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Abst rac t Since the economic crisis of 2008, global trade and shipping services have

continuously grown, which resulted in more ships and reduced berthing times of vessels at

hub ports. This change, along with higher fuel prices, requires the shipping industry to keep

the vessels on schedule more than before while reducing fuel cost. This article develops a

mathematical model to determine vessel speeds and ports for fuel purchase to minimize the

fuel cost of shipping companies. Specifically, this research considers maximum allowed

vessel speeds on a route because of geographical features such as canal, channel and ocean

currents. The problem is first formulated as non-linear programming, then converted to

linear programming by an innovative way of using piecewise linear functions. A heuristic

procedure is also presented to reduce the computation time for large size problems.
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Int roduct ion

After the economic crisis in 2008, international seaborne trade grew continu-
ously. World seaborne trade increased by 4 per cent in 2012, and even more in
2013. Container port throughput increased year-by-year, and the world fleet
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grew by 37 per cent in just 4 years since 2008. The world fleet has more than
doubled since 2001, reaching 1.63 billion deadweight tons (dwt) in January 2013
(UNCTAD, 2012, 2013).

Freight volume increase presents a challenge to both container ports and
shipping companies. A container port needs to run a tight schedule for berthing,
and a container vessel has little time for berthing. Some costs for berthing such as
port dues, berth hire and anchorage may increase when berthing time increases.
These changes require a container vessel to arrive at and depart from a port on
time in a cost-effective way.

Among transportation costs, fuel cost is the largest, accounting for about 35
per cent of the total freight rate (UNCTAD, 2012). A vessel traveling at a low speed
accrues cost savings because fuel consumption is proportional to the cube of the
vessel speed. Moreover, fuel prices fluctuate frequently. A reduction of fuel con-
sumption also helps the environment because all vessels currently use fossil fuels.

Another issue related to vessel operations is vessel bunkering (that is,
refueling). A vessel that serves an inter-region route, for example, Asia–Europe,
often has to bunker at several ports on its journey. Moreover, fuel prices
frequently change and are different at different ports. A shipping company has
to decide at which port and how much the vessel will be bunkered.

In this article, we study a speed and bunkering problem of a vessel on a
route, with the objective of minimizing fuel costs. The decision variables are the
speeds of the vessel on route, the ports for bunkering and the bunkering amount
at each port. The rest of the article is organized as follows: the next section
reviews related studies in literature, then the problem description is presented in
the following section. A numerical performance comparison is presented, and
the last section provides our conclusions.

Li te rature Rev iew

In recent decades, many researchers have studied maritime transportation
including vessel routing. Christiansen and Nygreen (1998) studied a ship
planning problem. They designed a set of routes for a heterogeneous fleet to
minimize costs. Shintani et al (2007) considered a ship routing problem to
maximize profit when picking up and delivering container cargoes. The problem
was divided into two parts. The lower-problem determined the optimal calling
sequence of ports for a specific group of ports. The upper-problem was a
Knapsack problem to select the best set of calling ports based on the calling
sequence determined in the lower-problem.

Another issue in ship routing is fuel conservation. Ronen (1982) considered
a trade-off between fuel conservation through slow steaming and loss of revenue
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because of voyage extension. Ronen (2011) analyzed a trade-off between speed
reduction and adding more vessels to a container line route, and proposed a
simple procedure to determine the sailing speed and number of vessels to
minimize the annual operating cost of the route. Brown et al (1987) solved a
crude oil tanker scheduling problem, which takes into account all fleet cost
components, including the opportunity cost of ship time, port and canal use, and
fuel bunkering. The model determines optimal speeds of the ships and the best
routing of ballast (empty) legs, as well as the cargoes to load on owned ships and
on spot charters. Kim (2014) addressed a problem of determining ship speed and
bunkering ports in a ship route, through a non-linear programming (NLP)
mathematical model. While many papers consider the fuel consumption rate as
a non-linear function of vessel speed, for simplification of analysis, Berling and
Martinez-de-Albeniz (2011) used a piecewise linear function for the relationship
between fuel consumption rate and vessel speed. Fagerholt et al (2010)
considered a problem of reducing fuel consumption by optimizing the speed on
a route where the time window at a port is considered. They divided the problem
into three problems and solved them sequentially. Speed was the primary
variable in the first problem, sailing time in the second problem and arrival time
at a port in the third problem. Meyer et al (2012) considered the cost saving
potential at lower speeds. Yao et al (2012) studied bunker fuel management
strategy for bunkering port selection, bunkering amounts and ship speeds for a
single liner shipping service.

