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ABSTRACT In this note, we analyse whether measures of pure return persistence can
forecast hedge fund performance, that is, whether they have the ability to identify hedge
funds with superior performance in the remote future. Using a variety of Hurst exponent
estimators (originating from rescaled range, detrended fluctuation, periodogram regression
and average wavelet coefficient frameworks) and a rich sample of hedge funds, our study
offers two important insights. First, only a small fraction of long-living funds shows
significant return persistence whereas the majority is characterised by random behaviour.
Second, high Hurst exponents (combined with low negative return ratios) can identify the
funds with the highest Sharpe ratios, both in-sample and out-of-sample. Since these results
are robust in a variety of settings, they imply that Hurst exponents can act as valuable hedge
fund selection tools, not only for individual investors seeking the best funds but also for
managers constructing funds of hedge funds.
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INTRODUCTION
For almost two decades, the persistence of
hedge fund performance has been subject of a
considerable number of academic studies
because of its important implications for
investors (see Eling, 2009). Investors are
naturally interested in selecting the funds with
the highest future performance but typically
base their decisions on past returns (see Capon
et al, 1996). Thus, the identification of the
future best managers on the basis of a
track record requires a rigorous method to
quantify and evaluate persistence in returns
(see Géhin, 2005).

Generally, we distinguish between two
types of return persistence: relative return
persistence (RRP) and pure return persistence
(PRP).1 To analyse RRP, funds are classified as
winners or losers by comparing their returns
with the median return in a given period.
Evidence of return persistence is observed
when winners and/or losers remain the same
between periods. While the cross-product ratio
test (see Agarwal and Naik, 2000), the χ2 test
(see Park and Staum, 1998), the rank
information coefficient test (see Herzberg and
Mozes, 2003), the Spearman rank correlation
test (see Park and Staum, 1998) and the
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regression-based method (see Brown et al,
1999) are the most-used two-period
approaches, the Kolmogorov–Smirnov test
employs a multi-period framework and can be
considered the most powerful method of
testing RRP (see Agarwal and Naik, 2000;
Teo et al, 2003; Eling, 2009). In contrast to
RRP methods, which indicate persistence of
the outperformance or underperformance
relative to other funds, a PRP test allows
identification of the funds exhibiting the
strongest persistence of their positive returns
which is analysed fund by fund.

De Souza and Gokcan (2004), henceforth
DSG, propose examining PRP based on the
Hurst exponent H because it is a natural
indicator of long memory and its fractal
estimators are typically superior to more
conventional approaches of measuring long
memory, such as autocorrelations, variance
ratios and spectral decompositions, in terms of
sensitivity to highly non-Gaussian series,
convergence and non-periodic cycles (see
Campbell et al, 1997).2 H<0.5 suggests anti-
persistence, that is, that positive returns tend
to succeed negative returns and vice versa,
H= 0.5 implies random succession of returns
and H>0.5 indicates persistence, that is, that
returns tend to be followed by returns of the
same sign (see Kantelhardt, 2009). While for
high H observations in the remote past are
nontrivially correlated with observations in
the distant future, no information is given on
whether positive or negative returns persist.
Thus, DSG suggest a fund selection
procedure that combines a high Hurst
exponent with a low negative return ratio D
because this mix indicates the persistence of
positive returns. In an exemplary performance
analysis of 314 hedge funds in the period from
1997 to 2002, they show that this procedure
can identify funds that significantly
outperform the remaining funds out-of-
sample and thus can be regarded as a
particularly interesting approach for hedge
fund selection.3

Despite its high theoretical and empirical
appeal, the DSG approach has received little

attention in the literature. This can be
attributed to several issues. First, the accuracy
of the presented empirical results is limited
because Hurst exponent approaches are
known to require larger time series to be
precise (see Amvella et al, 2010). Second, an
extension to a larger number of funds
(extracted from one of the standard hedge
fund databases) would make the presented
evidence more convincing (see Capocci and
Hübner, 2004). Finally, we have to consider
studies showing that the choice of fractal
estimator for the Hurst exponent can crucially
influence decision-making (see Taqqu et al,
1995; Clegg, 2006; Fernandez, 2011). Thus,
while DSG rely only on the classic rescaled
range analysis (RRA) of Hurst (1951) and
Mandelbrot (1971), using alternative
estimators would give important indications
on the robustness of results.

