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1  Introduction

The World Health Organization (WHO) reported that, in 2016, 5.6 million 
children died before reaching their fifth birthday and almost half of them (46 
per cent) died before reaching 27 days. Among the leading causes of their 
deaths were pneumonia (13 per cent), diarrhoea (8 per cent), congenital 
anomalies (8 per cent), injuries (6 per cent) and malaria (5 per cent) [1]. Yet 
about the same time, Countdown to 2030—an independent multi- 
institutional collaboration that gathers and analyses data on women’s and 
children’s health—reported a striking absence of data for causes of child mor-
tality in its 81 high-priority countries. Only 5 of the countries had good qual-
ity data for cause of death, 34 had incomplete data and 47 countries had no 
data at all [2].

So how can WHO make such assertions if the data are so poor? The answer 
is that WHO uses all available country data on indicators such as these and 
then makes global and country estimates using statistical modelling. 
Countdown, on the other hand, ‘makes only limited use of predictions and 
aims as much as possible, to allow country data to speak.’ [2]
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We review the rationale for estimation in global health and then describe 
the situations in which models are useful, providing an overview of the major 
classes of models used. We also discuss issues in assessing the quality and plau-
sibility of statistical estimates and describe recommended guidelines for 
reporting them. Finally, we examine the relevance of such estimates for coun-
tries. We provide references throughout the chapter, to which the reader can 
refer to learn more about these complex techniques.

2  Rationale and Emergence of Global Health 
Estimates

Global estimates of health indicators, which are comparable by country, are 
vital to track progress towards internationally agreed goals and for donors to 
prioritise their investments. However, the accuracy of these estimates depends 
on the methods used to create them, and more importantly, the amount and 
quality of data upon which they are based. Poor data quality or availability 
means alternative methods can lead to substantially different final estimates, 
which can cause considerable confusion among global agencies and donors.

A little less than half the deaths in the world are registered with their cause, 
and national death registration data are only available for four African coun-
tries [3]. Useful population level data on incidence or prevalence of disease 
and injury are even less available. Instead international agencies and academ-
ics use statistical models to prepare estimates of key health indicators that are 
comparable across countries and/or time. The agencies derive these global 
health estimates using reported or published data from multiple national 
sources, such as civil registration, health facilities and population surveys. 
Estimates are valuable in generating overviews of the global health situation 
and emerging trends, and for reporting on country and global progress 
towards the Millennium Development Goals (MDGs) and now the 
Sustainable Development Goals [4].

Starting from the 1950s, and with increasing scope and regularity since the 
1990s, the United Nations (UN) and its specialised agencies, such as the 
WHO and the UN Children’s Fund, have published annual global and coun-
try health estimates for major demographic and health indicators based on 
data reported by member states. Within the last decade, the Institute for 
Health Metrics and Evaluation (IHME), funded by the Bill & Melinda Gates 
Foundation, has also published annual updates of comprehensive global bur-
den of disease (GBD) statistical time series based on available data for 195 
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countries and territories, with sub-national estimates for a growing number of 
countries [5].

The statistical models used by various groups vary widely and dramatic 
expansion of computing and storage capacity has facilitated increased  technical 
complexity. For example, the WHO estimated that in 2010, there were 
655,000 malaria deaths worldwide, with under 100,000  in those aged five 
years and over [6]. The IHME estimated equivalent figures of 1.24 million 
malaria deaths, with more than half a million occurring in those aged five 
years and older [7]. Differences in interpretation of data, inclusion criteria 
and methodologies have led to publication of very different values for the 
same indicator. This can have serious consequences for individual countries. 
Depending which estimate they think to be more reliable, global donors may 
assign funding and evaluate progress differently. This situation has heightened 
calls from international agencies, policymakers and researchers for more 
transparency and replicability of methods. Some national policymakers and 
data producers question the need for such techniques, preferring to use their 
national statistics, where they are available.

3  Why Model?

Raw health data derived from primary data collection are often reported as 
direct tabulations of counts or transformed into indicators, such as rates or 
ratios without any adjustments or corrections. These statistics may not be 
accurate, representative of the population of interest, or comparable. Drawing 
comparisons between populations can also be complicated by differences in 
data definitions and measurement methods. Some countries may have multi-
ple sources of data for the same population-time period, but more often data 
are not available for every population and year. Box 21.1 describes some com-
mon sources of bias. To overcome these issues, statisticians use analytic meth-
ods, such as mathematical and statistical models, to produce unbiased estimates 
that are representative and comparable across populations and/or time.

