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ABSTRACT In this article, we consider a joint pricing-inventory decision problem for horizontally differ-
entiable products that require common resources to produce, procure or hold. The total availabilities of the
resources are exogenously fixed. Demands for the products are stochastic, price-based substitutable and lost if
unmet. For the case where two products share one resource, we prove the existence of a unique optimal
solution to the decision problem. We also characterize the firm’s assortment under the optimal solution and
identify a distribution-free product index to determine the assortment priority among the products. Furthermore,
we present some results regarding the monotonicities of the optimal pricing-inventory policy.
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published online 10 October 2014
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INTRODUCTION
Consider the following situations:

� A brick-and-mortar retail store sells different
brands of high-definition televisions (HDTVs).
The store has limited storage space on the
display shelves and in the back room. Inven-
tory replenishment follows a weekly schedule
and no rush order is possible. During a
week, customers walk in the store, compare
prices and specifications of the brands, and
decide whether and which one to buy. If the

preferred brand is out of stock, customers will
walk away to competing stores. The store
maximizes its expected profit by choosing the
retail prices and ordering quantities for all
the brands, subject to the space-availability
constraint.

� A seafood restaurant features a variety of fresh
‘catch-of-the-day’ seafood delicacies, such as
lobsters, jumbo prawns, king crabs and so on.
All seafood is locally caught and delivered
to the restaurant every morning. Cash pay-
ment to the fishermen is due upon delivery.
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The restaurant owner decides on the amount
to purchase from each kind of seafood,
subject to a budget constraint. When making
the decision, the owner is unsure about
customers’ meal choices throughout the day,
but (s)he can adjust the entrée prices for today
according to the supply (s)he has picked. On
the other hand, if the restaurant runs out of
the dish that a customer craves the most, the
disappointed customer may go to the com-
peting restaurant next door.

� An automobile manufacturing company
makes production and pricing plans for all
vehicle models on a quarterly basis. Quarterly
demand for a car model is uncertain and
depends not only on its own price, but
also on the prices of all the similar models.
The production requires some common
resources, such as machine and labor hours,
and is constrained by the resource availability.

The examples above illustrate a common pro-
blem encountered by many firms in day-to-day
operations: a line of horizontally differentiated
products need to be jointly priced and procured
(or produced) to maximize the firm’s total
profit. The overall inventory of these products
is limited by the availability of some common
resources, for example, shelf space, capital and
labor hours, which is exogenously determined
and difficult to change in short terms. These
constraints on resource availabilities can be
viewed as limited capacity. Customers carefully
compare across all the products before purchase,
and consequently, changing one product’s price
will shift demand toward its substitutes. That is,
aggregate demands for the products are price-
based substitutable. Owing to rigid replenish-
ment schedules, demands remain uncertain
when the pricing-inventory decision is made.
Nevertheless, sales will be lost in case of stock-
ing out.

With both resource constraints and demand
substitution, products compete with each other
for both resources and customers, and are inter-
linked on both supply and demand sides.
Hence, the joint pricing and inventory decisions

can be particularly difficult. For example, raising
one product’s price reduces its own demand,
and yet increases the popularity of all its sub-
stitutes. To fully take advantage of it, the firm
naturally has an incentive to increase the prices
and quantities of some of the other products.
This, however, is subject to the resource avail-
ability and will, in turn, affect the first product’s
demand and resource allocation. It is unclear as
to how these interactions influence the firm’s
total profit, and whether and when they lead to
a unique optimal decision.