In this article, we address these drawbacks
and revisit the DSG approach in a wider
setting. On the one hand, we use a richer
sample (in the time series as well as in the
cross-sectional dimension) of hedge funds
obtained from the Center for International
Securities and Derivatives Markets (CISDM)
database (as used in Auer and Schuhmacher,
2013a, b). On the other hand, we take a
detailed look at the sensitivity of results to
alternative fractal estimators. In addition to
using the standard RRA, we employ three
alternative estimators that have received
considerable attention in recent years.
Specifically, we implement the detrended
fluctuation analysis (DFA) of Moreira et al
(1994) and Peng et al (1994), the periodogram
regression method (PRM) of Geweke and
Porter-Hudak (1983) and the average wavelet
coefficient method (AWCM) of Simonsen et
al (1998). While RRA and DFA have
become state-of-the-art techniques not only
for measuring long memory in economic
time series but also in the related areas of
market crash prediction (see Grech and
Mazur, 2004), investment strategy
development (see Batten et al, 2013)
and the evaluation of market efficiency
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(see Eom et al, 2008), the PRM and the
AWCM are less widespread but have proven
particularly valuable in the analysis of stock
and commodity return dynamics (see Crato
and de Lima, 1994; Simonsen, 2003) and
order sign forecasting (see Lillo and Farmer,
2004). The primary goal of our study is to
evaluate the ability of the Hurst exponent to
identify superior hedge funds in-sample and
out-of-sample. With respect to the choice of
fractal estimator, we are particularly interested
in whether it has a crucial influence on the
fund selection outcome.

The remainder of the article is organised as
follows. The next section provides a brief
description of our hedge fund data set. The
subsequent section discusses our four fractal
estimation procedures for the Hurst
exponent. The section after that presents the
empirical results and the outcomes of several
robustness checks. The final section
concludes.

DATA
The hedge fund return data used in this study
are obtained from the CISDM hedge fund
database that has been subject of many
academic studies.4 Even though it covers
6854 hedge funds from January 1972 through
November 2009, we concentrate on the years
1994–2009 for three reasons.5 First, because
hedge fund data before 1994 is considered
unreliable (see Fung and Hsieh, 2000; Liang,
2000; Li and Kazemi, 2007), the exclusion of
this time frame limits the data flaws that
plague much of the older hedge fund research
(see Capocci and Hübner, 2004; Liang and
Park, 2007; Eling, 2009). Second, unlike
other studies (see Brown et al, 1999; Amenc et
al, 2003; Baquero et al, 2005), our sample
contains bullish and bearish markets such that
our results are not biased by a concentration
on a specific market phase (see Capocci et al,
2005; Ding and Shawky, 2007). Third, it is
important not to use excessively long time
periods in the analysis of hedge fund return
persistence because, in this context,

persistence is associated mostly with the
special skill of the fund manager and hedge
fund managers usually do not work with the
same hedge fund for more than a decade
(see Boyson, 2008).

While the time-series dimension of our
sample should not be too big because of the
aforementioned reasons, we have to consider
that our fractal estimators of the Hurst
exponent require sufficient sample sizes in
order to be precise (see Chamoli et al, 2007).
Thus, to balance both requirements, only
funds with at least 120 monthly return
observations are admitted to our sample. This
leads to a final cross-sectional sample size of
1493 funds. Furthermore, we have to take
into account that Hurst exponent estimates
must be obtained based on continuously
compounded returns (see Peters, 1992). Thus,
we convert the simple returns from the
CISDM database to log-returns.

