
197© The Author(s) 2018
M. Kunc (ed.), System Dynamics, OR Essentials,
https://doi.org/10.1057/978-1-349-95257-1_7

Simulation by Repeated Optimisation

R.G. Coyle

�Introduction

It is a cardinal point in system dynamics that the behavior of a model can
be improved, often quite remarkably, by experimental changes to the
parameters representing the system’s policies. Usually, even more signifi-
cant enhancements in behaviour stem from changes to the model’s struc-
ture. It should be stressed, therefore, that, throughout this paper,
‘parameter’ includes those switches which can be used to activate or sup-
press components of the model’s structure as well as those which repre-
sent its policies.

The only drawback is, however, that there is always a nagging doubt
that, had one tried only one more experiment, something even better

R.G. Coyle (*)
Shrivenham, UK

Professor Geoff Coyle has taken early retirement from his academic post. He continues to be
active in system dynamics and was the recipient of the System Dynamics Society’s first Lifetime
Achievement Award.

Journal of the Operational Research Society (1999) 50(4)

https://doi.org/10.1057/978-1-349-95257-1_7

198 

would have been found. Unfortunately, there is always yet one more
experiment, so the doubts can never be assuaged.

The problem of an experimental approach to policy design to improve
dynamic behaviour is more difficult still. It has long been a tenet in sys-
tem dynamics that feedback loops are the unit of analysis in planning and
interpreting simulation experiments. That is probably true for very small
models but is impractical for a model of even modest size. For example,
the well-known world model is only a hundred or so equations yet it
contains nearly 2000 feedback loops, most of which are practically impos-
sible to detect visually, and it is clearly not possible to assert a priori that
some which are easy to see are more important than the rest.

It would, therefore, be highly desirable to have some automated way of
performing parameter variations and reporting to the analyst the best
result. However the number of possible combinations and conceivable
numerical values of the parameters is usually colossal so testing all param-
eter combinations is impractical. One needs, therefore, some sort of
guided search of the parameters to be considered, and the numerical value
each might have, so as to seek out the result which is most rewarding in
terms of enhancing the system’s performance, without pursuing blind
alleys. Unfortunately, there is no perfect way of achieving that, but the
principle of dynamic optimisation comes very close to providing this
subtle searching of the design possibilities of the system.

This concept has been used in previous system dynamics work. Winch
[1], for example, linked a FORTRAN version of a system dynamics
model to optimisation software. This was laborious so, in collaboration
with the Helsinki School of Economics, the DYSMAP package was
linked to optimisation software [2]. Coyle [3] demonstrated the method
for a production problem. Dangerfield and Roberts [4] describe some
aspects of the approach. Coyle [5] has applied optimisation to a complex
problem of defence planning, and Wolstenholme [6] similarly studied
tactical choices by an attacking force.

There is, however, no compact account of the technique and this paper
will discuss the theory of dynamic optimisation, which is not widely used
within the usual disciplines of OR, illustrated by examples [7]. An impor-
tant aspect of dynamic optimisation is the development of suitable objec-
tive functions which is also considered.

  R.G. Coyle

199

The System Dynamics products which originally supported optimisa-
tion in the late 1970s were DYSMAP2, and COSMOS, followed within
the last few years by VENSIM and Powersim. All of them automatically
link an ‘ordinary’ system dynamics model to the optimisation software,
though the details and simplicity of doing so depend on the package.
DYSMAP2 and COSMOS are very similar and use an efficient hill-
climbing algorithm. VENSIM appears to use a grid search approach.
Powersim’s optimiser uses not more than five parameters and operates as
an automated sensitivity tester. COSMOS is used to illustrate the ideas
in this paper. For a fuller discussion of system dynamics software see
Reference [7].

�The System Response and the Parameter Plane

Figure 1 shows a two-dimensional picture of a three-dimensional object.
The two dimensions in the horizontal plane are labelled for two of the
parameters in a model. It is essential to realise that these may be ordinary
policy parameters, or they may be structural parameters, or they may be
‘pressure points’, at which investments of resources could be made in a
system. Each parameter has a range within which it may lie, shown as, for
example, P1UPPER and PIlower- The ordinate is a measure of the quality
of dynamic behaviour which the model produces for any given combina-
tion of parameters. For the moment, we shall simply label that scale as
running from ‘Bad’ to ‘Good’. The quantification of performance is dis-
cussed later.

