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ABSTRACT Many stochastic dynamic sales applications are characterized by time-dependent price
elasticities of demand. However, in general, such problems cannot be solved analytically. To determine smart
pricing heuristics for general time-dependent dynamic pricing models, we solve a general class of deterministic
dynamic pricing problems for perishable and durable goods. The continuous time model has several time-
dependent parameters, for example, discount rate, marginal unit costs and price elasticity. We show how to
derive the value function and optimal pricing policies. On the basis of the feedback solution to the deterministic
model, we propose a method for constructing heuristics to be applied to general stochastic models. For the
case of isoelastic demand, we analytically verify the excellent performance of this approach for both small and

large inventory levels.
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INTRODUCTION

The traditional application of revenue mana-
gement theory offers the best way to sell
perishable or durable products. Many firms
dynamically set prices to maximize their
expected profits. Examples of such dynamic
pricing problems can be found in various
contexts, such as in the fashion industry, fruit
markets, accommodation services and the air-
line industry. In many such applications, the
price elasticity of demand is time-dependent.
For instance, in the case of fashion goods, the
demand is typically decreasing in time; in the

case of airline or hotel tickets, reservation prices
usually increase. However, most dynamic pricing
optimization models only consider specific demand
functions with constant elasticities. Thus, a
dynamic pricing model with general time-
varying demand is needed.

This article presents stochastic and determi-
nistic pricing models with time-dependent
demand elasticities. We consider the problem
of selling a stock of items over a finite or infinite
horizon, and the objective is to maximize the
expected revenues. Discounting, marginal unit
costs (for example, shipping costs) and inventory
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holding costs are included in the models and are
allowed to depend on time. Unfortunately,
there exist very few closed-form solutions to
stochastic models. Hence, powerful heuristics
and explicit special case solutions are very
useful. We aim to show that such heuristics can
be derived by solving deterministic versions of
the problem. In accordance with these determi-
nistic solutions, we construct dynamic pricing
heuristics to apply to stochastic models. For
special cases, we analytically verify the excellent
performance of such heuristics. Note that the
analytical solutions to the deterministic models
may also provide economic insight into their
stochastic counterparts.

There is extensive literature on revenue
management and related practices, such as the
survey articles of Bitran and Caldentey (2003),
Elmaghraby and Keskinocak (2003) and Shen
and Su (2007), and the books of Talluri and
van Ryzin (2004) and Phillips (2005) that provide
broad discussions of various aspects of revenue
management. In the literature, most dynamic
pricing models are time-homogeneous. How-
ever, very few articles address time-dependent
demand. In some models, the arrival rate of
potential customers is allowed to depend on
time. In such models, the demand rate (or sales
intensity) A(t, p) is usually of a separable form, that
is, A(t, p) = u(t) - F(p), where u is the arrival
rate and F can be interpreted as the probability
that a customer’s reservation price exceeds the
price p. In the special cases of exponential or
isoelastic demand, closed-form solutions to the
corresponding stochastic dynamic pricing model
can be derived (cf. McAfee and te Velde, 2008;
Berman et al, 2013; Helmes and Schlosser, 2013).
Nevertheless, the evaluations of these models
show that the expected evolution of price is
almost constant in time (except for a small hump
at the end of the time horizon). These models —
characterized by constant price -elasticities —
cannot explain different, significant price trends.
Hence, they are not suitable for many real-life
applications.

Zhao and Zheng (2000) consider more gen-
eral time-dependent dynamic pricing models,

where the propensity to buy F also depends on
time. For the stochastic case, they analyze the
structural properties of the optimal pricing
policy (in feedback form) as well as those of the
value function representing the expected future
profits. However, they do not propose solution
methods. Xu and Hopp (2009) and Berman et al
(2013) study the price trends of generalized
dynamic pricing models. They show that if a
customer’s willingness to pay rapidly changes
over time upward or downward, price trends
can be expected. In both articles, the authors
apply discrete time approximations to solve the
illustrating examples. Their results show that
time dependencies in the price elasticity are
mainly responsible for significant price trends
in the stochastic dynamic pricing models.
Unfortunately, due to their complexity, such
models in general cannot be solved analytically.
Hence, numerical methods, such as discrete
time approximations, must be used. However,
such numerical solution approaches rarely pro-
vide economic insight and are not appropriate
for showing analytical results.

An alternative is to use heuristics. A fre-
quently used heuristic policy is to apply an
optimally chosen fixed price (see, for example,
Gallego and van Ryzin, 1994). For very large
inventory levels, these heuristics are shown to
be asymptotically optimal if demand elasticities
are constant over time. In models with time-
varying demand, other heuristics should be
used. In Section 7.1.4 of their paper, Gallego
and van Ryzin (1997) consider a demand
intensity that is piecewise constant over time
and apply the following heuristic: for each of
the different time intervals, a price is used that
coincides with the corresponding optimal fixed
price of the related deterministic model.

Following this idea, in time-dependent
models, it is advisable to apply the optimal price
trajectory of the deterministic model, as in the
open-loop pricing policy. An even better
approach is to apply the optimal feedback prices
of the deterministic model as a heuristic in
stochastic models. We will verify that the latter
approach yields excellent results for both large
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and small inventories. However, the solutions
to general time-dependent deterministic dy-
namic pricing models are needed to apply these
more complex but powerful heuristics solu-
tions. To our knowledge, no such general
solutions have been analyzed in detail. Thus,
our aim is to close that gap.

The main contribution of this article is that it
demonstrates how to derive optimal policies of
general time-dependent deterministic models.
Moreover, using a special class of models, we
analytically verify the excellent performance of
the optimal feedback policy of the deterministic
model applied to the corresponding stochastic
model. Another contribution is that we describe
a general transformation approach that enables us
to include inventory holding costs in the model.

The article is organized as follows. The next
section provides a detailed formulation of the
general stochastic and deterministic time inho-
mogeneous dynamic pricing models. Inspired by
the Lagrangian approach that Stiglitz (1976)
adopts for cases with isoelastic demand, we show
how to transform the deterministic dynamic
optimization problem into the analysis of a single
non-linear equation with one variable. Under
minor assumptions, the existence and uniqueness
of optimal policies will be shown. In general, we
find that we must distinguish between an inven-
tory-saturated overage case and an underage case,
where it is optimal to sell the entire inventory.
Finally, optimal pricing strategies are derived in
feedback and open-loop forms. Furthermore, we
determine the relation between the optimal
Lagrange multiplier and the value function,
which is characterized by the Bellman equation
that is associated with the dynamic control
problem.

In the section after that, we use the results of
the previous section to solve the isoelastic
demand model, where price elasticity, marginal
unit costs, arrival rate and discount rate are
time-dependent. Similarly, we solve exponen-
tial and linear demand models. For special cases,
we obtain explicit feedback solution formulas
for the value function and the optimal pricing
policy. Moreover, we derive the optimal inventory

paths and present the solution formulas as func-
tions of time.

