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1 Introduction: Quantum and Quantum-Like
Models

Recently the field of “Quantum social science” has emerged (Haven and
Khrennikov 2013; Slanina 2014). What sort of entity is hiding behind this
term? There is no simple answer to this question. It hardly corresponds to
the reduction of human behavior to intermolecular interactions. Roughly
speaking, the idea is to use the apparatus developed to describe quantum phe-
nomena to analyse macroscopic complex systems (including living systems).
But why? Since its beginning, the development of mathematics has mostly
corresponded to practical needs. From ancient times through the Middle Ages
mathematical creativity focused on arithmetic and geometry. To some extent,
farther development was stimulated by new discoveries in physics. Differential
geometry was used for modeling the universe as a whole, probability theory

E.W. Piotrowski
Institute of Mathematics, University of Białystok, Ciołkowskiego 1M, Pl 15-245
Białystok, Poland
e-mail: qmgames@gmail.com

J. Sładkowski (�)
Institute of Physics, University of Silesia, Uniwersytecka 4, Pl 40-007 Katowice,
Poland
e-mail: jan.sladkowski@us.edu.pl

© The Editor(s) (if applicable) and The Author(s) 2017
E. Haven, A. Khrennikov (eds.), The Palgrave Handbook of Quantum
Models in Social Science, DOI 10.1057/978-1-137-49276-0_3

39

mailto:qmgames@gmail.com
mailto:jan.sladkowski@us.edu.pl


40 E.W. Piotrowski and J. Sładkowski

helped us to cope with uncertainties, and functional analysis created the
mathematical apparatus of quantum theory to describe phenomena in the
microworld, cf. Haven and Khrennikov (2016) or Susskind and Friedman
(2014). Nowadays these tools are widely used almost everywhere in mathe-
matics, computing, chemistry, and biology. The analysis of human decisions
has revealed that the foundations of probability theory and Boolean logic are
often violated in the process (Busemeyer and Bruza 2012;Moreira andWichert
2014). The sure-thing principle formulated by Savage (1954) is a well known
example. The mathematical apparatus of quantum theory seems to offer a
solution to some problems of this kind. The simplest examples come from
game theory (Osborne 2003; Osborne and Rubinstein 1994), where a general
notion, mixed strategy is widely used. A mixed strategy is an assignment of
a probability to each pure (basic) strategy and a random adoption of a pure
strategy. In quantum theory, instead of “adding probabilities” one is allowed
or even forced to use (normalized) complex linear combinations of states
(amplitudes), in which only the squared modulus of such amplitudes defines
the probability. This idea is at the root of quantum game theory (Meyer
1999; Eisert et al. 1999; Piotrowski and Sładkowski 2003a): the assembling
of probabilities happens at the level of probability amplitudes. This trick is
also used in the Fisher information approach in statistics (Frieden 2004). The
most interesting fields where this approach can be applied include:

• Pricing of financial instruments. Here, the path integral (Baaquie 2004,
2009; Kleinert 2009) and quantum game theory (Haven 2005; Choustova
2006; Segal and Segal 1998; Piotrowski and Sładkowski 2004) can be used.

• Theory of decisions. Here various important aspects have been approached
(Deutsch 2000; Haven and Khrennikov 2009; Asano et al. 2011; Piotrowski
and Sładkowski 2003b).

• Risk theory. Here, besides problems related to decision science, the for-
malism of noncommutative quantum mechanics (QM) can be explored
(Piotrowski and Sładkowski 2001).

• Game theory. Here a whole new subfield was developed. Quantum mech-
anism design seems to be a very promising field of research that has mostly
been neglected up to now (Wu 2011a).

• Psychology. Here, various paradoxes can be discussed from a quantum-like
point of view (Busemeyer and Bruza 2012); even problems connected with
consciousness can be approached (Baaquie 2009; Miakisz et al. 2006).

• Network theory. This is quite a new development with plenty of possible
applications.
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All this means that the mathematical formalism of QM is not firmly adjoined
with quantum physics, but can have a much wider class of applications.
We are not able to review all these fields, therefore we focus on quantum
game theoretical models in economics and interested readers are referred to
other contributions in this volume and more specialized books and references
(Haven and Khrennikov 2013; Busemeyer and Bruza 2012; Slanina 2014).