The initial, or base case, values are labelled Pl1 and Pl2 on the parame-
ter axes. When these two values are projected into the ‘parameter plane’,
following the dotted lines, they intersect at Point A. When the model is
run with those values, the response is, we shall suppose, rather poor, so a
short line is drawn in the vertical direction to indicate that. This idea of
the model’s response at a point in the parameter plane is valid regardless
of the number of parameters being used. In fact, in earlier work for a
commercial client COSMOS was used to optimise a model of some hun-
dreds of equations with 35 parameters, the runs took a few seconds, once
the search parameters had been loaded.

  Simulation by Repeated Optimisation 

200 

If the two parameters are now changed to Pl1 and Pl2, a new point B is
defined which, we shall imagine, produces better performance and hence
qualifies for a rather longer arrow in the vertical direction.

Figure 1 develops the idea of a response surface as the three-
dimensional locus of the responses at all possible combinations of PI
and P2. The response surface could well be a very rugged mountain,
with several peaks. Two of the peaks, α and β, are of rather different
heights and α is clearly ‘better’ than β. Figure 1 also suggests that there
are all sorts of irregularities and gullies and that the mountain slope is
much steeper in some places than in others; it could well resemble a
photograph of the Alps. The reason for the extreme irregularities lies in

Fig. 1  The concept of hill-climbing optimisation

  R.G. Coyle

201

the complexity of system dynamics models and the non-linearities
which they often contain.

It was argued earlier that one cannot test all possible combinations of
parameters but, unless that is done, the shape of the response surface will
be unknown. The problem of dynamic optimisation is how does one find
one’s way to the top of a mountain of unknown shape?

�Hill-Climbing Optimisation

Hill-climbing optimisation can be understood by analogy with a blind
man who is marooned on a mountain and wishes to find his way to the
top. His strategy is to feel the shape of the ground around the point
where he is sitting (the top of the arrow at Point A). Having detected
the direction in which the ground slopes up most steeply in that vicin-
ity, he takes a cautious step or two in that direction and then feels the
ground again. In this way, he hopes to find the top of the mountain, as
shown by the sequence of arrows moving up the surface of the hill from
the point of the arrow at Point A, always pursuing the locally steepest
direction. Unfortunately, the blind man’s strength eventually fails him
and he can go no further than μ. This is not even as high as β, so there
is no guarantee that the blind man will reach his goal, α, or even another
lower peak.

The analogy is implemented in some system dynamics software pack-
ages by using hill-climbing algorithms, developed in the mathematics of
numerical analysis, which repeatedly iterate the model for particular sets
of values of the collection of parameters being search. The first iteration
uses the base case parameter values. After the model has run, the value of
the objective function is calculated and retained, with the attendant
parameter values, if it is the best result found so far. The sets of parameter
values which give good results are used to predict how the parameter val-
ues should be changed to carry out the guided search for good values
without wasting effort examining parameter combinations which lead
nowhere. The reader interested in the mathematical technicalities should
refer to the literature on numerical analysis; the pragmatist can rely on
the evidence that the approach works.

  Simulation by Repeated Optimisation 

202 

The equivalent of the blind man’s strength failing him before he reaches
the top of the hill is not commanding sufficient iterations to be per-
formed. If the algorithm is efficient there is no harm in demanding 500
iterations, if one wishes. Experience indicates that, for many models,
about 30 iterations are sufficient to find dramatic improvements in per-
formance. Even with a large model, a few hundred iterations take no
more than a couple of minutes even on a modest PC.

An alternative to hill-climbing is a grid search in which the algorithm
searches the space and gradually homes in on a good solution. This can
be much more computationally demanding than hill-climbing. More
recent techniques include genetic algorithms.

�Overcoming the Limitations of Heuristic
Algorithms

Hill-climbing by the method of steepest ascent is clearly heuristic and
there is no guarantee of finding the maximum of the response surface.
However, numerical hill-climbing algorithms are sophisticated and are
capable of searching with something close to the intelligence that the
blind man would use.