In this article, we aim to address this pro-
blem. Our work falls within the research area
on multi-product pricing. Because of tractabi-
lity issues, very limited research in this area
considers the coordination of multi-product
pricing and inventory policies (Elmaghraby and
Keskinocak (2003)). Among the existing work,
Birge et al (1998) examine how to determine
the prices or capacity levels for two products.
Under different demand models, Aydin and
Porteus (2008), Wang and Kapuscinski (2009),
Zhu and Thonemann (2009) and Song and Xue
(2007) consider joint optimization of pricing
and inventory decisions. In particular, Aydin
and Porteus (2008) and Wang and Kapuscinski
(2009) prove the uniqueness of optimal solution
in a lost-sales setting, while Zhu and Thonemann
(2009) and Song and Xue (2007) characterize
the optimal solution under a backlogging
model. In addition to the pricing-inventory
models, Krausa and Yano (2003) and Hopp
and Xu (2005) address the problem of choosing
both price and product variety (assortment).
Maddah and Bish (2007) study joint pricing,
inventory and assortment decisions. All the
aforementioned papers, however, assume unlim-
ited resources, where the interaction among
products is only through demand substitution.

Our work is among the few papers that
analyze multi-product pricing under resource
constraints. When limited resources are shared
among products, the pricing problem becomes
even more complex, as products are interrelated
though both demand substitution and resource
competition. In the revenue-management
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literature, Gallego and van Ryzin (1997) and
Cooper (2002) focus on dynamic-pricing strat-
egy and prove asymptotic optimality of several
heuristic policies. Maglaras and Meissner (2006)
examine a similar dynamic program and inves-
tigate ways to reduce the problem dimension-
ality. None of these papers, however, considers
inventory decisions.

Similar to our setting, Tang and Yin (2007)
characterize the optimal pricing and inventory
decisions for two products with a common
resource and deterministic demand. Likewise,
Kuyumcu and Popescu (2005) also consider
deterministic demand and yet allow arbitrary
numbers of products and resources. Our work
differs from these two papers by considering
stochastic demand. Most closely related to our
model, Bertsimas and de Boer (2002), Song and
Xue (2008) and Ceryan et al (2013) examine
joint pricing-inventory decision under both
demand uncertainty and resource constraints.
Nevertheless, Bertsimas and de Boer (2002)
ignore the demand substitution among pro-
ducts, which is considered in our article. Song
and Xue (2008) and Ceryan et al (2013) assume
that all unmet demand are backlogged. With
pricing decision, the lost-sales model (consid-
ered in our article) is significantly more difficult
than the backlogging model, because the profit
function is no longer jointly concave in prices.
Owing to the technical difficulty, all the exist-
ing work on multi-product pricing-inventory
control with lost-sales model consider single-
period problems.

To summarize, our article, to our knowledge,
is the first one to analyze the multi-product joint
pricing and inventory problem with resource
constraints, product substitution, demand uncer-
tainty and lost sales. The problem is difficult even
for a small number of products and resources.
We contribute to the literature by solving this
problem for a baseline case where two products
share one common resource. Specifically, our
findings are as follows:

(i) We prove that the uniqueness of the opti-
mal policy, as in Aydin and Porteus (2008)

and Wang and Kapuscinski (2009), can
be extended to the setting with resource
constraint. The proof builds on multi-
dimensional strict quasi-concavity of the
profit function in a constrained domain.

(ii) Structural results are presented on the
firm’s optimal assortment. Specifically, the
best choice of product(s) to offer is char-
acterized as a function of the resource
availability, as well as the relative per-unit
resource usage of the two products. Inter-
estingly, we show that the optimal assort-
ment may not always be monotonic in the
latter factor. In particular, a decrease in the
relative resource usage of one product may
enhance the profitability of the other prod-
uct. We provide an explanation for this
counter-intuitive phenomenon. Further-
more, we identify a distribution-free index
that the firm can apply to assess the priority
of the products. The index is a general-
ization of the one used by Tang and Yin
(2007).

(iii) We prove the monotonicities of the joint
optimal policies for some special cases.

In what follows, we define the model formula-
tion in the next section, and present the analysis
and results in the subsequent section. The article
is then concluded in the final section.

