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Preface

The recent quantum information (QI) revolution in physics not only changes
essentially the interpretation of quantum physics by drifting it towards ‘physics
of information’, but it also has a strong impact on the research outside of
physics. The ideology, methodology, and the novel mathematical apparatuses
of QI found applications in the cognitive and social sciences, psychology,
economics, finance, and recently even in political studies. QI teaches us that
the quantum wave function has a purely informational nature. Therefore, it
is natural to use the formalism of quantum theory to describe the processing
of information (first of all the prediction of the results of measurements) not
only by quantum physical systems, but by systems of any origin, whether they
are biological, social, financial (as long as there is behavior which has (at least
some) distinguishing features of quantum systems). This approach to applica-
tions of the quantum formalism outside of physics is known as the quantum-
like paradigm. By this paradigm a researcher applying the methods of quantum
theory to, e.g. cognition need not search for quantum physical processes
which might lead to the appearance of quantum-like features in behavior. The
quantum formalism is treated as an operational formalism describing outputs
of possible measurements, including the self-measurements. Of course, this
approach does not exclude the possibility that quantum physics is involved in
some way into the generation of quantum-like behavior. The latter possibility
has been actively speculated in brain studies.1

1This quantum brain project suffers of a variety of problems, e.g. mismatching of quantum physical scales
of space, time, temperature with the corresponding scales of neuronal activity. This mismatching is a
subject of a great debate which has been ongoing for the last 20 years, with a variety of arguments for and
against (see for more detail the article of A. Khrennikov “Why quantum?” in this handbook). For social
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vi Preface

The most fundamental common feature of quantum physical systems and
cognitive systems, including collective social systems, is that their behavior
is characterized by a deeper uncertainty than uncertainty represented with
the aid of the classical probability theory. In QI, such a deep uncertainty
is represented by using two basic structures of the mathematical formalism
of quantum theory, superposition and entanglement of states. Therefore, it is
natural to explore them in applications outside of physics. These quantum
structures will play a crucial role in practically all chapters of this handbook.

This deeper type of uncertainty is mathematically represented by the tools
of quantum probability theory. This is a calculus of complex probability
amplitudes which when squared, yield the probabilities of the results of
measurements (this is the famous Born rule connecting the quantum wave
function with probability). The laws of quantum probability theory differ
fundamentally from the laws of classical probability. For example, we can
mention the violation of the law of total probability and Bell’s inequality.
In cognitive science, psychology, social science and political studies plenty of
statistical experimental data has been found which violates the laws of classical
probability theory. At the same time, such data can be modeled with the aid of
quantum probability by using superposition and entanglement of belief states.

The last 10 years have been characterized by a tremendous increase of
research on applications of QI methods to a wide range of problems in
cognition and the social sciences. The number of publications has increased
dramatically. We point to four key books (van Rijsbergen 2004; Busemeyer
and Bruza 2014; Khrennikov 2010; Haven and Khrennikov 2013).

The aim of this handbook is to structure the available information. We
believe this will be helpful to both experts and newcomers. Experts from
the QI community are looking for novel applications of their methods and
‘newcomer’ researchers to the QI community, whether they come from physics
(especially quantum information), cognition, psychology, economics, and
other social sciences may be interested in using novel methodologies and
mathematical tools.

In this handbook, we have collected chapters of leading experts on the key
topics. The chapters are written in an accessible style, so they can be read by
both physicists and non-physicists. For the latter group of readers who are
not familiar with QI and the quantum formalism in general, we wrote an
introductory chapter entitled ‘A Brief Introduction to Quantum Formalism’

systems, the situation is even worse: to explore quantum physics one has to accept ‘mental non-locality’
with natural links to parapsychology. We do not criticize this project directly and we do not say that this
is completely impossible. We just argue that it is possible to proceed without such assumptions.
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by E. Haven and A. Khrennikov. It contains all basic notions which will be
used in the chapters of this book.

Before we describe the content of this volume in more detail, we make a
last general remark. The applications of methods of classical physics in, e.g.
psychology and economics have a long history. For example, in economics
the methods of classical statistical physics were widely explored in econophysics
(Mantegna and Stanley 1999). Thus, approaches presented in this handbook
could be considered as extensions of such activities by using the methods of
quantum physics.

In their contribution “Quantization in Financial Economics: An
Information-Theoretic Approach”, R. J. Hawkins and B. R. Frieden show
how the formal framework of quantum mechanics arises in economics
generally and in financial economics, in particular, as a natural consequence
of an information-theoretic approach to these fields. Specifically, extremizing
Fisher information subject to the constraint that the associated probability
density reproduce observed economic phenomena, results in Schrödinger-like
equations. This approach is illustrated by examples from financial economics.

The quantum approach to finance is reviewed by E. W. Piotrowski, J. Slad-
kowski in their chapter “Quantum Game Theoretical Framework in Eco-
nomics”. They start with a brief introduction to quantum game theory and
then proceed to concrete applications: i.e. the quantum modeling of risks,
quantum financial market, quantum auctions.

The chapter of Y. Pelosse “The Intrinsic Quantum Nature of Classical
Game Theory” is devoted to the analysis of the interrelation of classical and
quantum game theory and the deep connection to a number of foundational
and interpretational problems of quantum mechanics.