Consider Fig. 2, the vertical axis is still the model’s response but the hori-
zontal axis should be imagined to be a ‘cross-section’ of the parameter
plane, representing varying combinations of the two parameters. The hill-
climbing search has started at Point A and followed a steep ridge until it
reached B. From there, a valley leads forward into the hills, and there is a
ridge to the left, but the locally steepest direction is towards C. On reaching
C, it becomes clear that it is a false peak, from which all directions lead
downwards. Since the man is not yet exhausted, he would remember C as
the best point so far discovered and, reasoning that he can always go back
to C, he accepts the loss of height and searches towards D. At that point,
he discovers a slowly rising path which emerges from behind peak C, as
shown by the faint line, and moves off to E and hence, we hope, to F. As
soon as any point is reached which is better than C, it will be remembered
as the point to which he can return if no better solution is found.

There is still no guarantee that this course of events will unfold, so
another strategy for avoiding failing to find the real peak would be to

  R.G. Coyle

203

recommence the search at a new starting point, X, in the hope that there
is a ridge going directly to F. In practice, the improvement in behaviour
found in the first optimisation is usually so large that it is hardly worth
the effort of repeating searches from new starting points. The main ben-
efit of doing so would be to increase the experimenter’s confidence that
he has found a good solution, but there would be no end to that
process.

�The Performance of a Simple Model

Figure 3 is the Influence Diagram for a very simple model of a production
system. The firm maintains inventory to meet unpredictable demands for
parts. Inventory is replenished by ordering parts to be manufactured and
delivered within a ‘backlog elimination time’. The firm is hit by a sudden
rise in consumption followed by an even larger fall, as shown by the solid
curve in Fig. 4. The ensuing behaviour is clearly fairly disastrous. Desired

Fig. 2  Continuing to search

  Simulation by Repeated Optimisation 

204 

and Actual Inventory (DINV and INV) do not match until TLME = 140,
which is two years after the shocks in consumption.

Furthermore, the parts backlog rises to a peak of about 1100 at
LME = 30, but then falls to zero at TLME = 55 and stays there for

Fig. 3  Influence diagram for optimisation illustration

  R.G. Coyle

205

35 weeks. This corresponds to the factory having to be closed for about
eight months.

Such a problem is small enough to be tackled by analysing gains and
delays in the feedback loops but it is used here to demonstrate
optimisation.

�Formulating an Objective Function

To optimise, it is first necessary to formulate an objective function as a
measure of system performance to guide the optimisation search. It
should take account of what the system is trying to achieve and calculate
the extent of its success. Developing objective functions for system
dynamics models is something of a black art calling for much more
research. Simple approaches based on common sense do, however, work
well and, in this case, it seems reasonable to assume that the management
objective is to make INV match closely to DINV. Much more sophisticated
objective functions are used in some of the work cited earlier and that
described below.

Fig. 4  Basic behaviour of the simple model (base case)

  Simulation by Repeated Optimisation 

206 

To write, using the standard DYNAMO format:

	 AOBJFUN K DINVK INVK. . .= − 	

would be misleading as it refers to a single point in time. One must take
account of the behavior over the whole of the run, which requires a level
variable to act as a memory of what happened during the run. To avoid
the positive and negative discrepancies simply cancelling each other one
might define an Inventory Penalty, INVPEN, as:

	

L INVPEN K INVPEN J DT DINV J INV J

N INVPEN

. . . .= + −()
=

∗
∗∗

2

0 	

The numerical value of INVPEN will be some strange numbers so, to
make performance comparisons easier, we redefine OBJFUN.K as:

	 OOBJFUN K INVPEN K SCALE. . /= 	

where SCALE is chosen to make OBJFUN, the objective function we
shall actually use, equal to 100 at the end of the base case run, simply to
make it easier to think in percentage terms. In this case, SCALE is equal
to 46.7933 × 104 which is found by running the model with SCALE = 1
and the base case parameters, observing the value of INVPEN at the end
of the run, and calculating SCALE accordingly. In this case, it is evident
that we wish to minimise OBJFUN, which is tantamount to the blind
man finding his way down the crater of a volcano (hopefully extinct) by
the method of steepest descent.

