks instead

of facing them separately, i.e. the welfare loss of both increases in risks taken

together is larger than the sum of welfare losses from assuming each increase in risk

separately.

A possible illustration of this result is given by the current changes in risk faced

by many financial institutions. They must take into account the entry into the market

of digitally powered financial platforms developed by GAFA (Google, Apple,

Facebook, Amazon) and others. A bank with settlement in different regions faces a

change in risk for every local entity, with the changes in risk being specific to the

competition environment of each region. Is it beneficial for this bank to merge the

different settlements in one single entity to face the changes in risk? Proposition 1

tells us that this is not the case if the decision process of the bank may be

represented by the preferences of a mixed risk-averse decision maker.

Proposition 1 also implies the superadditivity of the nth-order utility premium.14

From the risk theory literature (see for example Bühlmann (1985) or Gerber (1981)),

it is well known that financial risks are very often self-aggravating. This would

suggest that the cost of risk for two independent risks should be greater than the sum

of costs of the two risks taken in isolation. If it were the case, the cost of risk would

be superadditive. The definition of superadditivity is the following. A real-valued

function f is superadditive if f ðz1 þ z2Þ is larger than f ðz1Þ þ f ðz2Þ for all z1 [ 0 and

z2 [ 0. The opposite inequality holding true for subadditivity.

Here, we address the issue of superadditivity when the cost of risk is defined in

non-monetary terms through the concept of the nth-order utility premium. We

consider the passage from a risky situation Y to a less favourable one Xi (i ¼ 1; 2).
The superadditivity of the nth-order utility premium writes as

14 We thank a referee for pointing out the link between the two properties.
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wðx; Y;X1 þ X2Þ�wðx; Y;X1Þ þ wðx; Y;X2Þ; ð17Þ

where Y, X1 and X2 are mutually independent random variables. Subadditivity of the

nth-order utility premium corresponds naturally to the opposite inequality. Starting

from Proposition 1 we obtain the following result (see proof in the Appendix).

Corollary 1 Consider mutually independent random variables X1, X2 and Y, such

that X1 �n1�SD Y; X2 �n2�SD Y ; with Y �2�SD 0. Then the nth-order utility premium

is superadditive (i.e. wðx; Y;X1 þ X2Þ�wðx; Y;X1Þ þ wðx; Y;X2Þ) for all mixed

risk-averse utility functions u from order 1 to n1 þ n2, 8n1 � 2, 8n2 � 2.

According to Corollary 1, the pain of facing a change in two risks simultaneously

is higher than the sum of the pains of facing the two changes in risk separately for

all mixed risk-averse decision makers.

In the specific case of the Friedman–Savage utility premium, with X1 and X2

independent zero-mean risks, Corollary 1 means that the pain of facing two risks

simultaneously is higher than the sum of the pains of facing each risk separately for

a risk-averse and temperant individual. Eeckhoudt and Gollier (2001) examine this

issue when the cost of risk is defined in terms of risk premium. They show that the

risk premium is superadditive if risk preferences are risk vulnerable.15 Hence, while

risk vulnerability is required for monetary measures of risk to be superadditive, for

which temperance is only a necessary condition, temperance here is sufficient to

obtain superadditivity in the case of the Friedman–Savage utility premium.

We can illustrate the result of Corollary 1 in the spirit of Samuelson (1963) who

points out that risk averters prefer to subdivide risks instead of facing them in one

shot.

Let us consider three periods, period 1, period 2 and period 3. In period 1, the

agent faces a risk Y. He knows that in the two other periods, instead of facing Y, he

will face two other risks, X1 and X2, respectively, which are both more severe than

Y. For example, X1 reflects the risk of a heavy medical treatment and X2 represents

the risk of a new job, while Y is the status quo. The agent can decide in which period

he will face the changes in risk. He can decide to face them one by one, in two

consecutive periods, or to face them simultaneously in period 3 while maintaining

the status quo in period 2.

Ignoring the discount factor, the intertemporal expected utility writes in case 1 as

Euðx þ YÞ þ Euðx þ X1Þ þ Euðx þ X2Þ and in case 2 as Euðx þ YÞ þ Euðx þ YÞþ
Euðx þ X1 þ X2Þ. Saying that the intertemporal expected utility in case 2 is lower

than the intertemporal expected utility in case 1 is equivalent to Eq. (17). Therefore

mixed risk aversion ensures that the agent prefers to face the changes in risk one by

one in consecutive periods 2 and 3.