The types of modelling used vary in sophistication, but share the goal of 
addressing some or all of these challenges. We describe below the key situa-
tions in which modelling is useful.

To Improve Accuracy and Comparability of Data. One major purpose of sta-
tistical modelling is to process raw data to improve its accuracy and compa-
rability. The application of weighting factors to data collected in a cluster 
sample survey is a form of modelling to improve representativeness. 
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Incompleteness of surveillance or registration data is an important source of 
bias that must be addressed, and poses a challenge because completeness 
cannot be assessed using primary data alone and data from other sources is 
also needed.

Analysts may address bias resulting from definitional and measurement 
issues a priori by adjusting the data before statistical modelling, drawing on 
external information. For example, it is possible to adjust the prevalence of 
hearing loss measured using different loudness decibel thresholds to a com-
mon threshold using a known or assumed relationship between threshold 
and cumulative prevalence. Alternately, adjustment of data using different 
measurement strategies may be carried out statistically in the model. This is 
known as cross-walking to a standard definition. For example, for multiple 
hearing loss surveys with different thresholds, analysts can use statistical 
models to estimate the relationships between thresholds and prevalence and 
produce estimates for a standard set of thresholds for all the populations.

A striking example of the challenge of comparability comes from Malawi. 
The 2001 National Micronutrient Survey found that 59 per cent of pre- school 

Box 21.1 Common Sources of Bias in Model Input Data. Adapted from 
the GATHER Statement [8]

Inconsistent case definitions or diagnostic criteria: Health data often identify 
persons who test positive for a particular case definition. Case definitions may 
vary by data source, limiting their comparability. Assessors’ qualifications may 
vary, which can lead to differences in ascertained prevalence. In addition, labora-
tory protocols may change over time, reducing comparability even when case 
definitions have not changed. Changes in sensitivity or specificity of detection 
methods can have an important effect on case identification, as can decisions 
about whether to adjust for sensitivity or specificity.

Self-report biases: With some survey instruments, systematic biases can arise 
from difficulties in obtaining accurate responses from survey respondents. 
Examples of self-report biases include recall bias or social desirability bias. Self- 
reports of prior diagnosis often underestimate the true incidence or prevalence 
since some cases do not interact with the health system or are not diagnosed. 
These biases may vary systematically by populations and over time.

Incomplete population-based surveillance: Surveillance and registration sys-
tems designed to capture all events in a population are often incomplete. It may 
be difficult to quantify levels of completeness for events such as infectious dis-
ease incidence. For other types of events, demographic techniques or capture- 
recapture techniques may allow estimation of completeness.

Non-representative population bias: Some data types are collected for a subset 
of the general population by design, for example when data are collected from 
clinic attendees or samples of volunteers, or when data pertain to urban or rural 
groups only. Health status and health determinants may differ systematically 
between these selected populations and the general population.
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age children had vitamin A deficiency, based on a measure of serum retinol [8]. 
Surveys in 2009 [9] and in 2015–2016 [10] found prevalence of 40.1 per cent 
and 3.6 per cent using a different measure—retinol binding protein. 
Development partners and funding agencies need to know whether the trend 
indicates programmatic success, or if it is simply due to the change in diagnos-
tic methods, in order to decide how to allocate future funds. This example, and 
others, highlights the importance of understanding and communicating why 
and how global health estimates are produced, and their levels of uncertainty.

To Synthesise Data from Multiple and Overlapping Sources. Statistical model-
ling can also be used to generate comparable and consistent indicator values 
across populations and/or time—based on all the data which meet inclusion 
criteria. For example, some countries have multiple sources of data on under-
five mortality, such as from the census and household surveys [11]. Synthesising 
data makes use of all existing information of sufficient quality, thereby avoid-
ing the arbitrariness of an analyst picking the best single data source, which is 
challenging given the presence of measurement error. This approach is similar 
to estimating a treatment effect through a meta-analysis of several randomised 
trials as opposed to picking the treatment effect from only one of the trials.