Table 1 presents some descriptive statistics
for our sample. It shows the minimum,
maximum, mean and standard deviation of
the first four moments of the return
distributions (mean, standard deviation,
skewness and kurtosis). As we can see, the
hedge funds in the data set show positive
returns of 0.75 per cent on average with an
average standard deviation of 4.25 per cent.6

On average, returns are skewed to the left and
show heavier tails than the normal
distribution. However, this is not a concern

Table 1: Descriptive statistics

Mean Standard
deviation

Skewness Kurtosis

Minimum −1.20 0.16 −11.04 1.77
Maximum 3.88 24.26 5.42 126.36
Mean 0.75 4.25 −0.49 9.26
Standard

deviation
0.44 2.96 1.56 10.90

Note: For our sample of 1493 hedge funds, this table
shows some descriptive measures (minimum,
maximum, mean and standard deviation) characterising
the first four moments of the hedge funds’ return
distributions (mean, standard deviation, skewness and
kurtosis). All measures are based on monthly
percentage log-returns extracted from the CISDM
database.
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for our subsequent analysis because fractal
estimators can be applied even to highly non-
Gaussian time series (see Mandelbrot and
Wallis, 1969; Barunik and Kristoufek, 2010;
Kristoufek, 2012).

Even though our sample selection process
eliminates periods with unreliable return data,
one might argue that the data still suffers from
classic survivorship and backfilling biases (see
Ackermann et al, 1999; Fung and Hsieh,
2000). These biases influence studies
evaluating the performance of the overall
hedge fund industry because they lead to an
overstatement of the industry’s performance.
In our study, however, the aim is different.
We take the perspective of an investor with
the goals to (i) identify the best funds listed in
the CISDM database by means of a Hurst
exponent approach and to (ii) invest in the
resulting selection. This kind of fund-picking
is naturally only meaningful when conducted
among funds still active at the time the
investment decision is made. Furthermore, for
this investor, the CISDM database is the only
source of return information and he cannot
detect whether a fund backfilled data after the
incubation period or not. As a consequence,
our research question and our results are
conditional upon the CISDM data. That is,
we answer the question of whether investors
can use the Hurst coefficient obtained based
on the CISDM data to identify the best hedge
funds.

METHODOLOGY

Rescaled range analysis
The RRA of Hurst (1951) and Mandelbrot
(1971) is probably the best-known method to
estimate the self-similarity parameter or Hurst
exponent H. Given a series of continuously
compounded returns frtgTt¼1, RRA is
basically performed in two steps (see Sánchez
Granero et al, 2008; Souza et al, 2008).7 We
begin the first step by dividing the given time
series into d sub-series of length n. Next, for
each sub-series m= 1,…, d, we estimate the

mean μm and standard deviation σm by means
of maximum likelihood and use the resulting
values to obtain the rescaled range

Qm ¼ 1
σm

max
1⩽ i⩽ n

Xi

j¼1

ðrj;m - μmÞ - min
1⩽ i⩽ n

Xi

j¼1

ðrj;m - μmÞ
" #

; (1)

where the first (second) term in brackets is the
maximum (minimum) over i of the partial
sums of the first i deviations of rj,m from the
sub-series mean μm. Finally, we calculate the
average Qn ¼ d - 1Σd

m¼1Qm of the rescaled
range over all sub-series of length n.

The second step makes use of the fact that
the Qn statistic asymptotically follows the
relation Qn � cnH , where c is a constant and
H is the Hurst exponent (see Mandelbrot,
1975). Thus, we can obtain H by running a
linear regression over a sample of increasing
time horizons, that is, logðQnÞ ¼ logðcÞ +
H logðnÞ + ϵ, where ϵ is the residual of the
regression.

Detrended fluctuation analysis
Our second method to estimate H is the DFA
proposed by Moreira et al (1994) and Peng
et al (1994). Similar to the RRA, the DFA is
performed in two steps (see Grau-Carles,
2000; Grech and Mazur, 2004). In the first
step, we divide the time series frtgTt¼1 into
d sub-series of length n. Next, for each sub-
series m= 1,…, d, we create a cumulative
time series Yi;m ¼ Σi

j¼1ðrj;m - μmÞ for i= 1,…,
n, fit a least squares line Yi,m= am+bmi+ϵ to
{Y1,m,…, Yn,m}