2 Quantum Game Theory

Information processing is a physical phenomenon and therefore information
theory is inseparable from both applied and fundamental physics. Attention to
the quantum aspects of information processing has revealed new perspectives
in computation, cryptography, and communication methods. In numerous
cases a quantum description of the system provides some advantages over the
classical situation, at least in theory. But does QM offer more subtle mecha-
nisms for playing games? In game theory one often has to consider strategies
that are probabilistic mixtures of pure strategies (Osborne 2003; Osborne
and Rubinstein 1994). Can they be intertwined in a more complicated way
by exploring interference or entanglement? There certainly are situations in
which it can be assumed that quantum theory can enlarge the set of possible
strategies (Meyer 1999; Eisert et al. 1999; Piotrowski and Sładkowski 2003a).
This is a very nontrivial issue as genuine quantum systems usually are unstable
and their preparation and maintenance might be difficult, for example due
to decoherence, the practically inevitable destructive interactions with the
environment. We have already mentioned the astonishing fact that quantum
formalism can be used in game theory in a more abstract way without any
reference to physical quantum states—the decoherence is not a problem in
such cases. The question is whether quantum games are of any practical
value. In some sense the answer is positive: commercial cryptographical and
communication methods/products are already available. The abstract field
of using the quantum apparatus outside physical systems is also appealing.
Here we aim at providing a theoretical explanation of decisions or behavior
in quantum mechanical terms (Haven and Khrennikov 2013; Busemeyer and
Bruza 2012; Slanina 2014; Miakisz et al. 2006).
By a quantum game we usually understand a quantum system that can be

manipulated by at least one party and for which the utilities of moves can
be reasonably defined. Here we will use the concept of quantum game in a
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more abstract sense.1 Therefore, we assume that the analysed system can be
with satisfactory accuracy represented by a density operator (matrix) related
to a more or less abstract vector space2 (Haven and Khrennikov 2016). We
shall suppose that all players know the state of the game at the beginning and,
possibly, at some crucial stages of the actual game being played.3 We neglect
the possible technical problems with actual identification of the state—we will
assume that the corresponding structures are definable. Implementation of a
genuine quantum game should in addition include measuring apparatuses and
information channels that provide necessary information on the state of the
game at crucial stages and specify the moment and methods of its termination.
We will not discuss these issues here.

We will consider only two-player quantum games: the generalization for
the N players case is straightforward. Therefore we will suppose that a two-
player quantum game � D (H; �i; SA; SB;PA;PB) is completely specified by
the underlying Hilbert spaceH of the quantum system, the initial state given
by the density matrix �i 2 S(H), where S(H) is the associated state space,
the sets SA and SB of quantum operations representing moves (strategies) of
the players, and the pay-off (utility) functions PA and PB which specify the
pay-off for each player after the final measurement performed on the final
state �f . A quantum strategy sA 2 SA, sB 2 SB is a collection of admissible
quantum operations, that is the mappings of the space of states onto itself.
One usually supposes that they are completely positive trace-preserving maps.
Schematically we have:

�i 7! (sA; sB) 7! �f 7! measurement ) (PA;PB) :

This scheme for a quantum two-player game can be implemented as a
quantum map:

�f D J
�1 ı S ı D ı J(�i); (1)

where initially

�i D j00ih00j (2)

1Quantum auctions are the only exception, as their implementation seems to be feasible.
2Actually a Hilbert space, though this should not bother us at the moment.
3Actually one can consider quantum games played against Nature. In such cases the agents might not even
be aware of playing the game!
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describes identical starting positions of Alice (A) and Bob (B). J describes
the process of creation of entanglement in the system and D the possible
destructive noise effects that will be neglected here. The use of entanglement
is one of several possible ways to utilize the power of QM in quantum games.
One of the possibilities is that the states of players are transformed using

J(�) D J(�)�J(�)� (3)

with

J(�) D cos(�=2)I ˝ I C i sin(�=2)�x ˝ �x (4)

into an entangled state. Here I and �x denote the identity operator and the
Pauli matrix, respectively. The additional parameter � describes the possible
destructive role of the environment (noise).