�The Significance of the Objective Function

It is very important to be quite clear about the significance of objective
functions. In the first place, they are extra equations added to the model
for the analyst’s benefit. They are not part of the real system and do not

  R.G. Coyle

207

necessarily have physical meaning. They are only there to help the ana-
lyst, and the software which serves him, to keep track of how improve-
ments to behaviour can be found.

Secondly, the dimensions of the objective function do not have to have
a real-world meaning. The dimensions of INVPEN are [WEEK*PART
[2]], which does not correspond to anything in the real system, but that
can be ignored. Obviously, there is nothing wrong in having an objective
function which is dimensionally sensible, but the objective function,
being an artefact of the analyst’s thought, does not have to obey the strict
requirement for dimensional consistency which applied to all the rest of
the system dynamics model [8]. In this instance, SCALE has the same
dimensions as INVPEN, so OBJFUN is a dimensionless ratio.

Thirdly, one has to be very careful about choosing objective functions.
Minimising average inventory is an attractive though, but the true mini-
mum inventory is zero and a firm which has zero inventory is usually not
going to sell very much. As in all of OR, selecting an objective function
is not a trivial matter and careful thought is needed about what the firm
is really trying to achieve.

�Optimisation Experiments

To optimise, one has to specify the parameters to be searched and to
state the upper and lower values of each one. In this problem, there are
four parameters, TAC, TCI, TTCAS and TEBLOG. TTCAS is a gain,
the rest are delays. To start with, we allow all four to be in the parameter
plane to be searched. All the base case values are 6, and they are all
allowed to lie in the range from 2 to 10. These ranges are chosen purely
for illustration but, in practice, much discussion with management
would be involved and several ranges might be tried. This is often done
most effectively during an intensive study period as optimisation will
take only a few seconds on a Pentium PC. Thirty iterations are done
and the results are shown in Fig. 5a.

The optimal values of the parameters are reported to TAC = 10,
TCI = 2, TTCAS = 2 and TEBLOG = 2. The value of OBJFUN falls
from 100 to 4.03. This reduction of practically 96% is by no means

  Simulation by Repeated Optimisation 

208 

unusual. All the parameters have been driven to their extreme points.
Interestingly, the behaviour of other variables as well as inventory has
improved, not surprisingly give the inter-connectedness of policies in a
system dynamics model. A particular case is that the factory closure now
lasts for only 15 weeks.

The key point is that this result was discovered after a few minutes of
work to add OBJFUN to the model and a few seconds of computer time.
To have discovered it by traditional loop analysis and experimentation
would have taken much longer. The difference in effort would be much
greater for a large model, even if loop analysis was tractable.

It is interesting to note that the gain, TTCAS, has been reduced, but
that only one of the delays, TAC, has been increased while the other two
delays have been reduced. It is a rule of thumb in control engineering
that reducing gains and increasing delays is likely to increase stability but
it has been clearly not worked in this case. Such rules are used in the tra-
ditional, loop-based, design approach in SD and, in this instance, opti-
misation has called them into question.

It is usually not a good idea simply to throw all the parameters into the
optimiser and take the results on trust. To do so is to abandon thought

Fig. 5a  Optimisation of the simple model (a) Optimisation of four parameters

  R.G. Coyle

209

and rely on computation. In this case, we might feel that to increase TAC
too much could make the system too insensitive to the unpredictable
changes in CONSR, so another optimisation is done in which only TCI,
TTCAS and TEBLOG are allowed to enter the parameter plane, with the
same ranges as before. The results (Fig. 5b) are that all three are driven to
their lower value of 2 and OBJFUN is reduced to 5.268. On the face of
it, this is nothing like as good as the previous case, because OBJFUN is
about 30% larger. In fact, the visible differences are very slight, as shown
in Figs. 5a, 5b. The only difference between the two plots is that INV
reaches a maximum of 562 with 4 parameters and 581 with three.