In the literature on the relationship between vessel speed and fuel
conservation, most people assume that vessel speed does not change from one
port to the next during a journey, while a vessel may have to sail at different
speeds from one port to another because of geographical features such as canal,
channel and ocean currents. Also, to consider the non-linear relationship
between fuel consumption and vessel speed, that is, fuel consumption is
proportional to the cube of vessel speed (v3) or it follows some non-linear
empirical relationship, most people used NLP techniques in their mathematical
modeling.

This article considers geographical features of a route and develops a linear
mathematical model. The leg from one port to another is divided into several
segments with different maximum speed limits based on geographical character-
istics. A vessel has to arrive at a port within a pre-determined time window. The
non-linear relationship between fuel consumption and vessel speed is substi-
tuted by a set of piecewise linear functions in an innovative way. The decision
variables of the model include the vessel speed at each segment of a leg, the ports
for bunkering and the bunkering amounts to minimize fuel cost while satisfying
the time window constraint at each port. Also a heuristic approach to the
problem is presented for simpler and quicker planning.
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Prob lem Desc r ipt ion and Mathemat ica l Mode l Formulat ion

Problem description

We consider a single route served by one vessel. A route includes a set of ports
the vessel has to visit. A leg is a part of a route from one port to the next. A leg has
one or more segments depending on geographical features, each of which has its
own allowed maximum speed. For example, a vessel has to sail slower when it
passes a canal, or the ocean currents can affect the vessel speed. Also, some ports
can be located in an area with many small islands requiring a vessel to reduce its
speed. A vessel maintains a constant speed in each segment. A set of calling ports
on the route, the sequence of calling ports, and the distance and maximum
allowed speed of each segment are known. For example, on the route LP5
shown in Figure 1, a vessel visits these ports in this order: Gwangyang, Busan,
Shanghai, Ningbo, Yantian, Shekou, Singapore, Rotterdam, Hamburg, South-
ampton, Singapore and Gwangyang. When visiting a port, a vessel loads and
unloads containers within the allowed berthing time. Also, a vessel bunkers
fuel for its journey. A port has its predetermined earliest and latest allowed
arrival time, a time window, for a vessel. The berthing time is decided before the
vessel arrives. Fuel prices are typically different at different ports. A vessel’s
capacity for fuel storage is known. For safety, when a vessel departs from a port,

Figure 1: Vessel route Asia–Europe Loop 5 (LP5).
Source: Hyundai Merchant Marine Company – South Korea.
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the fuel carried by the vessel has to be at least 10 per cent more than the
minimum amount required for the next leg of its route. To minimize the total cost
of fuel bunkering, we determine the speed of a vessel at each segment of a leg,
the bunkering ports and also the bunkering volumes.

Mathematical model

The problem can be formulated as follows. Notations are given first.

Subscript
i, i∈[1,…, P] subscripts of ports. Port 1 is the starting port
l, l∈[1,…, ni] subscript of a segment of a leg between two ports in a route;

ni is defined below
k, k∈[1,…, K] subscript of intervals of piecewise linear function that

approximates the actual relation between speed and fuel
consumption rate.

Parameter
ei, li earliest and latest arrival time at port i
ti berth time at port i
pi unit fuel price at port i (USD/ton)
sk lower bound of the domain of the k-th piecewise linear

function (interval k) used to approximate the fuel consump-
tion (knot)

ak, bk slope and y-intercept of piecewise linear function of interval k
m fuel capacity of the vessel (ton)
q amount of fuel on the vessel at Port 1 (ton)
di
l distance of segment l on the leg from port i−1 to port i on the

route
ui
l maximum allowed speed on segment l on the leg from port

i−1 to port i on the route
ni number of segments on the leg from port i−1 to port i

Decision variable
Ii fuel level when the vessel arrives at port i (ton)
Xi bunkering amount at port i (ton)
Vi
l vessel speed on segment l on the leg from port i−1 to port i

on the route
Ai arrival time at port i
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Modeling
Let F= g(V) be the fuel consumption rate at speed V. Then g is a non-linear
function, and the problem can be formulated as follows:

P1ð Þ Minimize
XP
i¼1

piXi

Subject to Ai ¼ Ai - 1 + ti - 1 +
Xni

l¼1

dli
Vl
i

i 2 2; ¼ ; P½ � (1)