Equation (3) has the following explicit matrix form for the initial state given
by Eq. (2) (Flitney and Abbott 2003a):

J(�i) D

0
BBB@

cos(�=2)2 0 0 i cos(�=2) sin(�=2)
0 0 0 0
0 0 0 0

�i cos(�=2) sin(�=2) 0 0 sin(�=2)2

1
CCCA : (5)

The individual strategies of players SX, X D A(lice); B(ob) are implemented
as unitary transformations of the form:

S(�) D (SA ˝ SB)�(SA ˝ SB)�; (6)

where the quantum strategy is realized by unitary transformations. For exam-
ple, both SA and SB can have the general matrix form in the two-dimensional
case (Flitney and Abbott 2003a) :

U(�; ˛; ˇ) D
 

ei˛ cos(�=2) ieiˇ sin(�=2)
ie�iˇ sin(�=2) e�i˛ cos(�=2)

!
: (7)

The short description of quantum games presented here will be sufficient for
our aims. Interested readers are referred to Piotrowski and Sładkowski (2003a)
and Flitney and Abbott (2003a) for further clarification and details.
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3 Quantum Approach to Risk

Let us begin with an abstract interlude. We will consider the generalization of
QM, the so-called “noncommutative” QM. The adjective "noncommutative"
reflects the additional assumptions that the operators Oxi fulfil

Œ Oxi; Oxj� D i � ij; � ij 2 C; (1a)

Œ Oxi; Oxj� D i Cij
k Oxk; Cij

k 2 C; (1b)

Oxi Oxj D q�1 ORij
kl Oxk Oxl; ORij

kl 2 C:

Labels i; j; k; l take values from 1 to N. The parameters q, � ij, Cij, and Rij

describe the model; their actual values are not important. Suppose that the
strategies of agents are given by vectors j i from the corresponding Hilbert
spaceH (Piotrowski and Sładkowski 2003c). Let the probabilities of signaling
of private values for random variables p and q by Alice and Bob using
strategies j iA and j iB be given by (that is, by the corresponding probability
amplitudes after normalization):

jhqj iAj2
Ah j iA

jhpj iBj2
Bh j iB

dqdp ; (8)

where hqj iA is the probability amplitude of Alice’s bid of value q. The reverse
position of Bob is represented by the amplitude hpj iB (Bob ask p). Of course,
the deal is not always realized. Recall that (Elton et al. 2013; Luenberger
2009):

• In classical error theory second moments of a random variable are related
to its “random” errors.

• In Markowitz’s portfolio theory variance (� ) “measures” risk.
• In Bachelier’s option valuation model the random variable q2 C p2 “mea-

sures” the joint risk associated with the buying-selling process.

Therefore, we are tempted to define the operator of inclination to risk as:

H(Pk;Qk) WD (Pk � pk0)2

2 m
C m!2(Qk � qk0)2

2
;
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where pk0 WD kh jPkj ik

kh j ik
, qk0 WD kh jQkj ik

kh j ik
, ! WD 2	

�
. � , roughly speaking,

denotes the mean duration of the whole cycle of buying-selling (Piotrowski
and Sładkowski 2003d). The parameter m > 0 is introduced to describe a
possible asymmetry in risk connected with selling and buying. If you browse
through any textbook on QM you will discover that the above operator H is
the energy operator for harmonic oscillation, a classical issue in physics, if one
notices thatPk � Opk andQk � Oxk (Haven and Khrennikov 2016). This allows
for the following analogy. There exists some constant hE that characterizes the
minimal inclination to taking risk (theminimal energy level in physics).4 Here,
it is equal to the product of the minimal eigenvalue of the operator H(Pk;Qk)
and the parameter 2� . This means that, in our interpretation, 2� gives the
minimal period when it makes sense to calculate profits. Note that, in general,
Qk do not commute for different k. This should not surprise us: agents observe
each other and react accordingly. Any ask or bid influences the market, at least
for a short period. This explains why we have used the noncommutative QM
instead of the “classical” one. For example, if

Œxi; xk� D i‚ik WD i‚
ik

then the results of Hatzinikitas and Smyrnakis (2002) suggest that‚modifies

our “economic Planck constant” ¯E !
q

¯2
E C‚2 and the eigenvalues of

H(Pk;Qk). This implies the obvious conclusion that the activity of agents
modifies their attitudes toward risk. Strategies with definite values of risk are
given by eigenvectors of H(Pk;Qk). Remember that the minimal value of risk
is always greater than zero. Interesting, isn’t it?