8 and calculate the root mean
square fluctuation

Fm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðYi;m - am - bmiÞ2
s

(2)

of the integrated and detrended time series.
Finally, we calculate the mean value Fn of the
root mean square fluctuation for all sub-series
of length n. In the second step, a power-law
behaviour Fn � cnH is expected (see Peng
et al, 1994; Taqqu et al, 1995) from which H
can be extracted from log-log linear fit similar
to RRA.
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Periodogram regression method
A semi-parametric procedure to obtain the
Hurst exponent has been developed by
Geweke and Porter-Hudak (1983). Its basic
idea is to estimate the differencing parameter
κ of a general fractionally integrated model.
Since the spectral density function of such a
model is identical to that of a fractional
Gaussian noise with Hurst exponent H=
κ+0.5, the PRM can be used to estimate H.
The estimation procedure involves the
following calculations (see Weron, 2002;
Granger and Hyung, 2004). We begin with
calculating the periodogram, which is a
sample analogue of the spectral density (see
Stoica and Moses, 2005). For a time series
frtgTt¼1, it is defined as

IT ðωkÞ ¼ 1
T

XT
t¼1

rte
- 2πiðt - 1Þωk

�����
�����
2

; (3)

where ωk= k/T, k= 1,…, ⌊T/2⌋, and ⌊x⌋
denotes the largest integer less than or
equal to x. The next and final step is to
run a linear regression log½IT ðωkÞ� ¼ c +
κ log½4sin2ðωk=2Þ� + ϵk at low Fourier
frequencies ωk, k= 1,…,K⩽⌊T/2⌋. H is then
obtained by plugging the estimate of κ into
H= κ+0.5.

Average wavelet coefficient
method
Our last estimation procedure is the AWCM
of Simonsen et al (1998). This method utilises
the wavelet transformation in order to
measure the Hurst exponent and is conducted
as follows (see Simonsen, 2003; Chamoli et al,
2007). First, the given time series is
transformed into the wavelet domain. That is,
a filter ψ(.) is passed over the series frtgTt¼1.
The width of the filter is usually increased by
a power two, giving a finite number of
filtered signals

Wa;bðr;ψÞ ¼ 1ffiffi
a

p
Z1
-1

rt � ψ t - b
a

� �
dt; (4)

where ψ(.) is called the mother wavelet
function, a is the scale factor and b is the
translation of the origin. The variable 1/a
gives the frequency scale and b gives the
temporal location of an event. Thus,
Wa,b(r, ψ) can be interpreted as the ‘energy’ of
r of scale a at t= b (see Percival and Walden,
2000; Weron, 2006; Serinaldi, 2010). The
AWCM consists of finding a representative
‘energy’ or amplitude for a given scale a.
This is usually done by taking the arithmetic
average of |Wa,b(r, ψ)| over all location
parameters b corresponding to the same
scale a. This yields the spectrum Wa(r, ψ) that
depends only on the scale. If rt is a self-affine
process characterised by the exponent H, this
spectrum should scale as Wa(r, ψ)~a

H+0.5

(see Simonsen et al, 1998). Thus, we can
estimate the slope of a double-log regression
of Wa(r, ψ) on a and obtain H by subtracting
0.5 from the slope coefficient.

EMPIRICAL ANALYSIS

Basic setting
For the estimation of the Hurst exponent, we
use the fractal estimators of the section
‘Methodology’ with the following
parameterisations. We set the minimum sub-
sample size in RRA and DFA to nmin= 12
months. To avoid problems with small n, we
apply the Peters (1994) correction to adjust
the regression slope in the RRA. In line with
the recommendation of Diebold and
Rudebusch (1989) and Weron (2002), we
choose K in the PRM such that
⌊N 0.2⌋⩽K⩽⌊N 0.5⌋, that is, K= ⌊N v⌋ with
v= 0.35. Finally, we follow the AWCM
specification of Weron et al (2004).