In the following section, we verify the
quality of our heuristic approach to use the
feedback version of the optimal deterministic
policy in a stochastic environment. For the case
with isoelastic demand, we determine the
expected profits of optimal deterministic policies
in stochastic models by solving the associated
difference—differential equation explicitly, and
we find that our heuristic solution approach
yields promising results. Moreover, we illustrate
how the analytical results can be used to derive
simple but powerful dynamic pricing strategies
for real-life applications. In the penultimate
section, we introduce an adjustment of the
marginal unit cost function, which in general
allows us to include inventory holding costs as
well as a salvage value for unsold units. The
approach is based on a specific transformation of
the Bellman equation. The results can also be
used to derive optimal ordering decisions. In the
final section, we provide our conclusions and
give managerial recommendations.

STOCHASTIC AND
DETERMINISTIC DYNAMIC
PRICING MODELS

Description of the stochastic model
We consider the situation where a monopolist
wants to sell N (0<N<oo) items of a perishable
or durable product over a finite or infinite time
horizon T. We use a fairly general model with a
time inhomogeneous non-negative discount
rate #(f) and non-negative time-dependent unit
costs ¢(f), 0Kt T. Moreover, we assume a
positive revenue parameter v; in other words, if
a sale occurs at time f at price p, the discounted
net revenue is given by:

RO (. p—c(t)), where

1
R(1) = / (). 2

e
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We assume myopic customers, who do not
act strategically; that is, they do not wait or
anticipate prices. The dynamic of the sales
process is given by a general jump intensity
At p), 0Kt T, p=0, where at each time ¢, a
price p must be chosen. The rate A(f,p) is
assumed to be differentiable in f and p. The
random inventory level at time ¢ is denoted by
X, 0<t< T. The end of sale is the random time
7 when all N products are sold or the horizon T
is reached, that is, Tz=ming ¢ < 1{t: X, =0}AT;
for all remaining t>7, we let A(f, -, - ):=0.
The evolution of the profit process (R); is
connected to the inventory process and char-
acterized by realized net revenues (cf. (1)).
Depending on the chosen pricing strategy,
the random accumulated profit up to time
t amounts to, 0Lt T

tA\T

R, := /e_R(s) (v psm —c(s))dX

0

We want to determine a non-anticipating
Markovian feedback pricing policy p,(f) such
that the expected total profit:

TNt

E(Ry) =E / RO (1 po ()= (0)

0

At px,(1))di|Xo = NJ ()

will be maximized. By Gs=R1—R;, we denote
the random profits from time ¢ onward
(0<£t<T). Following the Bellman approach,
the best future profits E(GIX;=n) describe
the value function V,(f) of the stochastic
control problem, which is characterized
by the associated Hamilton—Jacobi—Bellman
(HJB) equation, 0<<T, n=1,2,..., N (see
Brémaud, 1980),

V() + sup{A(t, p) - (v- p=c(t) = AV, (1))}

p 20

=r(t) - V(1),
&)

where AV, ():=V,,()—V,—1(f) denotes the oppor-
tunity costs. The boundary conditions are:
Vo(t) =0, 0<t< T, and (if T<o0) 7
V,(T) =0, 0<n<N.

The optimality conditions for the feedback
prices p,(f) are given by, 0<<T, n=1,2, ...,
N:

2 = 2o o+ WL BT

For well-known, special cases with time
homogeneous price elasticities, the value func-
tion can be determined explicitly (cf. Gallego
and van Ryzin, 1994; McAfee and te Velde,
2006, for the exponential case, and McAfee and
te Velde, 2008; Helmes and Schlosser, 2013, for
the isoelastic case). Unfortunately, in general
cases, an analytical solution cannot be found, and
numerical or time discrete solution methods
must be applied. Instead, we want to identify a
general smart heuristic that is based on the
solution to the corresponding deterministic
model with continuous state space (see the
section ‘Description of the deterministic model’).

Description of the deterministic
model

Now, we consider the deterministic version of
the dynamic pricing problem on [0, T'], where
the time horizon T can be finite or infinite, that
is, T<oo, and the initial inventory is N,
0<N<oo. The state space x€[0, N] is contin-
uous, and the dynamic of the state x(f), that is,
the amount still to be sold at time ¢, is given by:

(1) = —A(1, p), x(0) = N. ©)

Admissible controls are assumed to be
non-negative Markovian feedback controls
p(t, x)€[0, 00), t€[0, T), x€[0, N) that depend
on time as well as space and are associated with a
unique inventory trajectory. Specifically, this
means that the differential equation —x(1) =
A(t, p(t, x(t))), x(0) = N, has a unique solution
x(f), and the price trajectory ps=p(t, x(f)) as a
function of time is piecewise continuous such
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that the associated profits (see below) can be
evaluated. For details, see Lee and Markus (1967).
As soon as the inventory process hits zero, the end
of sale m=ming ¢, < r{tlx() =0}AT is attained,
and for all €[z, T, we let x() =0. We want to
identify an admissible feedback control such that
the assigned price trajectory {p,1t€]0, TAT]} that,
together with the corresponding state trajectory
{x(9lt€]0, T]}, determined by (6), maximizes the
profit function:

TNt

max / e RO (v p—c(0) - At, p)dt (7)

pe=0
0

and the condition:

TNt

/ Aty p)dt <N (8)

0

for the initial inventory N is satisfied. In (7),
a given time-dependent unit cost expression
®=0, 0<t< T, and a time-dependent dis-
count rate () =0, where R(f):= fér(s)ds, are
taken into account. The revenue parameter v is
a positive constant. Next, we introduce some
regularity conditions for the rate of sales.

Assumption 1: We assume that the rate of sales
(cf. (6) satisfies the following conditions.
(A1) For all 0Kt T, there is a null price
¥ < oo such that lirr%m At, p) = 0, and for

p=p
all 0 <t T, the rate A(t, p) is strictly decreas-
ing in price p, 0 < p Sp,@.
(A2) For all 0<t< T, the rate of sales A is
assumed to be differentiable in p, 0 <p < p\.
(A3) Forall 0L t< T, the expression p+A(t, p)/
At p) is strictly increasing in p,0 <p < p.

Assumptions (Al) and (A2) are common.
Assumption (A3) is satisfied if the dynamic 4 is
of an increasing failure rate (IFR) type and will
play a prominent role. In this context, the rate
of sales is often defined as A(f, p) = u(f)-(1—E(t, p)),
where the positive function wu(f) mirrors the
arrival intensity of potential buyers, whose reser-
vation prices are characterized by the distribution
function F.

Analytical solution to the
deterministic model
In this section, for general time-dependent
demand intensities satisfying Assumption 1, we
want to determine optimal pricing strategies for
problems (7)—(8). Since no inventory costs are
involved for the time being, we assume that an
optimal policy will be one where the full time
span is used, that is, 7= T. However, at the end
of this section, we will drop this assumption and
allow for premature sell-outs.