MODEL

The firm’s problem
Consider a firm producing and selling two
products (indexed by i= 1, 2). The two pro-
ducts are horizontally differentiated with price-
based substitution. Producing the two products
requires a common resource (for example,
space, capital, labor hours, machine hours and
so on): one unit of product 1 needs A units of
the resource, while the per-unit resource usage
of product 2 is normalized to 1. Hence, A is also
an indicator of the relative per-unit resource
usage of the two products. The availability of
the resource is limited: total amount of resource
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used in the production cannot exceed y units.
The value of y is exogenously given. Customers’
demands for the two products, D1(p1, p2, ε1) and
D2(p1, p2, ε2), are uncertain and depend on both
prices (details described in the sub-section ‘The
demand model’).

The firm determines prices p1, p2 and pro-
duction quantities q1, q2 before the demand
uncertainty is resolved, subject to the resource
constraint. To preclude the unrealistic case of
negative demand, we impose an additional
constraint: the firm should set the prices low
enough that both products’ demands are non-
negative almost surely, that is, both D1⩾ 0 and
D2⩾ 0 a.s. (short for almost surely). Similar
bounds on prices can be found in, for example,
Kuyumcu and Popescu (2005). To understand
why this constraint is necessary, consider the
case when the firm decides to only offer product
2 (that is, q1= 0). Without the constraint D1⩾ 0
a.s., the firm would have an incentive to boost
product 2’s demand by setting p1 infinitely high
to take advantage of the demand-substitution
effect, such that all units of product 2 can be
sold out at an arbitrarily high p2.

The firm’s objective is to maximize its total
expected profit. Its decision problem can be
formulated as follows:

max
p1;p2;q1;q2

π p1; p2; q1; q2ð Þ ¼p1E min q1;D1ð Þ½ �
+ p2E min q2;D2ð Þ½ � ð1Þ

subject to

p1 ⩾ 0; p2 ⩾ 0; q1 ⩾ 0; q2 ⩾ 0;

Aq1 + q2 ⩽ y;D1 ⩾ 0 a:s:;D2 ⩾ 0 a:s: ð2Þ

Here we consider a static problem without
any dynamic stockout-based substitution. More-
over, we assume that, owing to leadtime in
production, the firm cannot postpone the
inventory decision until after the demand is
realized. These two assumptions enable us to
focus on the interaction between inventory
and pricing decisions with presence of demand
uncertainty. Similar settings are considered
in several other papers including Zhu and

Thonemann (2009) and Aydin and Porteus
(2008).

The demand model
The products’ demands, D1,D2, are functions
of prices and some random factors. We assume
that demand is linear in prices and subject to
additive uncertainty:

D1 p1; p2; ε1ð Þ ¼z1 p1; p2ð Þ + ε1
¼a1 - b1p1 + c1p2 + ε1; ð3Þ

D2 p1; p2; ε2ð Þ ¼z2 p1; p2ð Þ + ε2
¼a2 - b2p2 + c2p1 + ε2; ð4Þ

where z1(p1, p2) and z2(p1, p2) are deterministic
components in demand and are linear functions
of prices: a1, a2> 0 represent base demands, b1,
b2> 0 denote self-price sensitivities and c1, c2> 0
stand for cross-price sensitivities; ε1, ε2 are ran-
dom factors with mean zero, capturing the
combined effect of all the noises not perfectly
controllable or observable by the firm. Assume
that for i= 1, 2, εi has a finite support [−Li,Hi],
where Li> 0 and Hi> 0.

The linear and additive demand is a simple
demand form frequently used in the pricing-
inventory literature, for example, Petruzzi and
Dada (1999), Tang and Yin (2007), Wang and
Kapuscinski (2009) and Ceryan et al (2013).
Compared to other demand models, such as
multiplicative (see, for example, Aydin and
Porteus (2008)) or additive-multiplicative (see,
for example, Maddah and Bish (2007)), the
linear and additive model is widely adopted
owing to its desirable analytical tractability.
In this article, we show that, even under this
simple demand form, the pricing-inventory
problem with resource constraint is difficult to
solve.