15 Risk vulnerability means that risk aversion increases with the presence of an independent background

risk (Gollier and Pratt 1996). Sufficient and necessary conditions on the utility function to have risk

vulnerability are quite complex. A necessary condition for risk vulnerability is uð4Þ � 0.
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4 Other properties of the nth-order utility premium

In this section we consider the impact of background risk on the level of the nth-

order utility premium. The introduction of background risk means that the analysis

is transposed to a multiple risk setting. Thus, we enter into the domain of issues

addressed by Eeckhoudt et al. (2009) and Ebert et al. (2017). All our results are

expressed as corollaries of the main theorem in Eeckhoudt et al. (2009). The novelty

is that they are formulated as properties of the nth-order utility premium. In

addition, we also obtain that mutual mitigation of risks is possible, instead of mutual

aggravation, depending on how background risk is introduced.

4.1 The nth-order utility premium and increases in background risk

Following Courbage and Rey (2010), we can investigate, in the more general

context of the nth-order utility premium, how this measure reacts to the introduction

on wealth of a sure loss (�l with l[ 0) or a zero-mean background risk (~� with

Eð~�Þ ¼ 0). As intuition suggests, the pain increases in both cases under usual

conditions on the signs of higher-order derivatives of the utility function. Indeed,

considering the impact of a sure loss and a background risk on the n th-order utility

premium, we obtain:

wðx � l; Y;XÞ � wðx; Y ;XÞ� 0 , ð�1Þðkþ1Þ
uðkÞ � 0 8k ¼ 1; . . .; n þ 1: ð18Þ

wðx þ ~�; Y;XÞ � wðx; Y;XÞ� 0 , ð�1Þðkþ1Þ
uðkÞ � 0 8k ¼ 1; . . .; n þ 2: ð19Þ

These results are obtained by expanding the two inequalities and using Eeckhoudt

et al. (2009), as explicitly demonstrated in Ebert et al. (2017). Equations (18) and

(19) have intuitive explanations. If we consider a decision maker with a mixed risk-

averse utility function from order 1 to n þ 2, Eq. (18) means that the Nth-order

utility premium (8N � n þ 1) is vulnerable to a sure loss in the sense that it

increases with the introduction of a sure loss. Similarly, Eq. (19) means that the Nth-

order utility premium (8N � n) is vulnerable to a zero-mean background risk, i.e. it

increases with the introduction of a zero-mean background risk.

Such analysis can be extended to a more general context by investigating the

degree of pain associated with facing the passage from Y to X when the wealth level

becomes riskier. A riskier wealth corresponds to the random wealth level, initially

equal to x þ Y2; becoming x þ X2 where Y2 dominates X2 via n2th-order stochastic

dominance (X2 �n2�SD Y2 with X2 and Y2 being independent random variables). The

degree of pain associated with facing the passage from Y to X when the wealth level

becomes riskier is defined by the following expression:

wðx þ X2; Y ;XÞ � wðx þ Y2; Y ;XÞ: ð20Þ

A positive sign of (20) means that the pain of facing the passage from Y to X in-

creases when the wealth level becomes riskier. We obtain the following result as a

corollary of Eeckhoudt et al. (2009)’s theorem (see proof in the Appendix).
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Corollary 2 Consider mutually independent random variables X, Y, X2 and Y2,

such that X �n1�SD Y and X2 �n2�SD Y2. Then wðx þ X2; Y ;XÞ � wðx þ
Y2; Y;XÞ� 0 for all mixed risk-averse utility functions u from order 1 to n1 þ n2.

Corollary 2 can be interpreted in a similar way as Eqs. (18) and (19). If we

consider a decision maker with a mixed risk-averse utility function from order 1 to

n þ n2, it means that the Nth-order utility premium (8N � n � n2) is vulnerable to a

detrimental change of order n2 in the background risk. Corollary 2 generalizes

results in Courbage and Rey (2010) using results on stochastic dominance and offers

a reinterpretation of Eeckhoudt et al. (2009)’s result.