Using the suboptimal policy p,=pi”, 0 <1<
T, nothing will be sold and the optimal revenue
(cf. (7)) is bounded from below by zero (cf.
(A1)). We also obtain that if ¢(f)/v > p!”, 0< <
T, a revenue of zero is optimal. Neglecting
condition (8), for example, in case of an unlim-
ited initial inventory N, the optimal revenue (7)
will not be reduced. In this overage case, the
optimal prices are such that at any time f,
the revenue rate ¢ *O-(v-p,—c(t))-A(t, p,) is maxi-
mized. Consequently, the optimal overage prices
pOC i argmas, 5.0 (v pi—c(0)) A1, p)),
0<t< T, do not depend on the discount rate
and will satisfy the optimality condition

yi t ocC
vepC=et) = _/1(,(5;”0%)

Note, the uniqueness and existence of these
overage prices are guaranteed by assumption
(A3). Since the associated overage sales rate is
given by /Ioc(t):=/1(t, ptoc), 0<t< T, the total
amount sold from time ¢ = 0 onward is given by:

©)

T

B(0) := / A°9€(s)ds (10)

0

and defines a critical inventory level; in other
words, if the initial inventory N is sufficiently
large, that is N> B(0), it is optimal to sell exactly
B(0) units up to time T using the overage price
policy p“€.

In the underage case, that is, if N< B(0), it
will be optimal to sell the whole amount N.
Since we still assume that it is best to keep
selling until 7= T, an optimal sales rate should
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satisfy the condition
T

/AUC(s)dséN. (11)

0

Moreover, due to the one-to-one cor-
respondence between prices and sales rates
(ct. (Al)), for any time f, prices p can be
expressed in terms of sales rates 4 via the inverse
function Qt_l(/l) such that Qr_l(/l(t, p)=p. In
order to identify an optimal policy for problem
(7) subject to (8), we use this bijective relation
to set up the following Lagrange approach:

T

max /eiR(t) . (1/~ Qfl(/lr)—c(t)) =Ko, N - A dt
L=A(t, pr)
KonZ0 0

(12)

where ko x>0 is the Lagrange multiplier,
which is associated with the inventory condi-
tion (11). The derivation of the integrand with
respect to 4; (see Appendix) yields the necessary
optimality condition, 0<t<T:

o~ RO . <,, . j’((t;, };)) +v -p;—f(f)>

= Ko,N (13)

which balances the Lagrange multiplier and the
discounted value of the sum of the net price and
hazard rate for all t. Note, the derivative of the
inverse function Q; ' must be used; afterwards,
the relation for A can be rewritten in terms of
price.

As expected, we observe that ky =0 corre-
sponds to the overage case and its optimal policy
(c)/v<) p, p§0>, 0<t<T. Next, we will
show that there is also a unique solution in the
underage case.

Lemma 2.1: Let assumptions (A1)—(A3) be satis-
fied. There is a unique number KON>0
such that the associated price path p/(kX \,),

0Lt T, satisfying (13) implies

T
/ /1 i KO N )dt:NforallN<B(O)
0

Proof: On the basis of the zero-revenue
policy p”, we define the parameters k™ :=¢ R®
(A, p(o))/l (t p(0)+1/ pO=ct), 0<t<T (cf.
(13)). When p! is finite (for example, in the case
of linear demand), prices that exceed p,@ are
assumed to be non-admissible (cf. (A1)). To be
able to treat general cases (w.l.o.g.), we consider
the following technical modification of (13),
0Lt T:

RO . (,/ . j’((t;,z;)) +v -pt—f(f))

= kltnax AN Ko N (14)

For any given value ko x>0, equation (14)
implies (cf. (A3)) that for all 0 << T, the price
pr=pKo n) 1s uniquely determined. This way,
each value K n is associated with a specific price
path. Note 1f Ko.n = k™, equation (14) implies
pKo.N) = =p. On the other hand, if ko N = ki,
we have p, (ko n) = p and positive revenues (cf.
(A1)) are possible. Moreover, if Ky » i increas-
ing, the associated prices p; are (strictly) con-
tinuously increasing, and the intensities A(t, p,),
0<t< T, as well as the number f()Tﬂ(t, pdt< B
(0) are (strictly) continuously decreasing. By the
Intermediate Value Theorem, it follows that

there exists a unique k* _, where k¥ >0,

oO,N’ 0,N

whose associated price path p(k YN where
PO pK KX SP ¥, leads to:
T T
/’1([ p7<)dt =B(0) > /ﬂ(t, Pr<’<g,1\’>>df
0 0
T

:Nz/ﬂ<t, p,@)dz —0

0

(|
By replacing the initial state (0, N) with
arbitrary states (¢, n) (cf. starting at t with x
(f) =n units), the argumentation above can be
generalized by considering the Lagrange multi-
plier k, , = 0 and the critical inventory level B(f).

Theorem 2.1: Let assumptions (A1)—(A3) be
satisfied. A unique solution to problem (7)
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subject to (8) exists and is characterized by the
Sfollowing:

() The optimal price trajectory (open-loop) in the
overage and underage cases is uniquely deter-
mined by (5)—(10) and can be expressed as,
0<t<s< T, 0<n<N,

p2¢(s)

pls; t, n) = {P(S;Kf,n)

(1) The optimal price trajectory in feedback form is
given by, 0<t< T, 0<n< N,

SRS

» M n

;2 B(r)
, n<B(t)

;1> B(1)
, n<B(1)

(ii1) Starting in state (t,n)= (0, N), the optimal
inventory path is given by

t
x9€(1) :=N- //IOC(S)dS, N> B(0) and

x[/(, =N-— /

s K0 \ ds N<B(0).

Remark 2.1: Following the constructive
proof of Lemma 2.1, we can use the
following simple (numerical) approach to
determine the optimal pricing policies.
For any state (¢, n), we consider a positive
number Z, and for all t<s< T, we put
e RO wA(s, p) /A s, p)Fvp—c)=Z  (cf.
(13)—(14)). Then, since for all s, the asso-
ciated price is implicitly determined, we
obtain an entire price path p(2), t<s< T.
Seeking the value Z* such that /,T Als,
p(Z*))ds=n (cf. (11)) leads to an optimal
price path.

In the following, we discuss the possibility
that a sell-out before time T can also be optimal.
In the overage case (cf. ko n=0), an additional

unit is of no further value; thus, the optimal end
of sale is the full time span. In the underage case,
a run-out before time T, for example, at T<T,
is associated with a value Ky v = Ko, N/ T) that is
smaller than &* A Lagrange multiplier

O,N"*

" . .
that is smaller than KX N, implies smaller prices,

that is, p(t;Ko,n)<p(t;kj n)- The end of sale
(KO \) where 0< 7(R,n) = T<T, satisfies
fo o.x) A(t, pi(Ko,N))dt = N. Moreover, the end
of sale (ko n) := 1<mn {‘f( t, pi(Ko, N )dt:N}
can be defined as a continuous strictly increasing
function of ko . Hence, using the optimality
conditions (11) and (14), the dynamic pricing
problems (7)—(8) can be translated into a simple

maximization problem, where the optimal sell-
out time 7* < T can be easily identified:

T

mﬁ‘XT/ RO (v py(Ron (T)) = (1)

0<T <
0

At po(Fo,n (1)) ) de

Note, via the function 7(K, ) (see above),
each time horizon T is associated with a unique
value Ko n. Hence, our problem can also be
translated to:

T(’?(U\')
max / e RO (V - Py (fq)‘ N) —c(t))~
Ko,N

~ *
0<Ko,N < N

’1(I> Pr (’~<0, N))dl.