To select funds based on Hurst exponent
estimates, we use the following procedure.
In a first step, we estimate the Hurst exponent
based on the in-sample return observations
t= 1,…, T−Toos+1, where Toos is the number
of returns that characterise our out-of-sample
period. As some authors regard a number of
24 monthly returns as a minimum
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requirement for evaluating hedge fund
performance (see Ackermann et al, 1999;
Gregoriou, 2002; Capocci and Hübner, 2004;
Liang and Park, 2007), we set our out-of-
sample phase to this length. In the second
step, we calculate the in-sample D ratio, that
is, the ratio of negative returns to the total
number of returns, and select the funds with
the highest H and the lowest D. This is
because we are interested in the persistence of
positive returns. Finally, we evaluate the
average performance of the resulting fund
selection by means of its Sharpe ratios in-
sample and out-of-sample.9

Main results
Figure 1 shows the distributions of the hedge
fund Hurst exponents resulting from our four
fractal estimators.10 As the value of H for a
random sequence will almost always deviate
from 0.5 when the study sample is limited, we
need some kind of confidence level that

allows us to interpret this figure, that is, to
judge the number of persistent funds. In this
respect, we follow the recent empirical study
of Hull and McGroarty (2014).11 They
consider a Hurst exponent greater (lower)
than 0.65 (0.40) to be strong evidence for
persistence (anti-persistence). Realisations
between 0.40 and 0.65 are interpreted as
random behaviour.

With these boundaries in mind, Figure 1
provides the first important result that, even
though we analyse a sample of long-lived
hedge funds, only a small proportion of them
shows very high persistence. The majority of
funds is characterised by random return
behaviour and thus their good performance
may just have been luck (see Fama and
French, 2010). Interestingly, this holds
irrespective of the choice of fractal estimator.

To obtain a more detailed picture on this
issue, Panel A of Table 2 reports the
proportions of funds falling into the three
groups anti-persistent (H< 0.4), random
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Figure 1: Distributions of hedge fund Hurst exponents.This figure shows the distributions of the Hurst exponents
estimated for our hedge fund sample using the RRA, the DFA, the PRM and the AWCM in the specifications
outlined in the section ‘Basic setting’.
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(0.4⩽H⩽ 0.65) and persistent (H> 0.65).
For all estimators, we find the highest
proportion of funds in the random group, that
is, 59 per cent for the RRA, 38 per cent for
the DFA, 40 per cent for the PRM and 41
per cent for the AWCM. Only 18, 30, 30 and
34 per cent are classified as persistent by
RRA, DFA, PRM and AWCM, respectively.
Interestingly, the RRA identifies a somewhat
lower number of persistent funds than the
three alternative approaches.

Panels B and C of Table 2 describe the
most important outcome of our study. They
show the average in-sample and out-of-
sample Sharpe ratios for the funds in the
different long memory groups. Furthermore,
they subdivide the persistent group into funds
with high (above the group median) and low
(below the median) D ratios.

Looking at the in-sample results first, we
find that the persistent funds show the highest
Sharpe ratios, followed by the random funds
and the anti-persistent funds. In-sample, even

the two latter groups show rather high Sharpe
ratios on average. However, this is not
surprising because of the overall positive
performance of our fund sample (see Table 1).
Another straightforward result is that a focus
on persistent funds with low D ratios yields
higher average Sharpe ratios because a low D
ratio automatically implies a higher Sharpe
ratio. Persistent funds with low D ratios are
characterised by an average Sharpe ratio of
0.88, 0.67, 0.73 and 0.73 for the RRA, DFA,
PRM and AWCM, respectively.12 In
contrast, persistent funds with high D ratios
earn average Sharpe ratios of only 0.28, 0.22,
0.24 and 0.26, respectively.

Turning to the out-of-sample results, we
can observe that anti-persistent and random
funds do not appear to repeat their good
performance because they show low out-of-
sample Sharpe ratios that do not crucially
differ from 0. A similar argument holds for the
persistent funds with high D ratios. However,
funds with persistent positive returns show
not only high average Sharpe ratios in-sample
but also out-of-sample. We find average
realised Sharpe ratios of 0.54, 0.26, 0.20 and
0.27 for our four approaches, respectively.
Even though the Sharpe ratios are somewhat
higher in the case of the RRA, all four Hurst
exponent approaches appear to have
considerable potential for effective hedge
fund selection.13

Robustness checks
As our main results are subject to issues of
arbitrary choice, this section describes a
variety of supplementary calculations that
verifies the robustness of our results.14

Influence of outliers
To limit the influence of outliers (either
resulting from potentially faulty data or crisis
impacts) on our results, we follow Bali et al
(2011) and perform a 95 per cent winsorization.
That is, we set all data below (above) the
5 per cent (95 per cent) percentile to the