A1 ¼ 0 2að Þ
t1 ¼ 0 2bð Þ ð2Þ

ei⩽Ai⩽li i 2 2; ¼ ; P½ � (3)

Fl
i ¼ g Vl

i

� �
i 2 2; ¼ ; P½ � (4)

Ii ¼ Ii - 1 +Xi - 1 -
Xni

l¼1

Fl
id

l
i

Vl
i

i 2 2; ¼ ; P½ � (5)

I1 ¼ q (6)

Ii +Xi⩽m 8i (7)

Ii⩾0:1*
Xni

l¼1

Fl
id

l
i

Vl
i

i 2 2; ¼ ; P½ � (8)

vmin⩽Vl
i⩽u

l
i i 2 2; ¼ ; P½ � (9)

Ii; Xi; Vl
i ; F

l
i ; Ai⩾0; 8i; l (10)

The objective function is to minimize the total bunkering cost. Constraints
(1) and (2) are time flow constraints. The arrival time of the following port is
the sum of the arrival time at the previous port, port time there and the time for
the vessel to move from the previous port to the current port. Constraint (3) is a
time window constraint. Constraint (4) is a non-linear relationship between
speed and fuel consumption. Constraint (5) shows the inventory balance of fuel
onboard, and constraint (6) presents the initial fuel level. The fuel level at the
current port is the level at the previous port plus the purchased amount at that
port minus the amount used to sail to the current port. Constraint (7) assures the
fuel level does not exceed the capacity of the vessel. Constraint (8) guarantees
the safety stock of fuel, which is 10 per cent of the amount of fuel required to
move the vessel to its next port of call. Constraint (9) makes sure the vessel sails
in the allowed range of speed at each segment.



420 © 2016 Macmillan Publishers Ltd. 1479-2931 Maritime Economics & Logistics Vol. 18, 4, 414–435

Nielsen et al

This formulation is non-linear because of Constraint (4) and Constraints (1),
(5) and (8), which have Vi

l in the denominator.

So lut ion Procedure

In this article, two solution approaches are proposed for problem (P1). In the first
approach, the function Fi

l= g(Vi
l) and other non-linear constraints are linearized

by a piecewise linear function, and (P1) is converted to a linear model. Here,
differently from other linearization of the problem in the literature, these non-
linear constraints are replaced by a set of linear constraints instead of a piecewise
linear function. The performance of this new approach is compared with that of
the existing piecewise linearization approach at the end of this section. In the
second approach, a heuristic algorithm is developed for a simple and quick
solution. While the heuristic procedure is faster, the linear programming (LP)
modeling is flexible enough to consider additional diverse types of constraints
not yet considered in the current problem.

Linearization of the fuel consumption rate curve

The function of the relationship between fuel consumption rate and vessel speed
is replaced by a piecewise linear function as follows:

Fl
i � g Vl

i

� � ¼
b1 + a1Vl

i vmin⩽Vl
i⩽s2

b2 + a2Vl
i s2⩽Vl

i⩽s3
..
.

bK + aKVl
i sK⩽Vl

i⩽vmax

8>>><
>>>:

To build this function, we divide the practical speed range of a vessel, [vmin,
vmax], into K intervals [vmin= s1, s2], [s2, s3],…, [sK, vmax]. In interval [sk, sk+1],
ak is the average slope of the linear line, ak= (g(sk+1)−g(sk))/(sk+1−sk), and bk
is chosen to make the piecewise linear line meet the actual curve at the
boundaries of the segments, bk= g(sk)−aksk. Note that the function g is convex,
and so, for any x value under consideration, the piecewise linear function can be
replaced by:

g xð Þ ¼ max a1x1 + b1; a2x2 + b2; ¼ ; aKxK + bKf g

As an example, let us consider y= g(x)= 0.01x3+20, x∈[10, 40] (Figure 2).
In the second interval, [20, 30], a2= (g(30)−g(20))/(30−20)= 19, and b2= g(20)
−19*20= 280. If we denote the piecewise linear function in the k-th interval,



421© 2016 Macmillan Publishers Ltd. 1479-2931 Maritime Economics & Logistics Vol. 18, 4, 414–435

Planning of vessel speed and fuel bunkering

gk(x), from Figure 2,

y ¼ max g1 xð Þ; g2 xð Þ; g3 xð Þð Þ 8x 2 10; 40½ �:
With this linearization of the function F, Constraint (4) becomes:

Fl
i ¼max b1 + a1Vl

i ; b2 + a2V
l
i ; ¼ ; bK + aKVl

i

� �
i 2 2; ¼ ; P½ � ð11Þ

Because we are to minimize total cost, Constraint (11) can be replaced by
constraint (12).