We further assume that the demand func-
tions defined in equations (3) and (4) satisfy
the diagonal-dominance condition: min(b1, b2)
>max(c1, c2), see Zhu and Thonemann (2009)
and Wang and Kapuscinski (2009), and the
references therein. The condition implies that
the total demand of the two products becomes
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stochastically smaller when price of either
product increases and that one product’s demand
is more responsive to its own price than to the
other product’s price, such that if both products’
prices increase by the same amount, demand of
either product decreases.

By the diagonal-dominance condition, the
expected demand (z1(p1, p2), z2(p1, p2)) has an
inverse:

p1 z1; z2ð Þ
p2 z1; z2ð Þ

 !
¼ 1

b1b2 - c1c2

´ -
b2 c1

c2 b1

 !
z1

z2

 !"
+

a1b2 + a2c1

a2b1 + a1c2

 !#
:

ð5Þ

Equations (3)–(5) establish a one-to-one
correspondence between (z1, z2) and (p1, p2).
Hence, following the standard approach in
literature (see, for example, Gallego and van
Ryzin (1997)), we can and shall use the
expected demand (z1, z2), instead of (p1, p2), as
the firm’s pricing variables. The firm’s problem
defined in equations (1) and (2) can now be
rewritten as

max
z1;z2;q1;q2

π z1; z2; q1; q2ð Þ ¼
p1 z1; z2ð ÞE min q1; z1 + ε1ð Þ½ �
+ p2 z1; z2ð ÞE min q2; z2 + ε2ð Þ½ �; ð6Þ

subject to

p1 z1; z2ð Þ⩾0; p2 z1; z2ð Þ⩾0; q1⩾0; q2⩾0;
Aq1 + q2⩽y; z1⩾L1; z2⩾L2: ð7Þ

To characterize the optimal solution of the
firm’s problem, we make several technical
assumptions, as listed below.

First, for the extreme case when the resource
availability is unlimited, the profit function,
denoted by πU(z1, z2)= p1(z1, z2)z1+p2(z1, z2)z2,
has been shown to be bounded, continuous
and strictly concave in (z1, z2) (Song and Xue
(2007)). This further implies that there exists
a unique pair (z1

U, z2
U) maximizing the profit

function in the unlimited-resource case. Denote
the corresponding prices by (p1

U, p2
U). To avoid

any trivial solution, assume that with unlimited
resource, it is profitable for the firm to offer
both products, that is, p1

U> 0 and p2
U> 0.

Furthermore, for consistency, we assume that
the condition about almost-surely non-negative
demand is satisfied by the optimal solution
under unlimited resource, that is, z1

U⩾L1 and
z2
U⩾L2.
Second, for the random factors ε1 and ε2,

assume that they are independent, but not
necessarily identically distributed. For i= 1, 2,
let εi’s cdf be Gi(⋅) and pdf be gi(⋅). Throug-
hout this article, we impose the following
technical conditions on the distribution func-
tion Gi(⋅):

(1) Gi(⋅) is twice continuously differentiable on
[−Li,Hi].

(2) g(⋅)=G′(⋅)> 0 on (−Li,Hi).
(3) Gi(x) has increasing failure rates (IFR), that

is, gi(x)/(1−Gi(x)) is non-decreasing in x, for
x∈[−Li,Hi].

These conditions are standard in literature and
are satisfied by many commonly used distri-
butions: for example, uniform, exponential,
logistic, normal, extreme-value, power func-
tion, Weibull, β, γ, χ and χ2 (Bergstrom and
Bagnoli, 2005). Note that as Gi(⋅) is twice
continuously differentiable, the tail probability
function Gið�Þ ¼ 1 -Gið�Þ has an inverse,
denoted by ðGiÞ - 1ð�Þ:

Third, we impose a boundary condition
requiring that when both products are offered
for free, demand for both products shall
always be positive. That is, z1(0, 0)>L1 and
z2(0, 0)>L2. These two inequalities jointly
imply p1(L1, L2)> 0 and p2(L1, L2)> 0. A similar
assumption is employed by Wang and
Kapuscinski (2009).