If we restrict our attention to the special case of Ekern dominance as often done

in the literature, then, according to Ekern (1980), wðx; Y ;XÞ� 0 if and only if

ð�1Þð1þnÞ
uðnÞ � 0, i.e. risk apportionment of order n holds16. From Corollary 2, we

can then extrapolate that the pain due to malapportionment of order ðn � n2Þ is

vulnerable to an increase in risk of order n2. This offers an alternative interpretation

of the sign of the nth-order derivative of the utility function (uðnÞ) which can be

easily understood and remembered, without reference to any specific decision

problem. For instance, in the case of the utility premium for which Y ¼ 0 and X ¼ ~�
(X �2 Y), the degree of pain of facing the risk ~� increases when initial wealth

becomes risky (i.e. when any zero-mean risk X2 is added to initial wealth) for a

temperant individual. In the same way, in the case of the prudence premium, for

which X represents an increase in downside risk over Y (X �3 Y), the degree of pain

of facing an increase in downside risk increases when initial wealth becomes risky

for an individual featuring edginess17

4.2 Merging changes in risk under background risk

In the context described by Proposition 1, the two risks sets ðY1;X1Þ and (Y2;X2Þ are
considered in isolation. Nevertheless, these two risk sets are present in the decision

maker’s environment. A change of perspective arises if we take this fact into

account, and if we consider that risk 2 (X2 or Y2) is a background risk for the

management of risk 1 (X1 or Y1) and vice versa. More specifically, we wonder under

which conditions on the utility function u the non-monetary cost of the total change

in risk (passage from ðY1 þ Y2Þ to ðX1 þ X2Þ) is larger than the sum of the non-

monetary costs of each change in risk taking account the global decision maker’s

environment, i.e. the passage from Y1 to X1 considering that risk 2 is a background

risk for the management of risk 1, and the passage from Y2 to X2 considering that

risk 1 is a background risk for the management of risk 2. Interestingly, it turns out

that this change of perspective can reverse the results. We obtain the following

result as a corollary of Eeckhoudt et al. (2009) theorem.

16 Note, however, that if risk apportionment of order n holds, recent work by Menegatti (2015) shows

that risk apportionment of order j will hold, for j ¼ 2; . . .; n � 1, under very general conditions on the

utility function. We are thus brought back to the condition of Corollary 2, even when Ekern increases in

risk of order n are considered, instead of stochastic dominance of order n.

17 The concept of edginess, i.e. uð5Þ � 0, was introduced by Lajeri-Chaherli (2004) to explain the effects

of background risks on precautionary savings.
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Corollary 3 Consider mutually independent random variables X1, X2, Y1 and Y2

such that X1 �n1�SD Y1 and X2 �n2�SD Y2. Then the two following items (a) and (b)

hold for all mixed risk-averse utility functions u from order 1 to n1 þ n2:

(a) wðx; Y1 þ Y2;X1 þ X2Þ�wðx þ Y2; Y1;X1Þ þ wðx þ Y1; Y2;X2Þ
(b) wðx; Y1 þ Y2;X1 þ X2Þ�wðx þ X2; Y1;X1Þ þ wðx þ X1; Y2;X2Þ.

The difference between items (a) and (b) arises from background risk

considerations on the right-hand side. In item (b), the background risks taken into

account are the worse risks X1 and X2 while they are the better ones Y1 and Y2 in

item (a). In item (b), the decision maker is aware that risk Y2 will be replaced by risk

X2 when she feels the loss of welfare from facing the risk X1 instead of Y1. In item

(a), the decision maker is blind to this risk substitution. She feels a reduced loss

from the sum of individual risk substitutions because she ignores that risk Y2 will be

replaced by risk X2 when dealing with risk 1, and she ignores that risk Y1 will be

replaced by risk X1 when dealing with risk 2. In this sense, item (b) reflects a kind of

rational expectations, whereas item (a) reflects blindness.

It should also be stressed that following Ebert et al. (2017), item (a) of Corollary

3 can have another interpretation in terms of mutual aggravation of risks changes.

Using the perspective of these authors, we show that item (b) can also be interpreted

in terms of mutual mitigation of risks changes. To reach such conclusion, we have to

consider the following property of the nth-order utility premium. Assume three

mutually independent risks, X, Y and Z, then wðx þ Z; Y;XÞ ¼ wðx; Y þ Z;X þ ZÞ18.
Using this property, Corollary 3 can be equivalently rewritten as follows.

Corollary 4 Consider mutually independent random variables X1, X2, Y1 and Y2

such that X1 �n1�SD Y1 and X2 �n2�SD Y2. Then the two following items (a) and (b)

hold for all mixed risk-averse utility functions u from order 1 to n1 þ n2:

(a) wðx; Y1 þ Y2;X1 þ X2Þ�wðx; Y1 þ Y2;X1 þ Y2Þ þ wðx; Y2 þ Y1;X2 þ Y1Þ
(b) wðx; Y1 þ Y2;X1 þ X2Þ�wðx; Y1 þ X2;X1 þ X2Þ þ wðx; Y2 þ X1;X2 þ X1Þ.