Fl
i⩾bk + akV

l
i i 2 2; ¼ ; P½ � and 8k (12)

For linearization of constraints with Vi
l in the denominator, we denote

Zi
l= ((1)/(Vi

l)) and Wi
l= ((Fi

l)/(Vi
l)); then we have Vi

l= ((1)/(Zi
l)) and Fi

l= ((Wi
l)/

(Zi
l)), and now Constraints (1), (5), (8), (9) and (12) becomes as follows:

Ai ¼ Ai - 1 + ti - 1 +
Xni

l¼1

dliZ
l
i i 2 2; ¼ ; P½ � (13)

Wl
i ≥ bkZl

i + ak i 2 2; ¼ ; P½ � and 8k (14)

Ii ¼ Ii - 1 +Xi - 1 -
Xni

l¼1

dliW
l
i i 2 2; ¼ ; P½ � (15)

Ii⩾0:1*
Xni

l¼1

dliW
l
i i 2 2; ¼ ; P½ � (16)

1
vmin

⩽Zl
i⩽

1
ul
i

i 2 2; ¼ ; P½ �; l 2 1; ¼ ; ni½ � (17)
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Figure 2: Linear approximation of fuel consumption rate over vessel speed.
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With this transform, the non-linear mathematical model (P1) can be
reformulated as a linear model as follows:

P2ð ÞMinimize
XP
i¼1

piXi

Subject to
Constraints (13), (2a), (2b), (3), (14), (15), (6), (7), (16), and (17).
Compared with the model of Yao et al (2012), this approach brings some

benefit. First, the new model (P2) can be solved by general LP software without
the help of a built-in linearization function, which may not be available in all LP
packages. Second, (P2) can be solved faster as shown in the numerical
experiments section. Third, because (P2) is an LP, it allows a sensitivity analysis,
which is not available from either the approach of Yao et al (2012) or from
general NLP.

Heuristic procedure

Although the above formulation (P1) is flexible and can consider additional types
of constraints that are not considered in the above formulation, it needs many
additional constrains for linearization of the original formulation. This section
proposes a simple heuristic procedure to solve the speed and bunkering
problems. The proposed heuristic algorithm is divided in two main steps. In the
first step, vessel speed on the segments of each leg is determined so as to satisfy
the time window constraint. In the second step, the bunkering ports, as well as
the bunkering amounts are determined.

Beam intersection procedure (BIP) to determine a vessel speed on a segment
This procedure determines the speed of a vessel in the segments of legs of its
route when a segment possibly has a maximum speed limit and a port has a time
window. For ease of discussion, we assume that berth time is 0 without loss of
generalization.

Single segment in a leg without speed limit We first consider when a leg does
not have a speed limit. Figure 3 shows on the y-axis the distance to each port
from the current port along the route, and time on the x-axis. In the graph, we
show all ports of call within a planning time horizon, which may include any
early part of a route or multiple complete routes of the vessel. Let Port 1 be the
current port. Time 0 is the departure time from Port 1. In the graph, the slope is
the speed of a vessel, which we want to determine. Three ports and their time
windows are shown in the graph for discussion.
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As fuel consumption is proportional to the cube of speed, it is better to use the
same speed as much as possible, instead of using a lower speed at one time and a
higher speed at another one to save fuel costs (see the lemma below). This means
that, in the graph, we want to have a straight speed line with the same slope, or
close to a straight line, from the beginning to the final destination as much as we
can.

Lemma: If travel time on a leg (or any segment in a leg) is fixed, and the
relationship between fuel consumption and speed, g(.), is convex,
then the vessel travels at a constant speed to minimize its fuel
consumption.