Last, while the two products can differ in
their per-unit resource requirement, we limit
the extent of such a difference. Specifically,
while normalizing product 2’s per-unit usage
to unity, we impose an upper and an lower
bound on product 1’s per-unit resource usage
A: max(c1, c2)/b1<A<b2/max(c1, c2), that is,
the value of A cannot deviate too far from 1
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(that is, product 2’s per-unit resource usage).
This condition is required for technical reasons
and is also well in line with the fact that the two
products are horizontally differentiated. Essen-
tially, if one product uses a lot more resource
(for example, storage space) than the other, for
example, a 42-inch HDTV versus a 28-inch
HDTV, then the two products are more likely
to be vertically differentiated.

CHARACTERIZING THE
OPTIMAL SOLUTION
The problem formulated in equations (6) and
(7) is a typical multi-product joint pricing
and inventory problem with substitutable
demand and lost sales. Even without any con-
straint, the problem is well known for its ana-
lytical difficulty, as the profit function is not
jointly concave (Aydin and Porteus (2008)).
Two recent studies, Aydin and Porteus (2008)
and Wang and Kapuscinski (2009), show that
the unconstrained problem has a unique opti-
mal solution under either multiplicative or
additive demand function. Our model gene-
ralizes Wang and Kapuscinski (2009) by incor-
porating the resource constraint. Next, we
prove that the uniqueness of the optimal solu-
tion can be extended to the constrained pro-
blem. As the profit function is not jointly
concave, such a generalization requires a careful
examination of the properties of the function
in the constrained domain, especially at the
boundaries. We also present some structural
properties of the optimal solution.

Let (z*1, z*2, q*1, q*2) be the optimal solution to
the firm’s problem in equations (6) and (7).
Let (p*1, p*2)= (p1(z*1, z*2), p2(z*1, z*2)) be the
optimal prices. To characterize the optimal
solution, we first note a special case. For the
unlimited-resource problem, assume that the
firm follows the optimal solution (z1

U, z2
U) and

let y be the maximum amount of resource
needed to satisfy product demand, that is, y ¼
AðzU1 +H1Þ + zU2 +H2: That is, even though
resource availability is unlimited, the firm never
uses more than y units. Hence, for the

constrained problem, if the amount of resource
y is higher than y, the optimal solution for the
unconstrained problem remains optimal for the
constrained one; otherwise, the resource con-
straint must be binding. The following lemma is
immediate.

Lemma 1: [Binding Resource Constraint]
If y⩾y ¼ AðzU1 +H1Þ + zU2 +H2, q*i=
zi
U+Hi and z*i= zi

U, for i= 1, 2; other-
wise (that is, if 0<y<y), Aq*1+q*2= y.

All proofs are available in the supplementary
document. For the remainder of the article, we
shall focus on the case with limited resource,
that is, 0<y<y. To find the optimal policy, by
Lemma 1, we only need to consider those policies
satisfying q2= y−Aq1. Substitute q2= y−Aq1 into
the firm’s problem and redefine the profit as a
function of z1, z2, q1:

max
z1;z2;q1

π z1; z2; q1ð Þ ¼ p1 z1; z2ð ÞE min q1; z1 + ε1ð Þ½ �
+ p2 z1; z2ð ÞE min y -Aq1; z2 + ε2ð Þ½ �;

subject to

z1 ⩾L1; z2 ⩾L2; p1 z1; z2ð Þ⩾ 0;

p2 z1; z2ð Þ⩾ 0; 0⩽ q1 ⩽
y
A
:

We first show that the optimal ‘safety stock’
(that is, inventory in excess of the expected
demand) for each product is always within the
support of the corresponding random shock.
That is, the firm never over- or under-protects
itself against demand uncertainty.