To Fill Data Gaps in time series and project to a common target year or range 
of years. For most types of raw data, the date of most recently available data 
varies across populations. Because analysts usually want to estimate trends to 
a common recent year across all populations, they include a projection com-
ponent in the model. These imputation methods often borrow information 
from neighbouring data, which could be, for example, from countries in the 
same region or other time points in a country’s primary data series. Analysts 
may also seek to improve imputations and projections by including predictor 
variables in the model that correlate with the quantity of interest (these are 
known as covariates).

To Estimate Quantities that Cannot Be Directly Measured. When it is difficult 
or costly to measure a health outcome, it may be more feasible to measure 
intermediate outcomes, and then use a model to extrapolate to the outcome. 
Such models usually involve mathematical modelling of the causal chain. For 
example, WHO has based its estimates of measles mortality on estimates of 
measles cases multiplied by separately estimated case fatality rates [12].

To Evaluate Large-scale Public Health Interventions when a randomised con-
trolled trial is not possible for ethical or practical reasons [13]. Investigators 
observe trends in the outcome of interest with the programme in place and 
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develop a counterfactual model to estimate the outcomes in the absence of the 
programme. This approach can also be used to assess the potential impact and 
cost-effectiveness of proposed interventions.

To Forecast Indicators for a standard time frame (base year to latest target year) 
using a forwards (and sometimes backwards) projection component. In some 
cases, the main aim of the modelling is longer range projection or forecasting. 
These types of models fall into two main classes: (1) deterministic covariate-
driven projections that are usually scenario-based [14, 15]. These allow for 
modelling of alternate future policies or interventions through covariates or 
other modifiable parameter assumptions; and (2) statistical forecasts using 
time series projection techniques to extrapolate historical trends [16]. Hybrid 
models combine stochastic time series projections with covariate drivers and 
multi-level modelling [17].

We distinguish in the following sections between statistical models, which 
describe associations between variables, and mathematical models which pos-
tulate a causal pathway [16]. We describe statistical modelling in more detail 
as analysts use these most frequently to make global estimates.

4  Mathematical Modelling

Mathematical models set up a theoretical framework that represents and quan-
tifies the causal pathways and mechanisms linking determinants and health 
outcomes. These types of models make predictions of health outcomes (which 
may be difficult to measure) based on parameter estimates derived from vari-
ous data sources. An example of a simple mathematical model used in the first 
GBD study [18] was the DISMOD I model. This specified the basic relation-
ships between incidence, prevalence, remission, case fatality and mortality in 
terms of a set of four interlinked differential equations (see Fig. 21.1).

Natural history models are commonly used to estimate mortality from vari-
ous infectious diseases. Recent examples include the UNAIDS HIV Spectrum 
model [19], the WHO measles mortality model [12] and a rabies mortality 
model [20]. Garnett et al. [13] give a range of examples of more sophisticated 
mathematical models, which lend themselves to programme evaluation by 
modelling the consequences to the final outcome variables of variations in 
intermediate parameters such as intervention coverage or case fatality. The 
Comparative Risk Assessment methodology developed by WHO in the early 
2000s [21] also uses a mathematical modelling framework. The model assesses 
the change in population mortality outcomes associated with counterfactual 
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exposure distributions for risk factors in order to assess the mortality attribut-
able to current and past risk factor exposures.

5  Statistical Modelling

Statistical models estimate or predict outcome indicators using empirical data 
on the outcome as well as on correlated variables, or covariates. Statistical 
models commonly use regression techniques, identifying a functional form 
which fits the data, and which gives an adequate summary of the variation in 
the data [22]. Whereas explanatory modelling seeks to accurately characterise 
relationships between variables in the data, prediction modelling aims only to 
predict outcomes.

5.1  Methods of Estimation

 Use of Covariates

Statistical models may estimate and use the correlation between data observa-
tions and covariates to improve predictive validity. This approach is frequently 
used to generate values for indicators in settings with no or very limited pri-
mary data on the outcome of interest, for example, levels and trends in mater-
nal mortality [23] and other causes of death. Issues of causality are irrelevant 
for these types of models and users must be warned not to interpret the asso-
ciations in causal terms. Analysts should not restrict the choice of covariates 
to those believed to be causal, as the aim is accurate prediction.