Further properties of the analytical
solution

If the rate of sales and the unit cost function c are
differentiable at time ¢, a further derivation of
(13) with respect to time (see Appendix) yields
the following;:

0 (3e-3)= (-5

R |

ety W
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The differential equation (15) yields a neces-
sary optimality condition for the optimal open-
loop pricing trajectory and can equivalently be
formulated in terms of the price elasticity of
demand, that is, PE;=p-A1’/A and PE;=p-1"/A’,
that is:

o () - (-2)

_ z+2 AN
p v A e

Note, for separable sales rates, that is,
Alt, p)=u(f)-F(p), it directly follows that
)1//1’—/1-/1///1’2 =0 and these terms in the
equation above vanish. Moreover, if unit costs
¢ are equal to zero the equation (15) reduces to

the differential equation:

p_ 0 _1+1/PE;
p 2—PE,1//PE1

If r=0, we obtain (2— PE;/PE,) - p = ¢/v;
in other words, for undiscounted problems with
separable sales rates and constant unit costs, the
optimal price would also have to be a constant.
Gallego and van Ryzin (1994) obtain the same
result using time transformation arguments.

Remark 2.2: Using equation (15) allows us to
examine in general whether the optimal
monopoly prices coincide with (perfect)
competition prices, which are character-
ized by the relation p=r-p—r-c/v+¢/v
(for special cases with isoelastic demand,
cf. the results of Stiglitz, 1976; McAfee
and te Velde, 2008).

In the following, we examine the relation
between our Lagrange approach and the Bellman
approach (cf. Bertsekas, 2005). The value func-
tion for the best future profits starting from state
(t, n) can be evaluated by, 0 << T, O<n < N:

V(t,n) =R . /e_R(S) (v p (st m) = c(s))-

A (s;t, n)ds

If A is assumed to be differentiable in p and ¢,
the value function T{f, n) can be expected to
be continuous and differentiable in ¢ and #.
Then, the function of optimal future profits
(discounted on f) satisfies the Bellman equation,
0<t<T, 0<n< N:

V(t, )+ sup{A(t, p) - (v p=c(t) = V'(t, n))}

=r(t) - V(t, n) (16)

with boundary conditions I{t,0)=0 for all f,
and it T'is finite, V(T, n) =0 for all n€(0, N], cf.
(4). The first boundary condition corresponds
to the case when nothing is left to sell; the
second one ensures that if the end of the sales
period is reached, no further profits can be
made. Furthermore, equation (16) corresponds
to the maximization of the integrand of (7). In
this context, the optimality condition

—v A(tv p)
A(t, p)
derived from (16) corresponds to (13) for gen-
eralized initial states (f, n). Rearranging the

generalized version of (13) with initial state
(t, n) for s =t yields the condition:

v ’1('3 P)
At p)

Hence, with (17) and (18), we finally obtain
the relation, 0<<T, O<n < N:

V'(t, n) = R0 i

vep—c(t)=V'(t,n) = (17)

R(t)  *

vopcl) =0 K = (19)

*
t,n

>0 (19)

which demonstrates the relationship between
the opportunity cost term 1”7 and the Lagrange
multiplier k¥ . Both expressions can be used to
describe the value of an additional unit of
inventory.

In the next section, we will use the results
derived in the section ‘Stochastic and determi-
nistic dynamic pricing models’ to explicitly
solve problem (7)—(8) in the case of special
demand functions with a time-dependent price
impact. The solution formulas allow us to study
many practical sales problems, where the
demand is typically increasing or decreasing.
On the basis of our results, in the section

372

© 2015 Macmillan Publishers Ltd. 1476-6930 Journal of Revenue and Pricing Management Vol. 14, 5, 365-383



Dynamic pricing with time-dependent elasticities -BK-

‘Deterministic feedback policies applied to sto-
chastic models’ we propose heuristic pricing
strategies and describe how they can be used in
various industries.

SPECIAL CASES: ISOELASTIC,
EXPONENTIAL AND LINEAR
DEMANDS

The isoelastic case

In this subsection, we assume isoelasic demand,
that is, A(t, p) = u(f)-p ?, pel0, o0), where u(f)
>0, ()20 and e(n>1, 0K < T. Assumptions
(A1)—(A3) are satisfied. The critical inventory
level is given by the following (cf. (9) and (10)):

B(t) == ] u(s) - ( e(s) ﬂ) _g(s)ds 20)

e(s)—=1 v

t

Following equation (13), starting in state n at
time f, the optimal multiplier k¥ is determined

(ek(’) . K: M +c(s))) _S(S)dSé nA B(t) (21)

(cf. the section ‘Analytical solution to the
deterministic model’). The next theorem sum-
marizes the solution to the isoelastic case with
time-dependent elasticities.

a
p(t,n)
70
60
50
40
30
20
10

0 10 20 30 40 50

Theorem 3.1: If A(t, p) = u(d)-p ", then the
optimal prices in feedback form are given by,
0<t< T, 0<n<N,

e() o) n= B(f)
9. (eRm .,(:”H(t)) , n<B(t)
(22)

Proof: See the derivation in the section
‘Analytical solution to the deterministic model’
and equations (20)—(21). []

The value function for the overage and
underage cases can be easily computed using
the definition given in the section ‘Stochastic
and deterministic dynamic pricing models’.
Furthermore, the sensitivity results and the
structural analysis of the impact of the various
time-dependent parameters can be studied in
detail. In addition, the feedback pricing policy
can be applied in time-dependent stochastic
models to derive excellent lower bounds
for optimal profits (cf. the section ‘Determi-
nistic feedback policies applied to stochastic
models’).

To illustrate our findings, we consider a
numerical example with increasing (isoelastic)
demand, which is typical for the sale of airline
tickets or hotel rooms. Figure la depicts the
optimal feedback prices for a special parameter
constellation with decreasing price elasticities.
For different inventory levels, the four curves
indicate which price should be chosen at a
certain point of time. The price curves are

b
P

100

80 N=1

60

40 N=5

20

N=20
t

0 10 20 30 40 50

Figure 1: Optimal prices in feedback form (a) and in open-loop form (b); for N and n€{l, 5, 10, 15,20}, T=50, &) =4

=2-(/T)"2, u=2000, () =1, r=0.01, v=1.
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V (t,n)
400
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200
100
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Figure 2: Value function in feedback form (a) and evolution

t

T=50, e(f) =4—2-(t/T)" >, u=2000, c(h =1, r=0.01, v=1.

increasing—decreasing; they drop at the end of
the horizon. Applying the optimal feedback
policy over time finally results in specific
price-path evolutions. For different initial
inventory levels, some open-loop prices are
illustrated in Figure 1b;
increasing.