Lemma 2: [Optimal ‘Safety Stock’] When
0<y<y, the optimal policy (z*1, z*2, q*1) satisfies
−L1⩽q*1−z*1⩽H1 and −L2⩽y−Aq*1−z*2⩽H2.

Restricting our attention only to the solu-
tions satisfying the conditions in Lemma 2,
Theorem 1 below establishes the uniqueness of
the optimal policy.

Theorem 1: [Uniqueness of Solution]

(i) for given q1∈[0, y/A], there exists a unique pair
of (z1, z2), denoted by (z*1(q1), z*2(q1)), which
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maximizes the profit function π(z1, z2, q1)
subject to z1⩾L1, z2⩾L2, p1(z1, z2)⩾ 0,
p2(z1, z2)⩾ 0;

(ii) π(z*1(q1), z*2(q1),q1), is continuously differenti-
able and strictly quasi-concave in q1∈[0, y/A];

(iii) there exists a unique solution (z*1, z*2, q*1) that
maximizes the profit function π(z1, z2, q1)
subject to z1⩾ L1, z2⩾ L2, 0⩽q1⩽y/A,
p1(z1, z2)⩾ 0, p2(z1, z2)⩾ 0.

The idea underlying the proof of Theorem 1
is similar to that used in Petruzzi and Dada
(1999) for their study of a single-product uncon-
strained pricing-inventory problem. It was
extended to N-product unconstrained problems
by Aydin and Porteus (2008) and Wang and
Kapuscinski (2009). In its core, the idea is to
show that the global maximum is attained at
a stationary point and that the Hessian of
the profit function is negative-definite in the
neighborhood of any stationary point. These
facts jointly imply that any stationary point is
a strict local maximum and there exists a unique
global maximum.

Unfortunately, we cannot directly apply
the logic above to the constrained problem.
In particular, the global and local maxima may
not always be attained at stationary points – they
may be at boundaries for some (or all) variables
and stationary points for others. In our proof
of Theorem 1, we extend the logic and tailor
it to the problem by a careful decomposition
of the feasible space and a detailed analysis of the
higher-order derivatives on all the stationary
points and the boundaries.

The significance of the unique solution is
twofold. First, it ensures that any gradient-based
searching algorithm can find the optimal solu-
tion, which is important for practical applica-
tions. Second, it forms the basis for further
characterization of the optimal policy.

Assume that the firm follows the unique
optimal policy shown in Theorem 1. Theorem 2
(depicted in Figure 1) characterizes the firm’s
product assortment as a function of the products’
demand characteristics, per-unit resource require-
ment and the total resource availability.

Theorem 2: [Optimal Assortment]

(i) Product i’s assortment priority is determined by
the index (ai−Li)/(Aibi−ci). Specifically,

(a) if (a1−L1)/(Ab1−c1)> (a2−L2)/(b2−Ac2),
there exists a critical number ŷ>0, such that
the firm should only offer product 1 if 0<y⩽ŷ
and it should offer both products if y>ŷ;

(b) if (a1−L1)/(Ab1−c1)<(a2−L2)/(b2−Ac2),
there exists another critical number �y>0,
such that the firm should only offer product 2
if 0<y⩽�y and it should offer both products
if y>�y;

(c) if (a1−L1)/(Ab1−c1)= (a2−L2)/(b2−Ac2),
the firm should always offer both products.

(ii) �y is non-decreasing in A, while ŷ can be non-
monotonic in A.