Table 2: Main results

RRA DFA PRM AWCM

Panel A: Proportion
Anti-persistent 0.23 0.32 0.30 0.25
Random 0.59 0.38 0.40 0.41
Persistent 0.18 0.30 0.30 0.34

Panel B: Average Sharpe ratio (in-sample)
Anti-persistent 0.23 0.23 0.22 0.22
Random 0.33 0.33 0.33 0.30
Persistent 0.58 0.46 0.49 0.50
Persistent (high D) 0.28 0.22 0.24 0.26
Persistent (low D) 0.88 0.69 0.73 0.73

Panel C: Average Sharpe ratio (out-of-sample)
Anti-persistent 0.08 0.08 0.05 0.09
Random 0.02 0.01 0.06 0.03
Persistent 0.30 0.15 0.12 0.13
Persistent (high D) 0.07 0.04 0.04 −0.01
Persistent (low D) 0.54 0.26 0.20 0.27

Note: For each of our fractal Hurst exponent estimators,
Panel A of this table shows the proportions (in decimals)
of funds classified as anti-persistent (H<0.4), random
(0.4⩽H⩽0.65) or persistent (H> 0.65). Panels B and C
report the average in-sample and out-of-sample Sharpe
ratios for these groups, respectively. For the group of
persistent hedge funds, they also show the average
Sharpe ratios for sub-groups built based on high
(above the median) and low (below the median) negative
return ratios D.
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5 per cent (95 per cent) percentile. Table 3
reports the resulting average out-of-sample
Sharpe ratios for this robustness check. Even
though the Sharpe ratios are lower, our main
conclusions of the section ‘Main results’ still hold.

Return filters
Several articles have shown that RRA can be
sensitive to short memory and heteroskedasticity
(see Lo, 1991) and PRM is not always unbiased
and not generally consistent in the non-
stationary case (see Velasco, 1999; Andrews and
Guggenberger, 2003).15 Thus, recent literature
suggests to check the robustness of results by
means of ARMA-GARCH filters that
eliminate short-range dependencies and
heteroskedasticity from the data (see Cajueiro
and Tabak, 2004; Batten et al, 2013).16 Fitting a
simple ARMA(1,1)-GARCH(1,1) model and
obtaining H for the standardised residuals of the
fitted model yields the average out-of-sample

Sharpe ratios presented in Table 3.17 With
the exception of the PRM, previous
implications on the out-of-sample performance
of the Hurst-based selection are confirmed.18

This filter exercise not only addresses the
potential problems with our estimators, it
also implicitly rules out a possible
explanation for observable return
persistence. Henn and Meier (2004) and
Kosowski et al (2007) argue that funds with
smoothed monthly returns (either because
of holding illiquid securities or managed
returns) might show a high level of
performance persistence that does not reflect
manager skill. As artificial smoothing of
returns becomes visible in the form of short-
term autocorrelation (see Gemansky et al,
2004) and the filters eliminate this
correlation, our identified persistence does
not appear to be crucially driven by return
smoothing. Furthermore, note that the high
out-of-sample performance is a strong

Table 3: Robustness checks numbers 1–5

Number Description RRA DFA PRM AWCM

1 Winsorization (95%) Anti-persistent 0.07 0.05 0.08 0.08
Random 0.02 0.03 0.01 0.03
Persistent 0.21 0.12 0.09 0.11
Persistent (high D) 0.07 0.05 0.03 −0.01
Persistent (low D) 0.34 0.20 0.15 0.22

2 ARMA-GARCH filter (standard
specification)

Anti-persistent 0.09 0.06 0.05 0.08
Random 0.06 0.06 0.09 0.07
Persistent 0.31 0.26 0.14 0.29
Persistent (high D) 0.23 0.25 0.24 0.13
Persistent (low D) 0.39 0.27 0.05 0.45

3 Widening Hurst significance
(lower bound= 0.25 and upper
bound=0.85)

Anti-persistent 0.04 0.10 0.04 0.11
Random 0.07 0.05 0.07 0.06
Persistent 0.89 0.46 0.27 0.48
Persistent (high D) 0.39 −0.04 0.02 0.07
Persistent (low D) 1.40 0.98 0.52 0.88