The optimisation with three parameters has driven the value of TTCAS
to 2, which means that the firm is trying to operate with only two weeks
of stock cover. That might be quite insufficient for any noise in the
demand pattern and provides little protection against another upsurge in
CONSR. One therefore optimises again with TCI and TEBLOG rang-
ing from 2 to 10 as before, but TTCAS in the range from 4 to 10. The
optimisation pushes all three parameters to their lower limits and
OBJFUN is reduced to 12.84. In management terms, the parameter

Fig. 5b  Optimisation of the simple model (b) Optimisation of three parameters

  Simulation by Repeated Optimisation 

210 

values correspond to holding a prudent level of stock, but reacting quickly
to changes. The behaviour is shown in Fig. 5c, and is clearly not as good
as the cases in Figs. 5a, 5b. The maximum value of INV is now 857. The
difference between 857 and 562 is a quantified indicator of the costs of a
qualitative decision to be prudent, though the factory closure is now
25 weeks rather than 15, which might affect the cost of prudence.

This example has been deliberately chosen to be very simple so as not
to lose the subtlety of optimisation in the explanation of a complex
model. The real power of optimisation comes through with more com-
plex models in which loop analysis can offer no guidance.

�Simulation by Repeated Optimisation

The concept that the top of the hill is sought by repeatedly running the
model makes it clear that the technique is optimisation by repeated simula-
tion. However, the two other cases, with reduced numbers of parameters
and with different ranges, should make it clear that the real underlying

Fig. 5c  Optimisation of the simple model (c) Higher stocks

  R.G. Coyle

211

theme is simulation by repeated optimisation. The model is optimised and
something is learned. That leads to further optimisation and more learning,
and so on. The value of the optimisation calculation is to provide a much
more powerful guided search of the parameter space than could possibly be
achieved by ordinary experimentation, but the principal aim is still to
experiment and to understand so that a better experiment can be designed.

A notable example of this is the observation of differing periods of fac-
tory closure. The model could be optimized again to minimise that or to
balance inventory against closure. In a more complex model, there might
be many possible objectives, which would often be discovered by study-
ing the effects of previous optimisations. Some of these objectives might,
of course, be expressible in financial terms.

�Objective Functions for Constrained
Optimisation

The optimisation of the simple model was free in the sense that, in the-
ory, no costs are incurred when adopting a new policy. Optimisation of
resource investments is not free and the response surface can be visualised
roughly as indicated in Fig. 6. The slope is as rough as the mountain but
a barrier exists at the point at which all resources have been expended.
Since the unit costs of different resources are different, the barrier has to
be imagined as being moveable as large amounts of cheap resources may
have a different effect from small amounts of expensive ones. Since one
is, however, usually optimising several resources of differing unit costs,
the barrier can be thought of as being on hinges, as well as on rollers.

Objective functions for constrained optimisation have to allow for
resource costs and can be written in terms of OBJFUN as a measure of
what is to be achieved and a penalty to be applied if the resource budget
is exceeded. Therefore to maximise a performance index, INDEX, sub-
ject to a given budget, BUDGET, one could use:

	

AOBJFUN K INDEX K SCALE E
, COST BUDGET

. . /= −
× −()

100 06
0MAX

	

  Simulation by Repeated Optimisation 

212 

COST would be calculated to reflect the various resources expended and,
as soon as it exceeds BUDGET, a massive penalty is subtracted from
INDEX, making maximisation at that level of COST impossible. Note
that, in DYNAMO terms, COST is a computed constant and hence has
no K time postscript, the full details are covered in Reference [7]. It is
trivial to extend this so that there are two COSTs and two BUDGETS
when there are two resources such as manpower and money, and so on for
any number of budgets and resources, such that exceeding any one would
invoke the penalty.

It is equally trivial to adapt this process to minimising the expenditure
required to achieve a given level of performance as opposed to maximis-
ing the performance for a given level of expenditure.