For the same example in Figure 2a, we see
the value function in feedback form; each of
the different curves belongs to one inventory
level n. Usually, these curves are decreasing;
however, if discount rates are positive and
demand is increasing with time, curves char-
acterized by unimodal behavior can occur (cf.
Figure 2a). The right Figure 2b illustrates how
different initial inventory levels are decreasing
if the optimal policy is applied. Because of
decreasing price elasticity, we have an increas-

they are convex

ing demand, and thus most of the sales occur
at the end.

In the special case where ¢(f)=0 and price
elasticity is constant, €(f)=e, we can deter-
mine k% explicitly. Since the critical inven-
tory level B is infinity, there is only the
underage case. The solution formulas for
this special case are given in the following
lemma.

Lemma 3.1: Let At,p) =u()-p *, e()=e>1
and «(f)=0. For all 0K<t<T, 0<n<B
(f) = 00, we have the following:

= (e 1>> (e)- <<A‘°><t>> /()"

1) xx,
/Te EROLy(5)ds;

where A

t
0 10 20 30 40 50

of the inventory level (b); for N and n€{l1, 5, 10, 15, 20},

i) p(r, n) = (AW /n)"*-RO  and
RO, A(O)()l/en ~1e

V(t, n) =

iii) Starting in x(0) = N, the optimal inventor
24 p Y
path is given by x(1) = N-AV(1)/ A(0).

We observe that this special case solution
coincides with the one derived in Helmes and
Schlosser (2013), Sec. 8. Using the optimal
inventory trajectory, the open-loop versions of
the feedback solution formulas can be obtained.

In a second special case, where (=0, c(f)=c
and price elasticity is constant, &(f)=e, we again
can determine K‘:” explicitly (T<oo0). Since c¢ is
allowed to be positive, the critical inventory
level B(f) is finite,
(cf. Theorem 3.1) and underage case solutions.

and there are overage

For this special case, we obtain the following
solution formulas.

Lemma 3.2: Let A(t, p) =u(f)-p *, e>1, r(f)=0,
(h)=c>0. Foral 0Kt < T< 00,0 n < 00,
we have the following:

(@) k* =v-(e— 1)/e U/n)*=c, B(t)=((e)/
(e “1)-0/ ()5 U, where U() = [ u(s)ds.
(1) The optimal undemge and overage prices are

given by, of. n<B(f) and n = B(r),
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The associated rates of sales are

AYC(t, n) = u(t) - and 19€(¢)

Uizt)
=i

(1) The wvalue function amounts to, 0<t< T,
0<n<N,

(iv) Starting in x(0)= N, the optimal inventory
path is given by x(f) = N-U(f)/ U(0).

In contrast to many articles (cf. McAfee and te
Velde, 2008; Sethi et al, 2008; Helmes and
Schlosser, 2013; Helmes et al, 2013; Helmes and
Schlosser, 2014), the last lemma particularly
allows us to study the isoelastic case including
positive marginal unit costs. In the next subsec-
tion, we analyze other important special cases of
time-dependent exponential demand.

The exponential case

In this subsection, we assume exponential
demand, that is, A(t,p)=u(t)-¢ OF, where
PE[0, 00), u(H)>0 and £(H)>0, 0 << T. Assump-
tions (A1)—(A3) are satisfied. We obtain the
tollowing solution. The critical inventory level
is given by:

T

B(1) := / uls) | (23)

e

t

Following equation (13), starting in state n at
time ¢, the optimal multiplier k* is determined

(cf. the section ‘Analytical solution to the
deterministic model’). The next theorem sum-
marizes the solution in the exponential case
with time-dependent elasticities.

Theorem 3.2: If A(t, p)=u()-¢ V7, then the
optimal prices in feedback form are given by,
0<t< T, 0<n< N (. (23)—(24)),

ot
o= > B0
7 $+%+3R(‘)~ L n<B(r)
(25)

Proof: See the derivation in the section
‘Analytical solution to the deterministic model’
and equations (23)—(24). []

Note, the optimal feedback prices are char-
acterized by the time-dependent term 1/g(f)
+¢(f)/v, which is a combination of the hazard
rate and the unit costs. The underage price
consists of the overage price and the mark-up

RO

-K’:n, which mirrors the opportunity costs.
In the special case where T<oo, r()=0 and
e(=e, we explicitly obtain k¥ = e “In(B()/n),
B(f:=¢ *""/e-U(1), the underage prices p"c
(t,n) =€ "In(U(f)/n) and the value function:

,n=B(1)

B(t) - §
V(t, n) = z.n.ln(3-¥> , else

Starting in x(0)=N<B(0), the optimal
inventory path is given by x(f) = N-U(r)/U(0).
Note, these results extend the solution formulas
derived by Berman et al (2013) for the special
case, c=0, v=1, r=0 and &(f)=¢, where static
prices are optimal.

The linear case

In this subsection, we assume a linear demand,
that is, A(t, p) = u(f)-(K(f)—&(f)-p), where &, K>0
and 0<p<K()/e(f) for all 0Kt T, Assump-
tions (A1)—(A3) are satisfied, and we obtain the
following solution. The critical inventory level
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is given by:

B(1) = / 9 (532 o052 Yk o

%

t

Following equation (13), starting in state
n at time f, the optimal multiplier K’:” is
determined by:
T T

[nt )= [

t t

(K(S) —e(s) M) ds=n(r) (27)

2.0

(cf. the section ‘Stochastic and deterministic
dynamic pricing models’. The next theorem
summarizes the solution in the case of a linear
demand.

Theorem 3.3: If A(t, p) =u()-(K()—e(®)-p),
then the optimal prices in feedback form are
given by, 0<t< T, 0<n < N (. (26)—(27)):

oy {0t 12 B0
p\L, n) = i RO >

zlf.e((tz))"'%"' 5ot n<B(t)

(28)

Proof: See the derivation in the section
‘Analytical solution to the deterministic model’
and (26)—-(27). O

In the special case where T<oo and r = K =
e =¢= 0, we explicitly obtain k* =v-K/e
—v-n/(e-U(t))—¢, B(f) = (K—¢€-)-U(f)/2, and the
underage  case  prices  pU“(t, n) = K/e—n/
(2-e-U()). Finally, the value function amounts
to, 0<nN:

(%_%)Zg U(t) 7n}B(t)
V(t, n) = { (vT _ g~1£.1’(lr) —c) -n ,n<B(t)

Starting in x(0)=N< B(0), the optimal
inventory path is given by x(f) = N-U(r)/ U(0).
Using the optimal inventory trajectory, the
open-loop versions of the feedback solution
formulas can be easily obtained, and optimally
controlled sales processes can be evaluated over

time. The solutions provided in this section can
also be used to approximate the results for other
similar demand functions.