Item (a) was already provided by Ebert et al. (2017) and corresponds to Eq. (15).

Item (b) can also be interpreted in the same spirit as Ebert et al. (2017) but in terms

of mutual mitigation instead of mutual aggravation as follows: the pain due to the

two risk changes at once (passage from ðY1 þ Y2Þ to ðX1 þ X2Þ) is smaller than the

pain due to the aggravation of the first risk plus the pain due to the aggravation of

the second risk.

The difference between the two results—mutual mitigation in item (b) of

Corollary 4, mutual aggravation in item (a)—is explained by the comparison of the

right-hand sides (RHS) in each item. On the RHS of item (a), the decision maker

switches twice from a low-risk to a mixed risk situation. On the RHS of item (b), she

switches twice from a mixed risk to a high risk situation. This is more painful. This

leads therefore to interpret the difference as the outcome of an increasing utility cost

18 Indeed, it is easy to verify that wðx þ Z; Y ;XÞ and wðx;Y þ Z;X þ ZÞ both write as

E½uðx þ Z þ YÞ� � E½uðx þ Z þ XÞ�.
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of changes in risk. Moving from low-risk to mixed risk situations is less painful than

moving from mixed risk to high risk situations.

5 Conclusion

The paper provides a generalization of non-monetary measures of risk by

introducing the concept of nth-order utility premium. This measure reflects the

degree of pain due to facing the transition from one risk to a more severe one, with

changes in risk expressed through the concept of stochastic dominance of order

n. The measure is not quite new, since it was used in particular by Eeckhoudt et al.

(2009) and Ebert et al. (2017), without being formally defined. Our objective is to

put explicitly the focus on this concept and to analyse systematically some of its key

properties. Other non-monetary measures of risk previously defined in the literature,

such as the prudence utility premium and the temperance utility premium, are

special cases of our nth-order utility premium.

We first address the issue of deciding whether it is beneficial to merge changes in

risk or not when the nth-order utility premium is used as the decision tool. Our

results show that a decision maker whose preferences are mixed risk averse will feel

more pain from merging increases in risk than from facing them in separate entities

and we provide an example. We also show that this result implies the property of

superadditivity of the n th-order utility premium. We present an illustration in the

spirit of Samuelson (1963) who pointed out that risk averters prefer to subdivide

risks instead of facing them in one shot. This holds here for increases in risk and for

mixed risk-averse decision makers.

We then turn to analysing the impact of changes in risk when other risks are in

the background and are also subject to changes. This brings us closer to recent

contributions in Ebert et al. (2017) emphasizing mutual aggravation of multiple risk

changes. Similarly, we use a seminal result in Eeckhoudt et al. (2009) to show that

the nth-order utility premium increases when the decision maker faces a riskier

wealth under mixed risk aversion. However, our last results emphasize that merging

increases in risk may become beneficial if risks in two separate entities are

considered as background risks of each other, and if the decision maker is aware that

both risks will deteriorate. This means that mutual mitigation of risks is also

possible under some circumstances.

The results in this paper provide new interpretations of the alternating signs of

higher derivatives of the utility function. As all commonly used utility functions in

economic theory, with the first derivative being positive and the second one being

negative, exhibit mixed risk aversion, our results then apply to most individuals

facing a deterioration in their risk environment.

Our focus on the properties of the nth-order utility premium represents a modest

step in our knowledge of the impact of multiple risk deteriorations. In particular, we

limited our study to the case of additive risks. But not all risks are additive. For

instance, the hazards to which a property is exposed and the random changes in its

value are multiplicative, not additive. The study of the utility premium under nth-

order changes of multiplicative risks remains to be addressed.
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Appendix

Proof of Proposition 1 We have X2 �n2�SD Y2 and Y1 �2�SD 0. Applying

Eeckhoudt et al. (2009), we know that E½uðx þ Y2Þ� þ E½uðx þ X2 þ Y1Þ� � E½uðx þ
X2Þ� � E½uðx þ Y1 þ Y2Þ� � 0 for all u such that ð�1Þð1þkÞ

uðkÞ � 0

8k ¼ 1; . . .; n2 þ 2.

Analogously, we have X1 �n1�SD Y1 and Y2 �2�SD 0. Applying Eeckhoudt et al.