All other 
mortality

Case 
fatality

IncidenceRemission

Healthy

Diseased

Dead from 
other causes

Dead from 
disease

Fig. 21.1 The DISMOD 1 conceptual disease model [18]. The four boxes for prevalence 
and deaths are linked by four transmission hazards

 Global Health Estimates: Modelling and Predicting Health Outcomes 



410

When using covariates, there is a danger that estimated trends reflect 
changes in covariates rather than changes in the estimated outcome indicator, 
particularly when there is little outcome data. For example, models to predict 
maternal mortality often include covariates such as gross domestic product 
(GDP) per capita which can vary depending on commodity prices. Rising 
GDP per se may have next to no impact on maternal health over short time 
periods but a model that includes GDP as a covariate will predict reductions 
in maternal mortality.

Inclusion of data type covariates in a regression is a common strategy when 
there are datasets or countries where data are available according to several 
definitions. It is possible to cross-walking to the preferred definition by includ-
ing indicator variables for each alternate data type in a regression analysis and 
then setting data type to the preferred type for producing regression estimates. 
Alternately, it may be more convenient to do the cross-walking as a pre- 
processing step based on a separate regression analysis. An example is a recent 
study of diabetes mellitus prevalence which included some data sources that 
identify diabetes using HbA1c measurements and others that measure fasting 
plasma glucose [24].

An example of the use of covariates for both prediction of levels and trends 
and for cross-walking between two data types is the model used by WHO for 
estimating national homicide rates across countries [25]. After cross- validation, 
the final model  included covariates for alcohol-drinking pattern, gender 
inequality index, per cent of the population living in urban areas, proportion 
of the population that are 15–30-year-old males, religious fractionalisation 
and infant mortality rate. An additional covariate for data type distinguished 
data from criminal justice and police systems from that derived from death 
registration, and adjusted for the differences between them.

 Frequentist Versus Bayesian Estimation Methods

Frequentist statistical methods are based on interpretation of probabilities as 
objective summaries of repeated trials of the same process. Frequentist statisti-
cal modelling methods (such as ordinary least squares regression) rely on max-
imising a likelihood function which summarises the conditional probability 
of the actual observations as a function of the parameters to be estimated. In 
contrast, the Bayesian paradigm treats probabilities as subjective assessments 
based on prior knowledge (prior probability distributions) which are updated 
in the light of observed data [26].

 C. Mathers et al.



411

Bayesian methods generally allow the fitting of more complex and flexible 
models, that seek to make many internal adjustments, enable more appropriate 
uncertainty characterisation and avoid the approximations required for many 
classical frequentist methods. These methods require greater computation than 
frequentist methods. With increasing computing power, Bayesian methods 
have become tractable for virtually all parametric methods and are being 
increasingly adopted for global health modelling, for example, UN agencies 
now use Bayesian methods to monitor child and maternal mortality [27, 28].

5.2  Types of Model

In Sect. 3, we identified a number of objectives for using statistical modelling; 
here we examine some of the main features and uses of the relevant modelling 
approaches.

 Modelling to Produce Smooth Estimates Across Multiple 
Observations

Complex curve smoothing or time series projections allow flexibility in curve 
fitting using multiple and sometimes overlapping data inputs. For example, 
the UN Inter-agency Group on Mortality Estimation (UN-IGME) formerly 
used a loess regression method to estimate trends in child mortality for a coun-
try across a standard time period [28]. This method only used country-specific 
data to interpolate and extrapolate a smooth curve for a single population. 
UN-IGME now models time trends using Bayesian bias-adjusted B-splines 
which allow more objective curve fitting than loess regression [27]. We 
describe this example to illustrate the increasing sophistication of current sta-
tistical modelling.