4 Smaller out-of-sample window
(12 months)

Anti-persistent 0.07 0.07 0.07 0.09
Random 0.15 0.17 0.23 0.17
Persistent 0.43 0.33 0.25 0.29
Persistent (high D) 0.29 0.20 0.18 0.20
Persistent (low D) 0.57 0.47 0.33 0.39

5 Larger out-of-sample window
(36 months)

Anti-persistent 0.11 0.10 0.10 0.11
Random 0.13 0.11 0.11 0.11
Persistent 0.25 0.23 0.22 0.22
Persistent (high D) 0.15 0.12 0.12 0.11
Persistent (low D) 0.35 0.35 0.31 0.34

Note: Similar to Table 2, this table reports the average out-of-sample Sharpe ratios of different hedge fund groups
resulting from a variety of modifications in our research design. Numbers 1 and 2 use winsorized data (at the 95 per
cent percentile) and ARMA(1,1)-GARCH(1,1) filtered data in the Hurst exponent estimations. Number 3 considers
different boundaries that classify a fund as anti-persistent (H<0.25), random (0.25⩽H⩽0.85) or persistent (H>0.85).
Finally, numbers 4 and 5 use smaller (Toos=12) and larger (Toos= 36) out-of-sample windows.
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indication that return persistence actually
comes from skill and not from return
smoothing.

Hurst significance boundaries
So far, we have interpreted a fund to show
significant signs of persistence (anti-
persistence) for H> 0.65 (H< 0.40). As these
boundaries may still lead to misleading
conclusions (see Weron, 2002), we use more
conservative values, that is, a lower bound of
0.25 and upper bound of 0.85. As we can see
in Table 3, our conclusions remain
unchanged. However, we can now observe
even higher out-of-sample Sharpe ratios for
the funds with persistent positive returns than
in the main analysis. This is quite reasonable
because, with higher H, we now concentrate
on the most persistent funds.

Size of out-of-sample period
In order to analyse the predictive ability for
shorter and longer horizons, we perform two
additional robustness checks in which we
limit Toos to 12 months and extend it to 36
months. Again, Table 3 shows qualitatively
similar outcomes. For the RRA, we find a
slight tendency of decreasing Sharpe ratio
performance (of positively persistent funds)
with increasing forecasting horizon.

Basic parameterisations
Finally, Table 4 varies some of the parameter
settings in our estimations. First, we use a
smaller number of minimum returns nmin= 6
to increase the number of regression
observations in RRA and DFA. Second, we
employ lower and higher cut-off values
v= 0.3 and v= 0.4 for the PRM. The results
are similar either way.

CONCLUSION
Motivated by the need for adequate
procedures to identify hedge funds with
positively persistent returns (see Géhin, 2005)
and the increasing popularity of Hurst
exponent approaches to measure long
memory (see Kantelhardt, 2009; Batten et al,
2013), we analyse their usefulness in hedge
fund selection. We find that, regardless of the
estimation procedure, Hurst exponents are
highly interesting predictors of future hedge
fund performance. Specifically, we show that
a combination of a high Hurst exponent and a
low proportion of negative returns can
identify the funds with the highest out-of-
sample Sharpe ratios. Thus, our extended
research design provides highly supportive
and robust evidence for the suggestion made
in earlier studies (see De Souza and Gokcan,
2004) that Hurst exponents might be useful
tools for individual investors seeking the ‘best’
hedge fund and for fund mangers choosing
candidates for a fund of hedge funds.