DETERMINISTIC FEEDBACK
POLICIES APPLIED TO
STOCHASTIC MODELS

In this section, we examine the performance of
the policies derived in the section ‘“The isoelastic
case’ when applied to a stochastic framework
(cf. the section ‘Description of the stochastic
model’). Furthermore, we compare the
expected profits of such suboptimal policies to
the results of the optimal policies. In the
following, we consider heuristic pricing policies
that are characterized by the optimal feedback
prices p* of the deterministic model (cf. Theo-
rem 2.1). Motivated by the fact that the feed-
back prices of the deterministic model are
typically dominated by the optimal prices of
the stochastic model (cf. Gallego and van
Ryzin, 1994), we use a positive adjustment
factor y in order to improve the p*-heuristic.
To determine the profits that can be expected
when fixed multiples of the prices p* are applied
to the stochastic environment, we must evaluate

the expected profit (cf. (2)):

TNt

E / RO (0 y - p*(n, X) - o(1)-

0

Aty -p'(t, X))dt| Xo = N |. (29)

Similar to the value function V,(f), which is
associated with the HJB equation (3) with
boundary conditions (4) (cf. the section
‘Description of the stochastic model’), we can
determine the suboptimal expected future pro-
fits 7/, () that are related to (29) by considering
the difference—differential equation, 0<<T,
n=1,2,...,N:

POW+A( 79" m) - (rer-p" (0 n)
~()=AVPW) =) V@ (30)

V-
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where the boundaries for ,(f) correspond to
those given in (4).

In the following, we consider the special
isoelastic case without marginal unit costs,
c(f) = 0, and jump intensity, A(t, p) = u()-p *, with
constant elasticity, €()=e. On the basis of the
optimal feedback prices of the deterministic
model (cf. Lemma 3.1), we consider the heuristic
teedback policy:

PS/)( ) -:p*(t, n)-y= RO -A(O)(t)

-1

— ([);'ﬂT Y
To determine the expected profits of such
policies when applied to the stochastic model by
evaluating (30) (see Appendix), we obtain,
0<<T, n=1,2,...,N:

=1
€

o 1=

‘n

Y

=r(t)- V(1) (31)

To solve this difference—differential equation
(31) with boundaries (4), we again try a separ-
able approach, V(1) := R . 40)(¢ )1/5 :
B}(qy) A(t)l/& ﬂfl ), where the values for ﬂ( 7)
must be determined. Using this ansatz for Vn( ),
equation (31) becomes:

-1 —-e (n%-y—Aﬁfly))

e =n-y

and we obtain the relation (see Appendix):

B0 _ eyt (

8'11'}/_S+1.

i B) 62)

which provides a simple recursion formula for
the inventory effect ﬁfj’) starting from ﬁ(()y) = 0.

Note, the sequence ﬁ/(f), 1<k<n, is deter-
mined by the parameter y; that is for all fixed #,
the value y* = y*(n) can be chosen such that the
n-th term ﬁ 7 is maximized.

In order to determine the quality of this
suboptimal policy approach, we want to com-
pare the suboptimal expected profits with the
optimal ones. If A(t, p) =u(t)-p *,
problem (2) can be solved by considering the

the stochastic

Bellman equation:

Vo(0)+ max{u(t) - p™¢ - (v p=c(t) = AVL(1))}

= () - V(1) (33)

cf. (3). It ¢(/=0 and price elasticity € is constant,
the solution to (33) with boundary conditions
(4) is given by (ct. Helmes and Schlosser, 2013):

1
T €

) =B, 0| [

t
=0 R0 A0 (p)p,

where the implicit deﬁned sequence f, is such
that ﬁn (ﬂn )Bn 1 = (1_1/8)8717 ﬁ()zo-
Moreover, the optimal feedback prices for the
stochastic problem are given by:

Pn(f) — RO -A(O)(t)%-ﬂﬁ (34)

Using (34), the suboptimal and optimal
policies can be compared. In particular, the
optimal feedback prices of the stochastic model
dominate those of the deterministic model. We
summarize our findings in the following
proposition.

Proposition 4.1: Let A(t, p) = u(t)-p  with con-
stant price elasticity €>1 and ¢(f)=0.

() The unique solution V(1) of (31) with (4) is
given by, 0<<T, n=1,2,..., N, y>0,
V() = A(t)r-BY,

n

where ﬁ(7 is recursively determined by (32).

(i1) For all positive n and y>0, the inequality
ﬁﬂ <B, < PE = eI/ s satisfied.

(iii) Asymptottcally, for all e>1, we have
lim, o ooff,n € =1,

Proof: Since V/7)(t) cannot exceed the opti—
mal expected profits V,(f), inequality ﬁ <pB,
follows (cf. (i1)). The relation f, ﬂﬂet =
n€=D/¢ (cf. and Lemma 3.1) is shown by
Helmes and Schlosser (2013), and property (iii)
is shown by McAfee and te Velde (2008). []

Since all value functions f/ygy)(t), V.0,
V(t,n) are structurally identical, their differ-
ences can be measured by comparing the
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Table 1: Comparison of the parameters ﬁ,gl) , /;’,(f), B P for different n and £ =2

n By VB ) B BB B, dee gy 04)
1 0.667 94.3 0.707 1.414 100.0 0.707 1.000 141.4
2 1.099 96.1 1.142 1.310 99.8 1.144 1.414 123.6
3 1.437 97.0 1.477 1.256 99.7 1.481 1.732 116.9
5 1.972 97.9 2.007 1.196 99.7 2.013 2.236 1111
10 2.943 98.8 2.969 1.133 99.7 2.977 3.162 106.2
20 4.295 99 4 4.312 1.088 99.8 4.322 4.472 103.5
50 6.942 99.7 6.951 1.049 99.9 6.960 7.071 101.6
100 9.900 999 9.905 1.031 999 9.913 10.000 100.9

corresponding inventory fS-factors. In Table 1,
the different f-values are compared for different
inventory levels n up to 100 in case of a price
elasticity of € =2.

The numbers in Columns 2 and 3 of Table 1
show the very good performance of the (sub-
optimal) deterministic feedback policy applied
to the stochastic model (cf. y=1), when the
stock of articles is large. These results can
be improved to more than 99.7 per cent of the
optimal expected profits by using mark-up
versions of the 13£1>—heuristic, which are char-
acterized by an optimally chosen adjustment
factor, y*>1 (cf. Column 5). For example,
when n =50 items are left to sell, it 1s advisable
to use a 4.9 per cent mark-up on prices fofll).
Moreover, numerical studies show that the
optimal factor y* decreases in the number of
articles and in the price elasticity of demand e¢.
When € is small, we also obtain that the per-
formance of the ﬁgy*)—heuristic is significantly
better than the fogl)—heuristic. For wvarious
values €, the ratio ﬁff*)/ﬁﬂ = f/ﬂ(m/Vn is
constantly very close to one (more than 99
per cent) for both small and large inventories.
Hence, the performance of our adjusted
heuristic is excellent and robust.