Using the B-splines model, the UN-IGME estimates a best fit trend line 
for the under-five mortality rate (U5MR) based on multiple observations 
from multiple surveys at uneven intervals (see Fig. 21.2) [30]. The B-splines 
model includes a data model which simultaneously adjusts for statistically 
estimated biases for each type of measurement technique (such as indirect 
birth history vs. direct birth history). For example, if on average (across all 
country data) indirect birth history observations were 10 per cent lower than 
the final U5MR estimates based on all types of data, then the data model 
will apply an upward adjustment to the indirect birth history observations 
when estimating the final curve for U5MR.  This means that the final  
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estimated U5MR curve for a country depends on the data for all countries, 
not just that specific to the country in question. It can also mean that if a 
country only has observations from biased data sources, the final estimates 
may lie entirely outside the original, raw data observation (often difficult to 
explain to users of the statistics).
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World Fertility Survey  1981−1982 (Other DHS Direct)
World Fertility Survey  1981−1982 (Other DHS Indirect)
Demographic and Health Survey  1986 (Other DHS Direct)
Demographic and Health Survey  1990 (DHS Direct)
Demographic and Health Survey  1990 (DHS Indirect)
Multiple Indicator Cluster Survey  1995 (Others Indirect)
Demographic and Health Survey  1999 (Other DHS Direct)
Demographic and Health Survey  1999 (Other DHS Indirect)
Multiple Indicator Cluster Survey  1999 (Others Indirect)
Demographic and Health Survey  2003 (DHS Direct)
Demographic and Health Survey  2003 (DHS Indirect)
Multiple Indicator Cluster Survey  2007 (Others Indirect)
Demographic and Health Survey  2008 (DHS Direct)
Demographic and Health Survey  2008 (Others Household Deaths)
Demographic and Health Survey  2008 (DHS Indirect)
Malaria Indicator Survey  2010 (Other DHS Direct)
GHS Panel Survey  2010 (Others Household Deaths)
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Fig. 21.2 Under-five mortality rates for Nigeria, 1955–2016. (Source: United Nations 
[30]). Empirical data from surveys and censuses included in the statistical analysis 
are shown as solid lines with symbols, data excluded on grounds of low quality 
shown as dashed lines, UN-IGME estimated time series shown as bold red line with 
90 per cent uncertainty range
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 Multi-level Modelling to Improve the Quality and Stability 
of Estimates Based on Relatively Sparse Data

Multi-level or hierarchical regression models allow for simultaneous modelling 
of parameters that vary at more than one level (e.g. country, region and world). 
Modelling parameters hierarchically allows data from other countries within a 
region, and in other regions, to inform estimation for countries with poor or 
missing data. In non-hierarchical regression models, a group dummy variable 
could be included to estimate the variation between groups as a fixed effect. 
Hierarchical models also permit the inclusion of random effects, which allow 
the model to share information from higher levels of the hierarchy to a greater 
extent when data from lower levels are poor [22]. We describe an application 
of hierarchical modelling to children’s height and weight to illustrate how the 
method is typically used for global health estimates. Paciorek et  al. used a 
Bayesian hierarchical model to estimate distributions of height- for- age and 
weight-for-age by place of residence (urban or rural) for 141 countries over a 
35-year period [31]. The estimated values for each country- year were informed 
by data from the country-year itself, if available, and by data from other coun-
tries, especially those in the same region. The authors of the study explained 
that ‘The hierarchical model shares information to a greater extent when data 
are non-existent or weakly informative (e.g., because they have a small sample 
size), and to a lesser extent in data-rich countries and regions.’

 Complex Predictive Models to Interpolate and Extrapolate 
Outside the Available Data

Most statistical models use more than one of the techniques outlined above, 
including use of time-varying covariates, a multi-level structure and a tem-
poral smoothing technique. For example, to estimate maternal mortality 
trends by country, the UN system uses a multi-level Bayesian regression 
model with time series modelling and covariates and random effects [28]. 
The Maternal Child Health Epidemiology Estimation collaboration with 
WHO uses a multi-nomial regression model, with covariates and fixed 
effects, that simultaneously models a complete set of cause-of-death fractions 
[32]. Other examples of complex statistical models include use by the IHME 
of Gaussian process regression to borrow strength and smooth across space 
and time [33]. Use of these statistical imputation and prediction methods 
along with predictive covariates now enables relatively sparse data to become 
big estimates with health indicators imputed to detailed spatial-temporal 
grids, for example, 5 km x 5 km grids for the world over 15 years [34].
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5.3  Appropriateness of Model Frameworks 
and Validation Methods

Validation of predictive models differs from validation of explanatory mod-
els. Analysts validate explanatory models by examining whether their struc-
ture adequately represents the data and if the model fits the data. For 
example, validation of an explanatory model would examine whether addi-
tion of extra covariates to the model, transformations of covariates or addi-
tional nonlinear terms significantly increase its explanatory power. Model fit 
is assessed using goodness-of-fit tests and model diagnostics such as residual 
analysis [35].