4 Quantum Approach to Market Phenomena

Let the real random variable q

q WD ln cq � E(ln cq) (9)

correspond to the logarithm of the (bid) withdrawal price cq, that is the
maximal price at which the agent adopting the strategy j ik is willing to buy

4In physics hE is the Planck constant.
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the good G. We define q to ensure that its expectation value in the state j ik

is zero, E(q) D 0. In turn, the random variable p

p WD E(ln cp) � ln cp (10)

corresponds to the analogous situation for the supplier ofG adopting strategy
j ik (ask). Note that q and p do not depend on the units selected for G, and
we can use units such that E(ln c) D 0. Let us consider the general situation
of simultaneous trading of an arbitrary amount of goods. The state of the
game is given by the vector j‰iin WD P

k j ik living in the direct sum of
the Hilbert spaces of the agents (Haven and Khrennikov 2016)

P
k ˚Hk.

Hermitian operators of demand Qk and supply Pk acting on subspaces Hk

form canonically conjugated observables (Susskind and Friedman 2014). We
will denote their eigenvalues by q and p respectively. This construction can be
validated in the following way. If the unique price e�p (ask p) results from the
application of Pk there is no sense in agent k reporting bids at the same price,
and the corresponding operators should not be simultaneously measurable
(commuting). The corresponding capital flows are determined according
to some algorithm A representing the clearing house. The transaction is
described by the scattering operator T� mapping the initial state j‰iin to the
final state j‰iout WD T� j‰iin, where

T� WD
X

kd

jqikd kdhqj C
X

ks

jpiks kshpj

is a projection operator given by the partition � of the set of agents k into
two disjoint sets fkg D fkdg [ fksg of agents buying at prices eqkd and selling
at prices e�pks at this round. The algorithm A should determine the market
partition � , prices fqkd ; pksg, and the capital flows. Capital flows are fixed
according to the probability distributions

Z ln c

�1
jhqj ikj2
kh j ik

dq ; (11)

and Z ln 1
c

�1
jhpj ikj2
kh j ik

dp (12)

giving the probabilities of selling and buying G at price c, respectively. These
probabilities are conditioned on the partition � . We can envisage a future
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market administered by a quantum computer where the above quantum
computations can be implemented, though at this moment this is only a
theoretical tool. More details and some simulations can be found in Piotrowski
and Sładkowski (2002a,b, 2004). There are natural ways of incorporating
the subjectivity of decisions to this formalism, cf. Piotrowski and Sładkowski
(2009) and Piotrowski et al. (2010).

Another interesting model of a quantum market based on the second
quantization method was put forward by Gonçalves and Gonçalves (2007).
They introduced a “population number” n1; n2; : : : ; nm for all alternative
combinations of strategies. This is implemented by bosonic creation and
annihilation operators a�k and ak (Susskind and Friedman 2014). The number
of all possible combinations, m D Q

k Nk, is unlimited (Nj is the number
of alternative strategies for the jth player). The jth agent strategy profile is
jpji D P

i cijsi(pj)i, where ci is the probability amplitude of strategy si. The
unitary evolution of the strategy state jpj; tfini D U(tfin; tini)jpj; tiniiis governed
by a unitary operator of the form

U(tfin; tini) D
kfinY

kD0

U(tkC1; tk);

where k parameterizes the kfin C 1 trading rounds. In a simplified single-asset
model, where there are only two strategies (buying and selling), for each agent
the unitary evolution for the kth trading round can be given in the following
form:

U(tkC1; tk) D exp(
1X

jD0

(�j(k; �k)a�j � �j(k; �k)�aj));

where �k is the duration of each trading round, �j(k; �k) D �i�kj(k) with
j(k) a game-dependent real number that incorporates the dynamics.