Future research may extend the results of
this article in several important ways. First,
there are three main providers of hedge fund
data (see Liang and Park, 2007) but we have
used only data from one of these providers.
Thus, using data from Hedge Fund Research
(HFR) and Tremont Advisory Shareholders
Services (TASS) might provide further
support for the robustness of our results.
Second, we have concentrated on return
persistence. However, analysing persistence in
other performance metrics, that is, Sharpe
ratios or fund alphas (see Eling, 2009), may
also be fruitful endeavours. Finally, we should

Table 4: Robustness checks numbers 6–9

Number 6 7 8 9
RRA DFA PRM PRM

nmin=6 nmin=6 v=0.3 v=0.4

Anti-persistent 0.10 0.11 0.08 0.06
Random 0.04 0.02 0.05 0.06
Persistent 0.37 0.13 0.11 0.11
Persistent (high D) 0.02 0.01 0.01 0.04
Persistent (low D) 0.72 0.25 0.21 0.18

Note: This table reports the average out-of-sample
Sharpe ratios of different hedge fund groups resulting
from some final robustness checks. Numbers 6 and 7
use lower minimum sub-sample sizes nmin in RRA and
DFA, numbers 8 and 9 use different cut-off rates v in the
PRM.
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also take a closer look at the negative
implications of our results because it is well-
known that long memory in returns has
severe consequences for financial modelling.
Long memory (i) makes optimal
consumption/savings decisions extremely
sensitive to the investment horizon, (ii)
invalidates martingale methods in derivative
pricing and (iii) distorts standard asset pricing
tests (see Lo, 1991; Beran, 1992). Thus, if
persistent hedge funds are part of investment
decisions, financial products or asset pricing
models, we might have to be careful when
applying established standard methods.
However, the question of how strong the
observed levels of long memory in hedge
fund returns would affect these methods still
has to be answered.

NOTES
1. We focus on return persistence. Persistence in risk has been

studied by Kat andMenexe (2002) and Herzberg andMozes
(2003). For an overview of studies covering persistence in
alphas and Sharpe ratios, see Eling (2009).

2. H quantifies long memory because it formally describes the
decay in the autocorrelation function ρ(k) ~ pk2H−2 as k→∞,
where p=H(2H−1) (see Beran, 1994; Kristoufek, 2010).

3. For other interesting applications of the Hurst exponent in a
hedge fund context, see Amenc et al (2003) and Olszewski
(2005).

4. For a review of the properties and detailed contents of this
database see, for example, Ding and Shawky (2007) and
Eling (2009).

5. Unfortunately, we do not have access to an up-to-date
version of the database. However, our sample is still richer
than the one used by DSG and thus provides important out-
of-sample support for their preliminary results.

6. This positive performance does not introduce a sample
selection bias because our results in the section ‘Empirical
analysis’ show that a large proportion of these funds are not
persistent and do not repeat good past performance out-of-
sample.

7. For other forms of conducting RRA, see Mielniczuk and
Wojdyłło (2007) and Batten et al (2013).

8. The order of the polynomial trend is mostly set to the first
or the second order because additional variables usually do
not add any significant information (see Vandewalle et al,
1997).

9. In order to avoid sensitivity to the choice of risk-free rate,
we assume it to be zero. However, note that we obtain
similar results when we use the 1-month Treasury bill rate
(from Ibboston Associates).

10. In the presence of faulty data, our fractal procedures can
result in estimates outside the natural boundaries of H,
which are given by 0 and 1 (see Abry and Veitch, 1998;

Karagiannis et al, 2002; Park et al, 2005; Clegg, 2006). As
this occurs for a small number of funds, we have excluded
them from the ongoing analysis.

11. Their approach of evaluating the significance of H is based
on Monte Carlo simulations performed by Qian and
Rasheed (2004).

12. Further analysis shows that PRP is not significantly related
to the type of fund strategy. This is in contrast to the results
of Brown and Goetzmann (2003) and Harri and Brorsen
(2004) for RRP.

13. In a stock selection context, non-random patterns in return
data do not appear to be good selection criteria (see Freund
et al, 1997).

14. For full transparency, the source codes of our Hurst
exponent approaches, fund selection procedures and
robustness checks are available from the authors upon
request.

15. In contrast, the DFA is designed to avoid spurious
detection of apparent long-range correlation that is an
artefact of non-stationarity (see Kantelhardt, 2009).

16. We rule out potential bias in the PRM by conducting the
test of Davidson and Sibbertsen (2009).

17. We also used series-specific specifications with the best fit
in terms of the criteria suggested by Auer (2014).

18. This is in line with Mishra et al (2011) showing that
GARCH models cannot fully explain observed
dependence in empirical data and, thus, heteroskedasticity
does not introduce crucial distortions of long memory
results.
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