Moreover, we observe that the ratio 2/,
exceeds one and is decreasing in the inventory
level. These numbers mirror the close relation-
ship between the deterministic and stochastic
models when inventory levels are large. When
inventory levels are small, our results call for the

application of mark-up versions of the feedback
policies of the deterministic models.

In the following we describe how simplified
versions of our heuristics can be used in real-life
applications. We distinguish between small and
large inventory levels. When the number of
articles to be sold is large the optimal policies of
deterministic and stochastic models almost coin-
cide (cf. the convergence of the optimal mark-
up factor to 1, see Table 1). Hence, it is suitable
to make use of the open-loop solutions of
deterministic models. In accordance to our
solution formulas the optimal sales path is
characterized by the demand intensity which in
specific applications is typically decreasing (end
of season sales, cf. for example Heching et al
(2002), Caro and Gallien (2012)) or increasing
(travel industry, cf. McAfee and te Velde
(2006)). However, in practical applications
the permanent adjustment of prices is neither
possible nor desirable. For this reason we
recommend to use step functions that imitate
the shape of optimal price paths. Usually already
a small number of price adjustments is enough
to attain near optimal results. This way suitable
mark-down (skimming) or mark-up (penetra-
tion) strategies can be determined and planned
in advance; that is the (expected) evolution of
sales and the associated cashflows can also be
anticipated. Moreover, strategies where prices
are fixed over certain periods of time can be
easily evaluated for deterministic models. that is
the good performance of such strategies can be
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verified by comparing the associated profits
with the optimal ones.

On the other hand, if the number of articles
to be sold is small random realizations of single
sales can significantly affect optimal prices. We
recommend applying pricing strategies that take
the realized evolution of sales into account. Our
results show that in every state suitable prices
can be derived by using the feedback policies of
deterministic models. Mark-up versions of these
prices might even be optimal. Instead of adjust-
ing the prices in continuous time we suggest to
adjust prices only from time to time. A so-called
‘relaxed seller’ adjusts prices in a steady manner,
for instance, once or twice during any period;
depending on the application, a period might be
a day, a week and so on. Alternatively, it is
possible to adjust prices as soon as the actual
feedback price exceeds a certain threshold as
compared to the last price asked. Note, the
solution of the deterministic model boils down
to the solution of a non-linear equation, cf.
Remark 2.1, and thus can be easily/efficiently
implemented in revenue management systems.

The adaptive adjustment of prices using
feedback policies has a self~correcting character.
Whenever the sales process deviates from its
expected path, prices will be adjusted in a
suitable way. Note, if these deviations become
large, predetermined pricing policies will be
inappropriate. Similar effects may arise when
demand is significantly over- or underestimated.
This may be the case if realized sales are
regularly smaller or larger than expected ones.
In such cases demand parameter should be
adjusted. To sum up, the use of adaptive price
adjustments helps to prevent substantial losses
since they are robust against both stochastic
effects and deviations in the demand.

MODELING TIME-DEPENDENT
INVENTORY HOLDING COSTS

In this section, we introduce an approach for
internalizing inventory holding costs as well as a
salvage value for unsold items (if T'is finite). We
assume that at time ¢, each unsold item leads to

inventory costs with the time-dependent cost
rate h(f) per unit of time, where h(f) is an
integrable function on 0 < ¢< T. Furthermore,
at the end of the horizon, the salvage value of
each unsold item is Sy, where S > 0. While the
dynamics of our sales process and the problem
formulation (cf. the section ‘Description of the
deterministic model’) remain unchanged, we
now consider the generalized profit function

(ct. (7)),

TNt

max [ O piml) - A p) = 0) - ()
+e RO g x(T) (35)

To determine the value function V(t, n) of
the generalized model with inventory costs and
salvage value, similar to (16), we consider the
associated HJB-equation, 0 < <T, 0<n < N:

Vi (t, n)=h(t) - n+ sti;()]{/l(t,p)(u cp—c()= V(¢ n) }
=r(t) - Vu(t, n) (36)

with the boundary conditions Vy(t,0)=0 for
all 0Kt T, and if T is finite, Vy(T, n)=Sgn
for all 0 <n< N. We define the following two
functions: L captures the inventory costs for one
unit in the interval ¢ to T (discounted on time f);
the function S is related to the salvage value Sg.
For0<n<Nand 0<t< T, we let:

S(t, n) :=eRORID i pand L(1, n) := n- H(1),

T
where H(f) :=¢R(") ~/67R(S) - h(s)ds
t

In the section ‘Analytical solution to the
deterministic model’, we derived optimal solu-
tions for the case without inventory costs
(cf. h=8g=0) and determined the associated
value function V1t n) (cf. the section ‘Further
properties of the analytical solution’). On the
basis of V(t, n), we try Vi(t,n) as the value
function of the extended problem with holding
costs and salvage value, 0<n< N, 0< < T

Vi (t, n) == V(t, n)—L(t, n)+S(t, n) (37)
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Since the auxiliary functions L and S are
differentiable in f and n, from (37), we obtain:

szq(t, n) = 1'(t, n)—H(t)+€R(t)—R(T) . Sp

and Vi (t, n) = V(t, n)—r(t) - H(t) - n+h(t) - n
+r(t) - S(t, n)

Using the relation (37), the HJB-equation
(36) is equivalent to, 0 < t<T, 0<n < N,

V(t, n)+ sti];()){/l(t, p)(v-p—c(t)=V'(t, n)

+ H(f) - RO-R(T) . sE)} =it V(t,n) (38)

Hence, equation (38) coincides with the
HJB-equation of the basic model (cf. the section
‘Stochastic and deterministic dynamic pricing
models’) for the case of the (adjusted) unit cost
function:

{1) = c()—H()+ RO RD g (39)

Thus, we can apply the formulas of Theorem
2.1 for the adjusted cost function ¢(¢), instead of
«(f), to determine the function V(t, n) =
(¢, n; ©). Since V(t, n) satisfies the boundary
conditions I{t, 0) =0 for all ¢, and (if T is finite)
(T, n) =0 for all n€(0, N], we have (cf. (37)):

Vy(t, 0) : = 1V(t, 0) — L(t, 0) +0 - Sg,
e N
=0 =0
=0,0<t<T, and

Vy(T, n):=V(T,n)— L(T, n) +Sg - n
—— N —
=0 =0

=S8Sg-n ,0<nN.

Hence, the function Vy(t, n;¢) =
V(t, n; @) —n- H(t) +RO-RT) s (cf.
(37)) satisfies the HJB-equation (36) as well as
the related boundary conditions for Vi(t, n) (see
above); that is, V(t, n) coincides with the value
function of the extended problem.