Proof: Let the distance between two ports be d and the travel time at a constant
speed be t. Let the vessel sail at speeds V1 and then V2. Let the durations that the
vessel sails with speed V1 and V2 be t1 and t2, respectively. We prove that:

g V1ð Þ ´ t1 + g V2ð Þ ´ t2 ≥ g Vð Þ ´ t;
where t= t1+t2, V= (d)/(t), and g(.) is convex.
Because g(V) is convex, we have, for all u ∈[0, 1],

g V1ð Þ ´u + g V2ð Þ ´ 1 -uð Þ⩾g uV1 + 1 -uð ÞV2ð Þ:
Let us define u= t1/t. Then u is in [0, 1], and 1−u= t2/t. Then

g V1ð Þ ´ t1
t
+ g V2ð Þ ´ t2

t
⩾g t1

t
V1 +

t1
t
V2

� �

¼g
t1V1 + t2V2

t

� �
¼ g

d
t

� �
¼ g Vð Þ:

If we multiply t into all terms, we get the first formula of the proof. The
equality holds when V=V1=V2. □
To find the best speed lines in Figure 3, we introduce a Beam Intersection

Procedure (BIP). Let us consider Window 2 of Port 2 in that figure. We can use

1.2 (Port 2)
time

Distance

2.1 (Port 3)

3.5 (Port 4)

2L 3R

3L 2R 

(1) (3) (2) 

0 (Port 1)

Figure 3: Time–distance chart and BIP.
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any speed between the lines of 2 L and 2 R to arrive at the port within the time
window. If we have a choice, we will use the speed corresponding to 2 R, the
lowest speed, to reduce fuel consumption. If we consider Window 3 of Port 3,
then the feasible beam range is that of 3 L and 3 R. If we consider Windows 2 and
3 together, the speed range that is an intersection of the ranges of Window 2 and
Window 3 can be used without changing speed. In the figure, any speed in the
range shown by the arrowed arc, the beam range of (3 L, 2 R), can be used.
Now, let us now consider Window 4 of Port 4. There are three possible cases.

In the first case, the upper bound of the window is on the left side of the current
feasible beam range (CFBR), which is labeled as (3 L, 2 R) in this example. In the
second case, the lower bound of the window is on the right side of the CFBR.
In the third case, a part of the window is in the CFBR.
The first case is shown by Window 4(1) in Figure 3. Here we notice that the

beam range of Window 4(1) has no overlap with the CFBR of (3 L, 2 R) and is on
the left side of it. In this case, it is clear that the vessel arrives at Port 3 at its
earliest possible time (not at any later time). Also, it travels at a constant speed,
the speed of 3 L, to Port 3. From the figure, we know the arrival time of Window 1
is the intersection of line 3 L andWindow 2. For the rest of the route, we start this
whole procedure again by using the earliest possible arrival time of Window 3 as
a new origin.
The second case is shown by Window 4(2) in Figure 3. Here we notice that the

beam range of Window 4(2) has no overlap with the CFBR of (3 L, 2 R) and is on
the right side of it. In this case, it is clear that the vessel arrives at Port 2 at its
latest possible time (not at any earlier time). Also, it travels at a constant speed,
the speed of 2 R, to Port 2. For the rest of the route, we start this whole procedure
again by using the latest possible arrival time of Window 2 as a new origin.
The third case is illustrated by Window 4(3) in Figure 3. In this case, the new

time window, Window 4(3), has an overlapping range with the CFBR. If the
lower bound of the time window is on the right side of the left bound of the
CFBR, we change the left bound of the existing CFBR. For example, the new left
bound of the CFBR is now 4 L. If the lower bound of the time window is on the
left side of the left bound of the existing CFBR, we do not change the left bound of
the existing CFBR. We perform a similar procedure for the upper bound of
the time window. If the upper bound of the time window is on the left side of the
right bound of the CFBR, we change the right bound of the CFBR. For example,
the new right bound of the CFBR is now 4 R. If the upper bound of the new time
window is on the right side of the right bound of the CFBR, we do not change
the right bound of the CFBR.
After updating the existing CFBR, we consider the time window of the next

port. If its next time window is the last window in the time horizon, we use the
latest arrival time of the window to reduce fuel consumption.
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Example 1: In Table 1, the first three columns are scheduling raw data. On the
basis of these, we make the speed windows of the time windows in
the fourth column. (Note that the speed of the left label of the
speed window is larger than that of the right label.) In the last
column, the CFBR of Port 2 is the same as the first speed window.
The CFBR of Port 3 is obtained by comparing the existing CFBR
(Port 2) and the current speed window (Port 3). The new left
bound is the minimum of the two left bounds, and the new right
bound is the maximum of the two right bounds. Similarly, the
CFBR of Port 4 is obtained by comparing the existing CFBR (Port 3)
and the current speed window (Port 4). The left bound is the
minimum of the two, and the right bound is the maximum of the
two. We now consider Port 5. Because the left bound of its speed
window is smaller than the right bound of the CFBR (Port 4), we
stop the iteration. We determine that we use the right bound of the
existing CFBR, which is currently 4 R= 450, to go to Port 4 from
Port 1.