5 Quantum Auctions

We now discuss the concept of a quantum auction, its advantages and
drawbacks. Quantum auctions are quantum games designed for various goods
allocations that one should anticipate. It is well known that for some types of
auctions the associated computational issues are difficult to cope with Cram-
ton et al. (2005). There is hope that in future, due to quantum computation
speed up, that some of these problems can be overcome. We envisage that the
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implementation might not be an easy task. Quantum information processing,
in principle, can provide tools for secure transmission of bids and asks and
their treatment. Such topics have been discussed in the case of sealed-bid
auctions (Naseri 2009; Zhao et al. 2010; Liu et al. 2014). Here we would like
to focus on more specific issues of using quantum theory for designing the
very mechanisms of auctions.5 We will begin by presenting the general idea
of a quantum auction. Then we will suggest methods of gaining an advantage
over “classical opponent” and describe some proposals of quantum auction.
Farther we will proceed to the quantum mechanism design problems, that is
the theory of construction of quantum games with equilibria implementing
given social choice rules (Haven and Khrennikov 2016). Finally we will try
to show some problems that should be addressed in the near future. In a
discussion we will use quantum auction theory as a formal theoretical tool,
though widespread opinion is that it seems probable that it will be used in the
future for massive combinatorial auctions or in compound securities trading.
A genuine quantum bidding language might have to be developed to this end.
Encoding bids/asks in quantum states is a challenge to quantum game theory.
Quantum auctions would almost always be probabilistic and may provide us
with specific incentive mechanisms and so on. As the outcome may depend on
amplitudes of quantum strategies, sophisticated apparatus and specialists may
be necessary. Therefore, we envisage some changes in the law and in practices.
Commercial implementation of quantum auctions is a demanding challenge
that cannot be accomplished without a major technological breakthrough in
controlling and maintaining quantum systems. Extreme security and privacy
are certainly strong points of quantum auctions. Currently, it is difficult to
find out if this is a feasible task, but as a theoretical tool it is also very
interesting (Piotrowski and Sładkowski 2008; Patel 2007). Quantum auctions
are specified by the following data.

• Auctioneer specifies conventional “classical” details of the auction such as
the schedule and goods to be sold.

• Auctioneer specifies the implementation of the quantum auction.
• Auctioneer specifies the initial state distribution, implementation of strate-

gies, andmain features of the search algorithms to be used (e.g. probabilistic,
deterministic).

• Search for the winners and good allocations (this process might be repeated
several times).

5We call such auctions “genuine quantum auctions.”
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• Methods of goods delivery and clearing, which is a standard issue.

This scheme is consistent with our definition of a quantum game.

5.1 Examples of Quantum Auctions

In the first model all possible prices of items are encoded in strings of
qubits (Hogg et al. 2007). The auctioneer wants to sell n items and to this
end distributes to m bidders p qubits initially in state joi (p � m qubits
in total6). Each bidder can only operate on his or her qubits and encodes
via unitary operation the details of the bid qubits (prices for all bundles of
items). Thus each bidder has 2p possible bid values, and can create super-
positions of these bids: for multiple-item auctions the bid is a superpositionP

j ˛jjbundleji ˝ jpriceji for each bundle of items. A superposition of qubits
specifies a set of distinct bids, with at most one allowed to win7; amplitudes
of the superposition correspond to the likelihood of various outcomes for the
auction. The protocol uses a distributed adiabatic search that guarantee that
bidders’ strategies remain private. The search operation, processing input from
the bidders, is implemented by unitary operators, giving the overall operator
U D U1 ˝ U2 ˝ : : :˝ Um, where m is the number of bidders and Ui stands
for the operator of the ith bidder. This “brute force” proposal seems to be the
easiest to implement and especially suitable for combinatorial auctions.

Piotrowski and Sładkowski discussed an abstract model of bargaining
(Piotrowski and Sładkowski 2002a). In their approach a two-dimensional
complex Hilbert space is associated with two agents, Alice and Bob. The
vectors (qubits) are called polarizations, which are identified with elements
of a one-dimensional complex projective spaceCP1. On an orthonormal basis
(j0i; j1i), j�i D �0j0i C �1j1i 2 Hs. The scalar product of two vectors
j� 0i; j� 00i 2 Hs is given by

h� 0j� 00i D N� 0
0�

00
0 C N� 0

1�
00
1 D N� � � ; (13)

where N�k, k D 0; 1 denotes the complex conjugate of �k. The proportional
vectors j�i and tj�i (t 2 C n f0g) are identified. The probability of measuring
the strategy j� 00i in the state strategy j� 0i is given by the squared module of
the scalar product (13) of the states. The following interpretation of Alice’s