In contrast, for predictive modelling where observations are missing for 
some populations or time periods, the focus of validation is on the ability 
of the model to predict missing data. This usually involves withholding 
some of the data from the model fitting and then testing the accuracy of 
the model predictions against the withheld data, known as out-of-sample 
predictive  validation or cross-validation [36, 37]. Predictive validity depends 
on the question being asked and the nature of the data to which it is being 
applied, so there is no standard metric for evaluation of model perfor-
mance. For example, a model focused on estimation of the outcome for all 
countries for a target year that falls outside the dataset will require the 
model to be particularly good at out-of-time predictions. If the focus is on 
prediction for countries with no primary data, this requires that the model 
predicts well out-of-sample across countries. For assessing the predictive 
validity of cause-of-death models used in the GBD 2010 study, the with-
held data consisted of a mix of five types of missing data: countries with 
no data; countries with missing data years within the available data; coun-
tries with missing data years at earlier time periods; countries with missing 
data for later time periods; and countries with data missing for some age 
groups [38].

Advances in other disciplines [38, 39, 40] have found that an ensemble 
modelling approach may give better predictive validity than any single model. 
Recent modelling in the global health field has also made use of ensemble 
models that are the weighted combinations of different models [37–39]. Such 
ensemble modelling typically requires two sets of withheld data for validation. 
The first set is used to assess the predictive validity of the individual models, 
and the second set is used to assess and maximise the predictive validity of the 
ensemble average.
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6  Understanding, Assessing and Using 
Statistical Estimates

Increasing complexity of models being used for health estimates and increas-
ing concerns about the transparency and replicability of modelled results led 
WHO to assemble a working group in 2014 to define and promote best prac-
tice in reporting health estimates. This resulted in a consensus statement and 
reporting list known as Guidelines for Accurate and Transparent Health 
Estimates Reporting (GATHER), published in 2016 simultaneously in the 
Lancet and PLoS Medicine [41, 42].

GATHER defines best reporting practices for global health estimates. 
GATHER comprises a checklist of 18 items that are essential for the best 
reporting practice. Key items in this checklist include information on all 
included data sources and their main characteristics, a detailed description of 
all steps of the analysis, types of uncertainty quantified and the methods used, 
how to obtain the analytic or statistical source code used, reasons for changes 
if updating an earlier set of estimates and a discussion of the modelling 
assumptions and data limitations that affect interpretation of the estimates. 
More details are available on the GATHER website [41].

GATHER provides an achievable standard for reporting health estimates, 
but there are many challenges in implementation. Full documentation of a 
study typically requires lengthy technical appendices, and ensuring open 
access to input data and computer code implies an additional reporting bur-
den when publishing estimates. A clear description of the methods and fair 
discussion of limitations are important for understanding estimates, but are 
not easy to provide or verify.

6.1  Uncertainty Estimation

Quantifying uncertainty around modelled health estimates—typically by cal-
culating and reporting uncertainty intervals—was considered by the GATHER 
working group to be a necessary component of reporting results, encouraged 
by GATHER [42]. Uncertainty ranges provide users with an understanding 
of the precision of the estimates, and are critical for making comparisons. 
However, the inclusion of the main sources of uncertainty usually requires 
substantial statistical expertise and computing power.

Potential sources of uncertainty include stochastic errors, sampling error, 
and non-sampling errors (resulting from measurement errors, missing data, 
errors in coverage and other systematic biases). They also include error in 
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model covariates, parameter uncertainty, model specification uncertainty, 
fundamental uncertainty and uncertainty arising from various data transfor-
mation steps and externally derived parameters [41]. In practice, most quan-
titative uncertainty estimates reflect only a subset of all possible sources of 
uncertainty in the estimates.