Multiple segments in a leg with speed limits Some segments on a route can have
speed limits for the reasons stated before. Sometimes, the maximum vessel speed
can be a limiting factor. This section considers the speed limit of a vessel and the
maximum allowed speeds in the segments.
A speed limit of a segment can be shown by a slope of lines in the segment area

in a distance–time chart (sloped dashed lines in Figure 4). The maximum speed
of a vessel is not shown in the figure. To conserve fuel, if possible, one wants to
travel at a constant speed on the route, which may be too high in some segments.
In the segments with speed limits, if needed, we will use their maximum allowed
speeds.
When an arbitrary target arrival time at a port is given, one can think of

different ways of arriving at the port at that time. In Figure 4, for illustration, we

Table 1: Vessel speed scheduling (numerical example)

Port
name

Distance from origin
(nm)

Time window
(days)

Speed window: label and speed
(nm/day)

CFBR: label and speed
(nm/day)

Port 1 0 — — —
Port 2 6000 (10, 15) (1 L, 1 R)= (600, 400) (1 L, 1 R)= (600, 400)
Port 3 12 000 (24, 32) (2 L, 2 R)= (500, 375) (2 L, 1 R)= (500, 400)
Port 4 18 000 (32, 40) (3 L, 3 R)= (562.5, 450) (2 L, 3 R)= (500, 450)
Port 5 21 000 (50, 56) (4 L, 4 R)= (420, 375)

Note: nm, nautical mile.
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tentatively assume that a considered speed is higher than the maximum speed of
the segment. To arrive at the next port at a given time, T, we can either use a
speed, Slope 1, first, travel through the segment at the maximum allowed speed,
and use another speed, Slope 3, or we can use a proper speed, Slope 2, go
through the segment, and then use the same speed, Slope 2, again. Among these
alternatives, we can minimize fuel consumption by using the same speed, Slope
2, outside of the segment. In this section, we find a plan that uses the same or
similar slopes throughout the legs and segment as much as possible.
Before we discuss the general concept and procedure of planning, we present a

calculation procedure to determine the ‘same speed’ to be used outside of the
segments. In Figure 4, the distance and the target time for moving from the
current port to the next are D and T, respectively. Let d and t be the length of
the segment and time needed to pass through the segment at its allowed
maximum speed. Let the maximum allowed speed of the segment and the
maximum speed of the vessel be λ and Λ, respectively. We want to find the speed
we will use outside of the segment, x. The best speed, x, is obtained this way:
Case (A) If x⩽λ, x= (D)/(T)
Case (B) If λ⩽x⩽Λ, x= (D−d)/(T−t)
In Case (A), the speed to be used in the segment is x. In Case (B), the vessel

goes through the segment at its maximum allowed speed, m. Here we do not
consider the case where a vessel cannot arrive at the next port in the allotted time
window even at its maximum speed.

Example 2: Let D=3000 nm, T=10 days,M=500 nm/day, d=500 nm,m=250
nm/day. Now, we get t=d/m=500/250=2 days. (Case A)
When x⩽250, we have x=D/T=3000/10=300 nm/day. (Case B)
When 250⩽x⩽500, we get x= (D−d)/(T−t)= (3000−500)/(10−2)

distance

(Port) D

Slope 3 

Slope 2 

Slope 2 

T time

Slope 1 

(Seg) d

t  

Figure 4: Vessel speed planning when there is a segment with a speed limit.
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=312.5 nm/day. From these two cases, we conclude that we travel at
312.5 nm/day outside of the segment. Inside the segment, we travel
at the maximum speed of the segment, 200 nm/day.We spend 2 days
in the segment, and 2500/312.5= 8 days out of the segment.