Following the optimality conditions of (36),
which are similar to those given in the section

‘Stochastic and deterministic dynamic pricing
models’ (cf. (16)—(17)), the optimal feedback
prices are determined by (cf. (A3)), 0<<T,

O<n< N:
1)+ VE(t n)

A(t, pu(t, n)) v

pH(t, n) +

(40)

where (1) + Vi, (t, n; c) =¢(6)+ V'(t, n; 7) =
Z(f)+e RO -k, () (cf. (19)). Note, the con-
trols are only admissible if they are positive.
Nevertheless, in specific cases, this can easily be
checked. A general condition that guarantees

optimal prices to be positive is given by, 0 << T:
(1) +RORT) g s H(r) (41)

Condition (41) implies that the optimal
solution is valid if the inventory cost rate h is
sufficiently small compared to the sum of the
salvage value Sg and the unit costs ¢. Further-
more, the impact of inventory costs is as follows.
Similar to the unit costs ¢, a salvage value leads
to a price mark-up. Equation (39) also shows
that inventory costs have the same impact as an
Increasing unit cost function.

In addition to economic insights our results
are also of practical use for various industries.
The results can be used to determine optimal
ordering decisions. Our results allow for selling
an initial number of articles over a given period
in an optimal way while taking into account
discounting, unit costs and holding costs as well
as time-dependent demand. Although the pos-
sibility of replenishment is not included as part
of the model, our results are also applicable to
inventory management models. Being able to
determine an optimal dynamic pricing policy as
well as an optimal sales path between two
ordering decisions (cf. the time span from 0 to T)
makes it possible to choose the time and the
size (N) of an order such that a seller’s time-
discounted revenue minus ordering costs and
holding costs is maximized in the long run.
Equation (39) suggests that the impact of inven-
tory holding cost is similar to unit costs that are
increasing with time; that is optimal prices (on
average) will increase with time.
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CONCLUSION

In this article, we analyzed a general class of
time-dependent deterministic dynamic pri-
cing models. Using a Lagrangian approach,
we showed how to derive the solution of the
corresponding profit maximizing problem.
Under some natural conditions on the sales
intensity, the existence and uniqueness of
optimal policies of different classes of such
models are guaranteed. We derived the value
function of any such problem, that is the
present value of future profits, as well as the
optimal pricing strategy. It turns out that the
solution to the deterministic model is char-
acterized by ‘overage’ and ‘underage’ scenar-
ios. While in the underage case it is optimal to
sell the whole amount of initial items, in the
overage case it is advisable just to sell not more
than a certain amount and to retain a positive
leftover. For the special cases of isoelastic,
exponential and linear demands with time-
dependent elasticities, we derived explicit
solutions for the optimal prices and for the
value function.

Our analytical solutions can be used to
study dynamic pricing problems in detail,
specifically, the effect of (time-dependent)
discount rates, arrival rates, unit costs and
price elasticity. Knowing the open-loop solu-
tion trajectory of the deterministic model, that
is the optimal sales path, makes it possible to
evaluate optimally controlled sales processes
over time and to derive sensitivity results for
several quantities of interest with respect to all
model parameters. These results provide eco-
nomic insight into the quantitative and quali-
tative effects of the complex interplay
between different factors. Normative results
based on the analysis of the model suggest
that, for instance, the unit costs lead to a
mark-up on optimal prices. The evolution of
optimal prices is mainly determined by the
unit costs, the discount rate and the evolution
of the price elasticity of demand. The evolu-
tion of sales is synchronous to the potential of
remaining customers. Since it is known that if
the inventory level is large on average the

stochastic model will behave similarly to the
deterministic model. Thus the analysis of the
deterministic model offers managerial recom-
mendations for stochastic applications.

Besides ordering (initial inventory) deci-
sions or the choice of sales periods, cf. the end
of Section 5, particularly the computation of
simple but near optimal dynamic pricing stra-
tegies is beneficial for decision makers. While it
is known that there are asymptotically optimal
fixed-price heuristics, these are limited to
time-homogeneous models. Whenever inven-
tory stocks are high or where the problem
involves inventory positions that greatly
exceed demand, fixed price policies guarantee
expected revenues that are close to those
obtained using dynamic optimal policy. Such
heuristics, however, do not perform well when
inventory levels are low or when demand is
time-dependent. However, in many practical
applications inventory levels do not need to be
large and, moreover, the sales dynamics are
typically time-dependent; for instance, when
the sales dynamics are characterized by time-
dependent price elasticities of demand. In
specific applications the demand, that is the
arrival rate of remaining potential customers
and their (time-dependent) reservation price
distributions can be estimated. In the travel
industry or accommodation services the custo-
mer’s reservation prices typically increase with
time, in the fashion industry demand is usually
decreasing. For such models, appropriate mark
up or mark down heuristics are needed, for
example see Bitran and Mondschein (1997) or
Valkov (2006).

In this article, we proposed heuristic pri-
cing strategies that can be applied to very
general classes of stochastic dynamic sales
problems, cf. Section 4. Our heuristics are
constructed on the basis of the solution to the
corresponding deterministic version of the
problem. Our proposed heuristics are prefer-
able to existing heuristics because they take
time-dependent demand into account and
they can be applied for both small and large
inventory stocks.
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APPENDIX

Proof of Equation (13) and (15)
Let A(t,p) be arbitrary with inverse function
Q. ' () =p(t, A) for all t; pe[0, o0), A€[0, c0).

For T'< oo, the problem is max, (It RO,
(vpi=c(0)-A(t, p)a.

The constraint for the initial inventory N is
JoA(t, p0)de< N.

Using the Lagrange ansatz in terms of the
rate of sales A, we consider the auxiliary pro-
blem: T
max / eEO (0 Q7 ()= (1)) - o

A=At p,
0

—Ko,N - /Ldl

Via derivation with respect to A(f), we obtain
the necessary optimality condition:

-R(1) | v

7 aam)
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cf. (13). Via derivation with respect to time f,
we obtain the following relation:

9 o~ RO A/(t, 2 +
ot A(t, pr)

The last equation is equivalent to (15).

Proof of Equation (31) and (32)
We consider the suboptimal prices foﬁf’)(t) =
Pt n) -y = R0 .A<0)(z)1/8 cnm Ve ly =
AWV n ey
For the underage case, we try the approach
VO(1) i= - RO A0 (1) VE L B0 =
v A()VE - pv)
Note that A(f) := R . fT e &R0

, ~u(s)
ds = e RO A0 (f)  and A1) == e - (1)
A(t)—u(t).

We face the difference-difterential equation,
a(n=0,e()=¢e>1,0<t< T, 0<n <N,

f() - V@) = P00 +u(e) - (07 (6 0) -7) ¢

s () Al) =r(t) - A()—e " - u(t)+ult) n-y ¢
(=AY
B,(f)

& P = ey’

: (”%'V‘Fﬁ,(f—)l)

All steps of the calculation are elementary.
The last equation is equivalent to (32).

e-n-y ¢+1
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