There is no established methodology for estimating some types of uncer-
tainty. Analysts may use different methods, including developing new meth-
ods, or ignore the source of uncertainty and acknowledge this as a limitation 
of their analysis. In many cases, the data and information needed to quantify 
uncertainty do not exist (e.g. some sources of uncertainty may be unknown, 
or impossible to measure). This means that some modelling approaches have 
wider uncertainty than others, simply because the former may be capturing 
more sources of uncertainty. In general, accounting for multiple sources of 
uncertainty—and correctly reflecting these sources in resulting estimates—is 
more straightforward when Bayesian approaches are used. Uncertainty in val-
ues of covariates such as average income per capita or in denominator values 
such as population estimates is also typically not available and not included in 
quantitative uncertainty ranges for modelled health indicators.

6.2  Uncertainty Versus Sensitivity Analysis

All estimation processes involve assumptions, including about inclusion crite-
ria for data and the functional form of a model. Some analysts may choose to 
use sensitivity analysis to assess the degree to which the final values of the 
estimates depend on these assumptions. If the sensitivity analysis suggests that 
various analytical approaches produce similar estimates, this lends credibility 
to the estimates and strengthens the results. If, on the other hand, the sensitiv-
ity analysis suggests that the estimates are highly dependent on the modelling 
approach or the data inclusion/exclusion criteria, this encourages readers to 
examine carefully the analytical assumptions, and may help to inform future 
research.

6.3  Transparency, Replicability and Complexity

Transparency is at the heart of controversies about global health estimates. 
The more diverse the available raw data, the modifications to the raw data 
and the statistical models, the more difficult it is for an external party to 
understand and replicate the findings. Also, analysts need to carefully con-
sider the benefits of more model complexity. If their resulting estimates are 
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similar, a simpler model that others can more easily replicate and use is likely 
to be more effective than a more complicated model that can only be run and 
understood by a few individuals. Furthermore, while it is of value to offer 
greater technical documentation as per the GATHER guidelines, this alone 
may not be enough to inform users about appropriate interpretation. Many 
users may lack the technical understand the methods and their limitations. 
GATHER also requires a plain-language description of methods and a fair 
discussion of limitations, however, researchers and users may disagree about 
what constitutes plain language, and a frank discussion of limitations may be 
perceived as damaging the credibility of the estimates.

6.4  Communicating Estimates

In many cases, estimates that are largely imputed are not clearly flagged as 
such to users and full documentation of statistical methods is difficult to 
obtain or understand. Ideally, estimates are presented with uncertainty ranges 
or confidence intervals, but the utility of these uncertainties is often not clear 
to users and decision-makers. For its estimates of mortality by cause, WHO 
uses a four-colour coding system to indicate the strength of the underlying 
data and whether models and data have used mainly country-specific data or 
borrowed strength from other countries or covariates. More discussion is 
needed as to whether and how uncertainty ranges can contribute to better 
communication and use of estimates.

7  Divergent Health Statistics: Exposing 
the Limitations in Modelling and Data

For many health indicators multiple global health estimates are now available: 
one from the UN system and others from academic institutions. This can be 
of concern to international users such as donor agencies and to national gov-
ernments [43, 44, 45].

Both WHO and IHME publish regular updates of estimated global deaths 
by cause [46, 47]. The WHO cause-of-death estimates draw on WHO and 
UN agency/inter-agency statistics and put them into a consistent comprehen-
sive context for all causes. They also draw on death registration data and IHME 
GBD analyses for causes/countries without death registration data and where 
the UN system has not invested in detailed estimates. Over time, there has 
been some convergence between GBD and WHO estimates for some causes, 
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though major differences remain in some areas such as adult malaria mortality 
and tuberculosis cases [39].

The WHO estimates use the latest UN Population Division life tables for 
total deaths by age and sex, with some adjustments for high HIV countries 
and for countries with relatively complete death registration. The GBD model 
life tables differ significantly in some aspects. For example, the GBD 2015 
estimated 8.0 million deaths for 2015 for the WHO African region compared 
with the UN providing an estimate of 9.1 million deaths. The most recent 
GBD update used IHME birth estimates substantially lower than the UN 
estimates, resulting in more than 10 per cent reduction in estimated child 
deaths compared with the latest UN inter-agency estimates [11]. Future revi-
sions of the IHME GBD study will use IHME estimates of population num-
bers, likely resulting in additional divergences in numbers of deaths.