As one can expect, when the firm has a lot of
resource, it is better off selling both products,
whereas with scarce resource, it should only
keep one product on the shelf. The intriguing
question is which product to offer if there can
be only one. Theorem 2(i) provides a distribu-
tion-free product index to facilitate the choice.
The index combines the effects of demand cha-
racteristics and resource requirement. Specifi-
cally, a product has a high assortment priority
when it has a large worst-case base demand

Figure 1: Optimal assortment as a function of resource
availability y and product 1’s per-unit resource
consumption A: a1= 500, a2= 400, b1= 15, b2= 10,
c1= 1, c2= 0.5, ε1, ε2∼Uniform[−50, 50].
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(ai−Li), a low own-price sensitivity (bi), a high
cross-price sensitivity (ci) and a low resource
consumption (Ai). We note that our index is a
generalization of the one identified by Tang and
Yin (2007). They consider a pricing-inventory
decision model with deterministic demand
(εi≡ 0, i= 1, 2) and identical resource require-
ment by the products (A1=A2= 1). Hence,
their product index, ai/(bi−ci), is a special case
of ours.

Theorem 2 also illustrates the effect of per-
unit resource consumption on the optimal
assortment. One would imagine that, fixing
everything else, when a product’s per-unit
resource usage decreases, it becomes relatively
more profitable and thus the firm should be
more reluctant to offer the other product.
Interestingly, this intuition is not always true.
By Theorem 2(ii) and Figure 1, for given
resource availability y, a decrease in product 1’s
per-unit usage A may induce the firm to switch
from offering only product 1 to selling both
products. To see why, suppose that A is very
small and all resource is utilized on product 1.
This leads to a huge inventory of product 1
and, as a result, the firm has to significantly
lower product 1’s price to induce sufficient
demand. In such a case, the firm is better off
making both products available to segment the
market and increase total profit.

Another question of interest is how the
firm should adjust production and prices when
there is more resource available. When pro-
duct demand is either cross-price inelastic
(ci= 0, i= 1, 2) or deterministic (εi≡ 0, i= 1, 2),
we prove that the firm should increase the
inventory of both products and decrease both
prices. Similarly, monotonicity of the optimal
policies can be shown for the relative per-unit
resource usage A. Theorem 3 follows.

Theorem 3: [Monotonicities of Optimal Solution]
When c1= c2= 0 or when ε1≡ ε2≡ 0,

(i) Both q*1 and q*2 are non-decreasing in y; q*1 is
non-increasing in A.

(ii) Both z*1 and z*2 are non-decreasing in y; z*1 is
non-increasing in A.

(iii) Both p*1 and p*2 are non-increasing in y; p*1 is
non-decreasing in A.

The results in Theorem 3 can be intuitively
explained: with a higher resource availability,
the firm should fully utilize it by increasing
the inventories and lowering the prices; when
a product consumes more resource, its price
should increase and supply decrease. Although
we do not present details here, our numerical
study indicates that the intuition appears to
also apply to the general case where both
demand uncertainty and cross-price elasticities
are present.

CONCLUSION
This article formulates and analyzes a joint pri-
cing and inventory problem for two horizontally
differentiated products sharing a common resou-
rce. Demand is stochastic with additive uncer-
tainty, price-based substitutable and lost if not
satisfied immediately.

The joint pricing and inventory problem
with additive demand uncertainty and lost sales
is known for not having a well-behaved profit
function, even in the single-product setting
without any resource constraint (Petruzzi and
Dada (1999)). We contribute to this literature
stream by being the first one to analyze the
multi-product pricing-inventory problem with
resource constraints, product substitution, addi-
tive demand uncertainty and lost sales.

Through the analysis of multi-dimensional
strict quasi-concavity of the profit function,
we prove that there exists a unique optimal
solution to the problem. Building on the
solution uniqueness, we characterize the firm’s
product assortment under the optimal pricing-
inventory policy. We discover and explain
the non-monotonicity of the assortment in the
two products’ relative per-unit resource usage.
Furthermore, a distribution-free index is pro-
posed to aid the firm in determining the assort-
ment priority of the products. Finally, the
monotonicities of the optimal policy in total
resource availability, as well as in the products’

Yu
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relative resource usage, are shown for the cases
where product demand is either cross-price
inelastic or deterministic.
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