Fig. 6  Response slope for constrained optimisation

  R.G. Coyle

213

�Constrained Optimisation—A Case Example

A defence example of constrained optimisation may illustrate the
approach. In a model of land operations by a divisional formation, there
are 10 parameters which can be freely changed and 20 which involve
expenditure. The former represents ‘decision rules’ or concepts of opera-
tions, such as when to commit reserves, when to use forces of a particular
type and so forth. The latter group includes such factors as the numbers
of attack helicopters, the amount of ammunition, the numbers of com-
bat engineer vehicles and so forth. There is a cost for each of these, such
as each attack helicopter costs £X, and there is an overall budget, £Y.

Given a suitable objective function, such as the time for which the
division could continue to fight an enemy force of a certain size, three
optimisations can be done. In the first, only the 10 free parameters are
used. In the second, the 20 costly assets are used with a budget constraint
added to the objective function. In the third, all 30 parameters and the
constraint are used. The results are in Table 1, in which the base case
performance without any changes to any of the parameters is scaled to be
100, and the other performance figures are purely illustrative. F and C,
with subscripts 1–3, denote vectors of the optimal values of the 10 free
and 20 costly parameters, respectively.

The results are informative. The change from a performance of
100–120 with the free optimisation really means that changing F from F1
to F2 is the concept of operations which will get the best from the avail-
able forces. Similarly, the change from 100 to 140 as one optimises the
costly parameters means that C2 is the best force composition with the
given budget for the existing concept of operations. However, the salient
result arises when performance increases to 180 and both F and C change

Table 1  Optimisation of a divisional force

Base case Free parameters only

Performance 100 Performance 120
Vectors: F1, C1 Vectors: F2, C1

Costly parameters only Both costly and free parameters
Performance 140 Performance 180
Vectors: F1, C2 Vectors: F3, C3

  Simulation by Repeated Optimisation 

214 

to the new values of F3 and C3. This can be interpreted to mean that F3 is
the concept which gets the best out of forces C3 or that C3 will allow a
better concept, F3 to be adopted.

Finally, there is the point that the performance differences between
120 with free optimisation and 180 with costly and free optimisation is
the marginal return to investment of the budget of £Y. The difference
between 120 with costly optimisation and 180 is the marginal benefit of
changing concepts to get the best results from investment.

�Constrained Optimisation and Marginal
Investments

Again, this is a defence example which summarises the work in Reference
[5]. The small nation of Heroica faces potential aggression from its power-
ful neighbour, Nastia. Heroica is allied in its region with two other small
nations, North Phalia and East Phalia. All three are threatened by Nastia
and are allied with the distance superpower of Columbia. War is not cer-
tain but, should Heroica be attacked by Nastia, its forces would fight to
maintain land, sea and air control of its territory. If Columbia is able to
come to Heroica’s aid, air reinforcements can fly directly into Heroica’s air
bases, if there is room for them, but land force reinforcements will have to
travel through dangerous oceans to the region and will then reinforce
Heroica, or one of the Phalias, depending on need and on whether they
can cross Heroica, or one of the Phalias, depending on need and on
whether they can cross Heroican waters in the face of the Nastian navy.

A very simplified influence diagram for the problem appears in Fig. 7
in which some of the feedback loops have been emphasised. The heavy
black loop is the snowball loop by which, once Heroica starts to lose
control, the loss will accelerate. The two dotted loops are command and
control loops which re-allocate forces to prevent the snowball running
out of control, or even to turn into Heroica’s favour. Again, an objective
function can be formulated to maximise Heroica’s retention of control
subjects to the available budgets for defence improvements over the next
few years.

  R.G. Coyle

215

Fi
g

. 7
 

Si
m

p
lifi

ed
 in

fl
u

en
ce

 d
ia

g
ra

m
 f

o
r

H
er

o
ic

a’
s

d
ef

en
ce

 s
tr

at
eg

ic
 p

la
n

n
in

g
 m

o
d

el

  Simulation by Repeated Optimisation 

216 

The problem is that the budget is unknown, so the optimisation is
repeated with four separate levels of expenditure and using a few illustra-
tive parameters, the results appearing in Table 2. It is, however, no use
saying to the high command that ‘if your defence budget is X your force
composition should be such-and-such’, as no-one knows what the defence
budget is going to be over the next few years. However, scrutiny of Table 2
shows that the mobilisation delay is always driven to its minimum value,
the regular army increases somewhat as the budget increases, but then
levels off. The reserves and the air force only increase at high levels of
expenditure and air base capacity does not change very much. That implies
that the first priority should be to reduce mobilisation delay. After that, if
there is any money left, the regular army should be increased to the point
where it can defend the frontier for a few more days and, finally, if there is
still some money left, it should go to the reserves. The air force, as its assets
are costly (in this imaginary case), only benefits at very high levels of bud-
get. In this case, optimisation has identified a programme, rather than a
single result, which may, in practice, be the more useful product.