When we have multiple segments in the leg under consideration, we divide the
range of possible x value (speed) according to their maximum allowed speed, mi

for segment i, that is, the ranges can be vmin⩽x⩽m[1];m[1]⩽x⩽m[2];m[2]⩽x⩽m[3];
…; m[L+1]⩽x⩽vmax, where L is the number of segments with speed limits in the
leg under consideration, andm[i] is the i-th smallest value of all speed limits of all
segments in the leg.
Using the procedure exemplified in Cases (A) and (B) above, we can determine

the speeds of the lower and upper bounds of each time window. Figure 5 shows
the speeds of the time windows of Port 2 and Port 3. The 2 R speed is smaller than
the speed limits of the segment, Seg 21, so the line is straight. For the other lines,
the slopes in the segments are the maximum speed allowed. Outside the
segments, each of the lines maintain a constant speed. Once we have the speed
windows of the time windows of ports, (2 L, 2 R), (3 L, 3 R) and so on, we can use
the procedure explained in the previous section and in Example 1. In Figure 5,
the CFBR of Port 2 is (2 L, 2 R). The CFBR of Port 3 is (2 L, 3 R) because the speed
of 3 L is larger than that of 2 L on the left side, and the speed of 3 R is larger than
that of 2 R on the right side.

Fuel bunkering decision
When berthing, a vessel is given a chance to bunker. Because fuel costs are
different at different ports, planning is needed to save on fuel costs. Here we
decide whether and how much to bunker at the current port. We can make this
decision at each port at the time of visit and this is done independently of how
many containers the vessel has to load or unload.

distance

Port 2

Port 3

Seg 31

Seg 32

Seg 21

2L 

2R 

3R 3L 

time 

Figure 5: Time–distance chart with speed limit.
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Let SPc be a set of ports that can be reached with the current amount of fuel
at the current port before bunkering. Let SPf be a set of ports that can be reached
with full bunkers at the current port. SPf is the planning horizon at this decision
point (Figure 6).

Case (A): A port in SPc has a fuel price lower than P*.
In this case, the vessel does not need to bunker at the current port. Go to the port

in SPc with the lowest fuel price (Port 3), and bunker there at a price lower than P*.
Case (B): No ports in SPc have fuel prices lower than P*. However, there is a

port in SPf with lower fuel price than P*.
In this case, the vessel bunkers at the current port just enough to go to the

first port with a lower fuel price than P* (Port 6). Until we get there, the fuel
prices are all higher than P*.

Case (C): No ports in SPf have fuel prices lower than P*.
It is certain that the vessel needs bunkering at or before the last port in SPf

(Port 7). However, because prices are all higher than P*, the vessel bunkers to its
maximum at the current port.

In one case, if the set of SPc is empty, then we tentatively decide to buy just
enough fuel to reach Port 2 and start the consideration of Cases A, B and C at the
current port.

Numer ica l Per fo rmance Compar i son

This section tests the performances of the newly proposed LP modeling approach
and the heuristic procedure. These are tested on a PC with 2.8 GHz i7-CPU and
8 GB RAM.

Performance of the new linear modeling approach

We first test the performance of our approach for the LP modeling by com-
paring our approach with that of Yao et al (2012), who recently considered a

current 
port SPc

SPf

P* 

(A) 
(B) 

(C) 

Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 

Figure 6: Bunkering decision (P*: fuel price at the current port) (The parts of curves between ports are
only for a visual presentation without meaning).



429© 2016 Macmillan Publishers Ltd. 1479-2931 Maritime Economics & Logistics Vol. 18, 4, 414–435

Planning of vessel speed and fuel bunkering

similar problem. For fairness of comparison, we linearize the original non-linear
formulation (Y1) of Yao et al (2012), instead of ours (P1) by using our
linearization approach introduced above because of three main differences
between them. Different from (Y1), (P1) considers multiple segments with
different speed limits. Also (P1) does not consider the loss of revenue considered
by (Y1) because (Y1) does not model the loss in enough detail for comparisons.
(P1) does not consider quantity discount of fuel. Except for Yao et al (2012), this
discount is not considered in the literature.

Because there are two non-linear terms, ((1)/(Vi, i+1)) and Vi, i+1
2 , in (Y1), to

remove one of the non-linear terms, they replace ((1)/(Vi, i+1)) by Wi, i+1. With
this, they obtain another formulation (Y2) that is still non-linear because two
constraints contain the term ((1)/(Wn, n+1

2 )). In order to solve this model, they
replace the function (1)/(Wi−1, i

2 )) by a piecewise linear function by using the
built-in linearization function of ILOG CPLEX.