6To implement this model additional qubits will be necessary for error correction.
7This corresponds to the XOR bidding language. This assumption can be relaxed.
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polarization state j�iA 2 HsA (that is of her strategy) is proposed. If she
formulates the conditions of the transaction we say she has the polarization
1 (and is in the state j�!r iA D j1i). In quantum bargaining (q-bargaining) this
means that she put forward the price. In the opposite case, when she decides
whether the transaction is to be made or not, we say she has the polarization
j0i. (She accepts or not the conditions of the proposed transaction.) The
vectors (j0i; j1i) form an orthonormal basis in HsA, the linear hull of all
possible Alice polarization states. Bob’s polarization is defined in an analogous
way. The states of Alice and Bob became entangled if they enter into q-
bargaining. The reduction of the state j�iA (Alice) to j1iA or j0iA always results
in Bob finishing in the state j0iB or j1iB, respectively. The polarizations of q-
bargaining form a two-dimensional complex Hilbert spaceHs � HsA

NHsB

spanned by two orthonormal vectors j10i WD j1iAj0iB and j01i WD j0iAj1iB.
A market process resulting in q-bargaining is described by a projection Pj1i W
HsA

NHsB ! Hs. This model of bargaining can be generalized to describe
quantum English auctions (Piotrowski and Sładkowski 2003e).

6 Quantum Mechanism Design
and Implementation Theory

Mechanism design (reverse game theory) is a field in game theory that studies
solution concepts for various classes of games (e.g. private information games)
(Hurwicz and Reiter 2006; Narahari 2014). According to Leonid Hurwicz, in
a design problem the goal function is the main “given,” while the mechanism
is the unknown. In that sense the design problem is the “inverse” of traditional
game theory, which is typically devoted to the analysis of the performance of
an externally given mechanism. One defines a game form as a method for
modeling the rules of a game or an institution, independently of the players’
utility functions. An n-agent game form � D (S;A; g) is defined by a set
of n strategy spaces of the players, S1; : : : ; Sn, a set of alternatives A, and an
outcome function g W S �! A, where S D QiDn

iD1 Si. An (n-agent) mechanism
is defined by n agents’ message spaces M1; : : : ;Mn, a set of alternatives A,
and an outcome function g W M �! A, where M D QiDn

iD1 Mi. Shortly, a
game form (mechanism) maps profiles of strategies (messages) into feasible
outcomes. In contrast, a game as such assigns a profile of payoffs (utilities) to
each profile of strategies (messages)! The idea is to use the “invented” mech-
anism in practice. Implementation theory provides a systematic methodology
for designing an information exchange process followed by allocation processes
that are “optimal” with respect to some pre-specified performance criteria. It
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provides analytical frameworks for the analysis and design of allocations among
agents in various information contexts e.g. as a Bayesian game). One assumes
that agents behave strategically and are self-utility maximizers. Information
exchange among the agents might be allowed or even necessary. Let N D
f1; : : : ; ng denote a finite set of agents, n � 2, and A D fa1; : : : ; akg be a
finite set of alternatives. We assume that an agent can have private information
encoded as his or her type. Next, let Ti be the finite set of agent i’s types, and
the private information possessed by agent i is denoted as ti 2 Ti. A profile of
types t D (t1; : : : ; tn) is referred to as a state and T D Q

i2N Ti denote the set
of states. At state t 2 T , each agent i 2 N is assumed to have a complete and
transitive preference relation �t

i over the set A. Let �tD (�t
1; : : : ;�t

n) denote
the profile of preferences in state t. The utility of agent i for alternative a in
state t is ui(a; t) W A � T ! R, that is, ui(a; t) � ui(b; t) if and only if a �t

i b.
We denote by >t

i the strict preference part of �t
i. Fixing a state t, we refer to

the collection E D< N;A; (�t
i)i2N > as an environment. Let 
 be the class of

possible environments. A social choice rule F is a mapping F W 
 ! 2Anf;g.
Finally, a mechanism � D ((Mi)i2N ; g) consists in prescribing a message
(strategy) set Mi for agent i, and an outcome function g W Qi2N Mi ! A.