Like international rankings, dissonant health statistics can cut both ways. 
In some cases, they can be demoralising, undermining the ability or will to 
invest in programmes whose success is not yet reflected in global statistics. In 
other cases, they have led to national debate and greater national investment 
in data collection and analysis [48]. A critical lesson that has emerged from 
such debate is the need for much greater dialog between agencies carrying out 
global estimates and national authorities. They need to discuss the data limita-
tions and biases being addressed through the global modelling process, and to 
develop a shared understanding of the strengths and limitations of both the 
input data and the estimates derived from global statistical models.

8  Are Modelled Estimates Helpful for Health 
Decision-Makers and Consumers?

Users of health statistics have different data needs. The perceived credibility 
and utility of different kinds of statistics vary significantly by user. National 
and sub-national data users often prefer empirically measured data that can 
inform decision-making at national and sub-national levels. Such users are 
less concerned about comparability with other national estimates or inter-
national standards. By contrast, global users, including international agen-
cies, donors and development partners value estimates that are comparable 
across countries and over time. This translates into variations in the types of 
statistics that are considered most credible at different levels of governance. 
This, in turn, affects the likelihood that statistics will be used to inform 
policy.
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Ways in which global estimates can be useful for countries include: com-
parative analyses of country values (benchmarking with peer countries); prog-
ress monitoring and reporting for global and regional goals and targets; 
reporting to donors and development partners, for example, for performance- 
based grants; and for estimating completeness and accuracy of empirical 
reported data.

One challenge for some users of global health estimates is that each 
revision typically involves a complete re-estimation of the whole time 
series rather than adding new values for recent years. In some cases, such 
as child mortality rates that incorporate survey responses with 15 or more 
years of historical recall, these changes to the time series are based on new 
empirical data and are explainable. However, in other cases, the data may 
remain the same, but changes to the estimation methods lead to substan-
tial differences in the estimated series. This can cause confusion, for 
example, if baseline estimates change, with implications for the speed—
and even the direction—of time trends and shifts away from or poten-
tially even over final targets. While the differences usually fall within 
margins of uncertainty, it can be difficult to explain these changes to 
policymakers.

Another relevant factor is that health statistics are often used for political 
purposes. Globally produced statistics that differ substantially from country- 
reported data can be seized upon for political purposes. Governments may use 
favourable estimates to rally support for current policies. Conversely, unfa-
vourable estimates bolster political opposition and civil society criticisms of 
the government. This makes it all the more important to ensure greater shared 
understanding of the reasons for global modelling adjustments to raw input 
data.

Global health estimates do not replace the need for countries to collect reli-
able, accurate and regular empirical data. However, using estimates to fill in 
missing data can mislead users into thinking the empirical data are available, 
and reduce pressure to improve information systems. Production of estimates 
remotely, using complex modelling techniques, may also undermine country 
understanding and ownership of their indicators. And in an era of global tar-
get setting, there is a danger that predicted statistics may be used for the evalu-
ation of progress. The production of estimates should go hand-in-hand with 
development of tools and methods that build capacity in countries for data 
generation, analysis and interpretation.
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9  Conclusion

In principle, it is possible to track events such as birth and death, cancer inci-
dence and some types of injury by complete registration or surveillance sys-
tems. But most population health indicators will continue to be based on data 
from health information  systems (which do not capture all events within 
populations), epidemiological studies and regular or irregular sample surveys 
that may rely on self-report by respondents. Synthesis of population indica-
tors from such data will continue to require statistical modelling, though 
model complexity could diminish if countries adopt universal standards for 
regular representative sample surveys.

The increasing demand for health data for monitoring the Sustainable 
Development Goals [49], across a much broader range of health issues than 
the MDGs, may result in additional investment in good quality population 
health data, but this will take considerable time to achieve. The world will 
continue to rely on statistical modelling for almost all health indicators at 
global and regional levels for many years to come.

 Key Messages

• Demand is high for global health statistics that are comparable across 
countries and time, to be used for priority setting and to monitor health 
systems performance.

• Reported statistics can be limited by non-standard data definitions, incom-
pleteness and other sources of bias.

• International agencies and academic institutions use statistical and mathe-
matical models to estimate comparable global health statistics.

• Model complexity is increasing as statistical methods advance and comput-
ing power increases.

• Good practice reporting principles are available to increase transparency 
and replicability of methods.
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