(2009), we know that E½uðx þ Y1Þ� þ E½uðx þ X1 þ Y2Þ� � E½uðx þ X1Þ� � E½uðx þ
Y1 þ Y2Þ� � 0 for all u such that ð�1Þð1þkÞ

uðkÞ � 0 8k ¼ 1; . . .; n1 þ 2. However,

from Eeckhoudt et al. (2009) we get E½uðx þ Y1 þ Y2Þ� þ E½uðx þ X1 þ X2Þ� �
E½uðx þ X1 þ Y2Þ� � E½uðx þ Y1 þ X2Þ� � 0 for all u such that ð�1Þð1þkÞ

uðkÞ � 0

8k ¼ 1; . . .; n1 þ n2. Consequently, if u is such that ð�1Þð1þkÞ
uðkÞ � 0

8k ¼ 1; . . .; n1 þ n2, 8n1 � 2, 8n2 � 2 then the following inequality holds:
�

E½uðx þ

Y2Þ� þ E½uðx þ X2 þ Y1Þ� � E½uðx þ X2Þ� � E½uðx þ Y1 þ Y2Þ�
�

þ
�

E½uðxþ Y1Þ�þ

E½uðx þ X1 þ Y2Þ�� E½uðx þ X1Þ� � E½uðx þ Y1þ Y2Þ�
�

þ
�

E½uðx þ Y1 þ Y2Þ� þ

E½uðx þ X1 þ X2Þ�� E½uðx þ X1þ Y2Þ� � E½uðx þ Y1 þ X2Þ�
�

� 0. It rewrites equiv-

alently as E½uðx þ Y1Þ� � E½uðx þ X1Þ� þ E½uðx þ Y2Þ� � E½uðx þ X2Þ� �E½uðx þ
Y1 þ Y2Þ� � E½uðx þ X1 þ X2Þ that is equivalent to wðx; Y1;X1Þ þ
wðx; Y2;X2Þ�wðx;Y1 þ Y2;X1 þ X2Þ that ends the proof. �

Proof of Corollary 1 Let us define Y ¼ Y1 þ Y2: Assuming X1 �n1�SD ðY1 þ Y2Þ
and X2 �n2�SD ðY1 þ Y2Þ, we want to prove that Proposition 1 implies Corollary 1.

As Y1, Y2, X1, X2 are mutually independent, we have Y ? X1, Y ? X2. As Y1 �2�SD

0 and Y2 �2�SD 0, we have (using the convolution property) Y1 þ Y2 �2�SD 0.

Assumptions of Corollary 1 hold.

Equation (17) (i.e. the claim of Corollary 1) rewrites then wðx; Y1 þ Y2;X1 þ
X2Þ�wðx; Y1 þ Y2;X1Þ þ wðx; Y1 þ Y2;X2Þ that we label ð170Þ. Equation (16) (i.e.

the claim of Proposition 1) writes as wðx; Y1 þ Y2;X1 þ X2Þ�
wðx; Y1;X1Þ þ wðx; Y2;X2Þ.

We show (see proof below) that wðx; Y1;X1Þ�wðx; Y1 þ Y2;X1Þ and

wðx; Y2;X2Þ�wðx;Y1 þ Y2;X2Þ. Using this result we obtain Eq. (16) ) Eq. (170).
To prove that wðx; Y1;X1Þ�wðx; Y1 þ Y2;X1Þ; we use the definition of the nth-

order utility premium. Then wðx; Y1;X1Þ�wðx; Y1 þ Y2;X1Þ writes equivalently as

E½uðx þ Y1 þ Y2Þ� �E½uðx þ Y1Þ� which is true for all u such that u00\0 as Y1 and Y2

are zero-mean independent risks. The proof is the same for

wðx; Y2;X2Þ�wðx;Y1 þ Y2;X2Þ. �
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Proof of Corollary 2 Using the definition of w, wðx þ X2; Y;XÞ � wðx þ
Y2; Y;XÞ� 0 rewrites equivalently as E½uðx þ Y þ X2Þ� � E½uðx þ X þ X2Þ�
�E½uðx þ Y þ Y2Þ� � E½uðx þ X þ Y2Þ�, that is equivalent to E½uðx þ Y þ X2Þ�
þE½uðx þ X þ Y2Þ� �E½uðx þ Y þ Y2Þ� þ E½uðx þ X þ X2Þ�. Following Eeckhoudt

et al. (2009), this last expression is equivalent to ð�1Þð1þkÞ
uðkÞ � 0 for

k ¼ 1; . . .; n1 þ n2. �
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