The distribution of information among the agents plays the key role in
determining their actions, therefore specific implementation should involve
an appropriate solution concept (equilibrium), for example Nash equilibrium
implementation, Bayesian implementation, and Pareto efficient implementa-
tion. If one is trying to design a mechanism to achieve, for example, a Pareto
optimal solution, one needs to take into account how individuals are likely
to behave if one attempts to implement the mechanism. It can be shown
that even in the case of simple voting rules some of the desirable properties
which they appear to have if agents vote truthfully may disappear if agents
have an incentive to vote strategically (Hurwicz and Reiter 2006). Therefore
an important requirement is that of universality: the mechanism should work
no matter what the individual preferences happen to be. Maskin provided
an almost complete characterization of social choice rules that were Nash
implementable. It should come as no surprise for you to learn that one can
“design” quantum games and mechanisms; but would they be any good?
Haoyang Wu fromWan-Dou-Miao Research Lab, Shanghai was the first who
recognized this problem (Wu 2011a, 2013). Following the general model of a
quantum game a sequential (multistage) scheme (Moore and Repullo 1988)
can be developed (Wu 2011a):

type

selection
) measurement

of coin state
) message

processing
) outcome: g(m) :
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where the agents have “quantum coins” and “classical cards.” Each agent
independently realizes strategies by a local unitary operation [Eq.(7)] on his or
her own quantum coin:

J
�1 ı quantum coin ı U ı J ! measurement

of coin state
:

As usual, J creates (annihilates) entanglement. The designer (e.g. auctioneer)
receives the overall strategy as the cards and announces the result. Details of the
resulting algorithms can be found in the original papers. Note that quantum
mechanisms would certainly be probabilistic in nature. Therefore quantum
mechanisms are substantially nontrivial, and simple or direct extensions of
“classical” mechanisms that do not involve uncertainty are not possible cf.
Ieong et al. (2007). If quantum effects (i.e. strategies) are possible, the
traditional sufficient conditions of no-go theorems for the implementation of
some types of social choice rules may fail (Wu 2011b; Bao and Halpern 2015;
Makowski and Piotrowski 2011a).
In mechanism design theory one usually supposes that agents’ preferences

are transitive. Various simulations show that intransitive preference relations
(Makowski 2009; Makowski and Piotrowski 2006, 2011a,b; Makowski et al.
2015) form a key ingredient of quantum mechanisms. This issue certainly
deserves further investigation.

7 More Specific Quantum Games

In the previous section we discussed the modeling of whole branches of
economics and the social sciences in a quantum game-theoretical setting.
There are a whole lot more specific situations that can be successfully described
as a game. Most of them can in principle be or have already been “quantized.”
We have put the word quantized in inverted commas to stress that the quan-
tization of games does not exactly correspond to its physical counterpart. By
quantization of a concrete game we mean the construction of such a quantum
game that, after usually drastic reduction, strategy sets reproduce the initial
(classical) game. In some cases some paradoxes or conundrums can be resolved
in that way, but a review of these results is beyond the scope of this text.
We only mention some results that we think are representative or interesting.
The prisoner’s dilemma is one of the flagships of game theory. Its quantum
version is usually discussed in the context of cooperation (Eisert et al. 1999;
Nawaz 2013) and network games (Pawela and Sładkowski 2013a; Li and Yong
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2014). Quantum games on networks, hypernetworks, and cellular automata
are being intensively studied as they involve cooperation, coordination, and
synchronization problems (Li et al. 2012; Pawela and Sładkowski 2013a;
Miszczak et al. 2014; Alonso-Sanz 2012). Another interesting class of problems
that can be studied in the quantum setting is related to the famous Parrondo
paradox (Flitney and Abbott 2003b; Meyer and Blumer 2002; Pawela and
Sładkowski 2013b). New light can be shed on various aspects of Bertrand
duopoly analysis (Khan et al. 2013; Lo and Kiang 2004), Cournot duopoly
(Sekiguchi et al. 2010), and Stackelberg duopoly (Lo and Kiang 2005; Wang
et al. 2013). The ultimatum game studied in experimental economics has also
been analysed from the quantum game theory point of view (Frąckiewicz and
Sładkowski 2014). The quantum battle of the sexes also became a popular
research topic (Frąckiewicz 2009; Nawaz and Toor 2004; Weng and Yu 2014).
A lot more can be said, but we have to stop somewhere. We apologize to
authors whose works have not been mentioned here.

8 Conclusions

Quantum game theory aspires to be a fruitful theoretical tool in various fields
of research. Quantum auctions have potential commercial value, but their
implementation is a demanding challenge that would hardly be accomplished
without a major theoretical and technological breakthrough. Nevertheless, we
envisage the emergence of quantum computational choice theory and related
fields (Bisconi et al. 2015). Quantum-like description will remain an important
theoretical tool, even if never commercially implemented.
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