Now, for the performance comparison, we apply our linearization approach,
used to get (P2) from (P1), to (Y1). Here, the non-linear function Fi, i+1=k1
Vi, i+1
3 +k2 is replaced by a piecewise linear function. By setting Wi, i+1= ((1)/

(Vi, i+1)) and Zi, i+1= ((Fi, i+1)/(Vi, i+1)), (Y1) becomes:

P3ð ÞMinimize
Xn
i¼1

Ci +
Xn
i¼1

r1i; i + 1 Si - aið Þ + r2i; i + 1
h i

Subject to
Constraints (1)–(9), (12)–(16), (20)–(23) in Yao et al (2012)

I1 ¼ Sn - an -
dn;n + 1

24
Zn;n + 1 (18)

Ii ¼ Si - 1 - ai - 1 -
di - 1; i
24

Zi - 1; i i 2 2; ¼ ; n½ � (19)

Zi; i + 1⩾blWi; i + 1 + al i 2 1; ¼ ; n½ � and l 2 1; ¼ ; L½ � (20)

1
vmax

⩽Wi; i + 1⩽
1

vmin
i 2 1; ¼ ; n½ � (21)

Ai + 1 ¼ Ai + ti + di; i + 1Wi; i + 1 i 2 1; ¼ ; n½ � (22)

The main difference between the proposed model (P3) and that of Yao’s (Y2)
is constraint (20), which linearizes the non-linear terms.

Nowwe compare the solutions of (P3) and (Y2). Remember that the solution of
(Y2) needs the CPLEX’s linearization function, which not all LP/IP software provide.
The input data for the experiments of Yao et al (2012) is shown in Table 2.
The distances between two ports, which are not given by Yao, are obtained from
www.portworld.com/map/. The other data such as ri, i+1

1 , ai, ri, i+1
2 is set to 0.
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The mathematical models are formulated and solved by using ILOG OPL
version 12.4.

For the comparison we use a 1000-interval piecewise linear function for (P3)
and also a 1000-interval piecewise linear function for (Y2). The computation time of
(Y2) is about 2 seconds while that of (P3) is 1.5 seconds. When a 500-interval
piecewise linear function is used in (P3), the computation time goes down to 1.3
seconds. Total bunkering costs are almost the same for all these cases, around US$3
080 476 (Table 3). Experimenting on a larger size problem with 45 ports shows that
the computation time to solve (Y1) with 1000 intervals, (P3) with 1000 intervals and
(P3) with 500 intervals are approximately 16min, 11min and 3.5min, respectively,
while the objective function values are practically the same for these three cases.
The reduction of computation time from (Y1) is about 30 per cent for 1000 intervals
and 80 per cent for 500 intervals without sacrificing the operating cost.

Atlantic Pacific Express (APX) is an important service route, which connects
24 ports from East Asia, the United States and Europe. Table 4 is the data for the
APX route. When a 1000-interval piecewise linear function is used for (P3) and
(Y2), (P3) provides a solution faster than (Y2), with almost the same bunkering
cost. When a 500-interval piecewise linear function is used for (P3), the objective
function value is unchanged.

These results show the proposed approach significantly reduces the compu-
tation time despite having approximately the same number of constraints and
variables; (P3) has one more constraint and one more variable than (Y2) because
a piecewise linear function is used during the solution process in (Y2). This
shows the advantage of (P3), which is more significant for a larger problem.

Performance of heuristic procedure, BIP

The performance of BIP is compared with the results from (P2). The test data is
similar to the above experiment. For the comparison, the data is modified by

Table 2: Input data of the performance comparison (Yao et al, 2012)

Parameter Value

Number of port of calls 15
Ship size 6000TEU
Total cycle time 63×24= 1512 hours
Fuel capacity 3000 tons
Ship speed interval (14, 24) knots
Bunker fuel consumption model F= 0.00729V3+71.4
Maximum bunker time 5
Bunker fuel price discount factora 10%, 20%
Bunker fuel price 510 USD/ton

aBunker fuel price discount factor: pi
2= pi

1(1−10%), pi
3= pi

1(1−20%).
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Specifically, we consider geographical features on a vessel’s route and the
different maximum speeds over different segments of a leg.

This article first presented an LP modeling of the problem. Compared with an
NLP modeling used in the literature, this LP modeling help the manager in quickly
making decision on the mentioned problem without sacrificing the operating fuel
cost. Because it is an LP, sensitivity analysis is possible, and can be done by any LP
software, without requiring an additional linearization function of optimization
software. Also, this article presented a heuristic algorithm, BIP, which is fast and
can be easily implemented without requiring optimization software.

The problem can be extended by considering stochastic factors such as
maximum vessel speed because of the effect of weather, port time and fuel
prices. A methodology for online planning (making decisions about vessel
speed, ports for bunkering and bunkering amount) can be developed in future
research.
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