�Concluding Remarks

There are numerous potential applications of optimisation, such as fitting
models to historical data as part of the process of validation, and in busi-
ness and government modelling, but space precludes a more extended
discussion.

Table 2  The optimisation results

Spending level 0 1 2 3 4

Overall outcome Defeat Time
gained

More time
gained

Enemy
halted

Enemy
defeated

Regular land
force

2200 2400 3100 3100 3200

Land reserves 3300 3300 3300 3500 3600
Mobilisation

delay
4 2 2 2 2

Air force 525 525 525 550 650
Air base capacity 4400 4500 4500 4500 4500

  R.G. Coyle

217

This paper has summarised the underlying theory of optimisation as
applied to system dynamics models and shown something of the power
of the approach by some examples. The main point to grasp is that opti-
misation, for all its superficial attractiveness, is not a panacea and it does
not guarantee good analysis. There are, indeed, some limitations to the
approach.

The first is that the hill-climbing algorithm does not guarantee an opti-
mal solution. In practice, that matters less than might be thought because
most managed systems perform so badly that any improvement is wel-
come and the differences between optima are usually much less than the
objective function values might imply, as we saw in Figs. 5a, 5b.

Secondly, the optimisation technique does not, of itself, give any guid-
ance on the development of a good, subtle, objective function. In many
cases, the objective function reflects qualitative criteria, such as how well
targets are achieved and these can have significant effects as they are
linked to management thinking. A simplistic objective function, such as
minimising inventory, might be truly disastrous.

The final weakness is that the thought of optimizing something is so
seductive that the naive analyst might stop thinking.

In practice, it is only the second and third limitations which are serious
and, provided one thinks, optimisation may well be a very powerful
development in system dynamics.

Finally, if classical system dynamics involves improvement by succes-
sive simulation guided by the analyst’s understanding of the feedback
loops, optimisation is improvement by successive multiple simulation
guided by an objective function which evolves as the analyst’s under-
standing of the ability to meet objectives grows.

References

	1.	 Winch GW (1977). Optimisation experiments with forecast bias. Dynamica
2: 000–000.

	2.	 Coyle RG (1997). System dynamics at Bradford University. Sys Dynam Rev
13:311–321.

  Simulation by Repeated Optimisation 

218 

	3.	 Coyle RG (1985). The use of optimisation for policy design in a system
dynamics model. Sys Dynam Rev 1: 81–91.

	4.	 Dangerfield B and Roberts C (1996). An overview of strategy and tactics in
system dynamics optimisation. J Opl Res Soc 47: 405–423.

	5.	 Coyle RG (1992). The optimisation of defence expenditure. Eur J Opl Res
56: 304–318.

	6.	 Wolstenholme EF (1990). System Enquiry. Chichester: John Wiley and Sons.
	7.	 Coyle RG (1996). System Dynamics Modelling: A Practical Approach. London:

Chapman and Hall.
	8.	 See the work cited in Reference 7 for a full discussion of dimensional

analysis.

  R.G. Coyle

	Simulation by Repeated Optimisation
	 Introduction
	 The System Response and the Parameter Plane
	 Hill-Climbing Optimisation
	 Overcoming the Limitations of Heuristic Algorithms
	 The Performance of a Simple Model
	 Formulating an Objective Function
	 The Significance of the Objective Function
	 Optimisation Experiments
	 Simulation by Repeated Optimisation
	 Objective Functions for Constrained Optimisation
	 Constrained Optimisation—A Case Example
	 Constrained Optimisation and Marginal Investments
	 Concluding Remarks
	References