An introduction to the general theory of quantum measurements based
on quantum instruments is presented in the chapter of I. Basieva and A.
Khrennikov “Decision Making and Cognition modeling from the Theory of
Mental Instruments” where this theory is applied to describe the updating of
belief states in the process of decision making. An even more general approach
to this state update problem is presented in the chapter of M. Ohya and Y.
Tanaka “Adaptive Dynamics and an Optical Illusion” devoted to the theory
of quantum adaptive dynamics (generalizing the theory of open quantum
systems) with applications to modeling sensation-perception dynamics in the
process of recognition of ambiguous figures.

The chapter by C. Smith and C. Zorn “Strategic Choice in Hilbert Space”,
discusses the important argument that distance relations between response
preferences (for instance) are deemed, in mainstream social science, to virtually
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always occur in Euclidean space. The chapter explains very well how the use
of Hilbert space in decision theory does change this view quite dramatically.

In the chapter of E. Haven and P. Khrennikova “Voters Preferences in a
Quantum Framework”, the theory of open quantum systems is applied to
describe the dynamics of voters’ belief state in the process of decision making.
This model is applied to model the bi-partisan behavior of voters in the US
congressional and presidential elections.

D. Aerts and S. Sozzo contribute to his handbook with the chapter
“Quantum Structure in Cognition: Origins, Developments, Successes and
Expectations” devoted to the surprising results attained in the last decade on
the identification of quantum structures in cognition and, more specifically, in
the formalization and representation of natural concepts. The Fock state space
is used as the basic quantum tool. The chapter contains a short introduction
to the Fock space formalism which is helpful for non-physicists.

Cognition is also modeled in the chapter by J. Acacio de Barros and Gary
Oas “Quantum Cognition, Neural Oscillators, and Negative Probabilities”.
The authors discuss a contextual neurophysiologically plausible model of
neural oscillators that reproduces some of the features of quantum cognition.
However, at the same time this model predicts contextual situations, where
quantum cognition is inadequate. Finally, an extended probability theory
based on negative probabilities is explored: it describes situations that are
beyond quantum probability but also provides an advantage in terms of
contextual decision making.

A. Lambert-Mogiliansky contributed to this Handbook with the chapter
entitled “Quantum-like Type Indeterminacy: A Constructive Approach to
Preferences à la Kahneman and Tversky.” The type-Indeterminacy model
proposes to use elements of the quantum formalism to model uncertain pref-
erences. The basic idea is that the Hilbert space model of quantum mechanics
can be thought of as a general contextual predictive tool particularly well suited
to describing experiments in psychology or in ‘revealing’ preferences.

The work of J. S. Trueblood and P. K. Mistry “Quantum Models of
Human Causal Reasoning” starts with an introduction to classical modeling
of causal reasoning; its advances and problems. Causal graphical models
(CGMs), based on Bayes’ calculus, have perhaps been the most successful
at explaining and predicting judgments of causal attribution. However, some
recent empirical studies have reported violations of the predictions of these
models, such as the local Markov condition. In this handbook the authors
suggest an alternative approach to modeling human causal reasoning using
quantumBayes’ nets. They show that this approach can account for a variety of
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behavioral phenomena including order effects, violations of the local Markov
condition, anti-discounting behavior and reciprocity.

The chapter of L. C. White, E. M. Pothos, and J. R. Busemeyer “A Quan-
tum Probability Model for the Constructive Influence of Affective Evaluation”
is devoted to a concrete application of the theory of quantum decisionmaking.
This chapter starts with a brief summary of the research on constructive
processes in judgment and decision making and the rationale for using
quantum probability to model such processes. A quantum probabilistic model
is described for the constructive role of articulating an affective impression and
the empirical research that has been undertaken to support the model.

The chapter of P. Pylkkänen “Is there Room in Quantum Ontology for a
Genuine Causal Role of Consciousness?” discusses the relationship between
so called ‘active information’ and consciousness. Are there causal powers of
consciousness?

The chapter of A. Khrennikov “Why Quantum?” in the section “Big
Challenges” of the handbook, is devoted to the justification of the use of
the quantum formalism in biology and social science, especially through the
use of the theory of open quantum systems. The latter is the most general
formalism which describes the interaction of the information state of a system
with an environment (physical, mental, social, financial, political). The author
also discusses the restrictiveness of the conventional quantum formalism and
the possibilities to go beyond quantum theory in cognitive and social science
applications. The idea that the wave function of quantum mechanics can be
interpreted as an active information field can be found in works of D. Bohm
and B. Hiley (2007) who explored such information field both in physics
and cognition. Later a similar approach was developed by E. Haven and
O. Choustova and A. Khrennikov who used methods of Bohmian mechanics
and the information interpretation of the pilot wave in finance. The chapter
of P. Pylkkänen presents an excellent introduction to this theory.

The chapter of A. Plotnitsky which also figures in the section “Big Chal-
lenges” represents a deep analysis of the possibly necessary role for quantum
mathematical models to go beyond physics. This analysis is based on Ein-
stein’s distinction between ‘constructive’ and ‘principle’ scientific theories. Two
types of principle thinking in quantum theory are considered here, the type
defining the initial development of quantum mechanics in the 1920s and the
type defining quantum information theory, a more recent and still ongoing
development.

Leicester, UK Emmanuel Haven
Växjö-Kalmar, Sweden Andrei Khrennikov
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A Brief Introduction to Quantum Formalism

Emmanuel Haven and Andrei Khrennikov

1 Introduction

In this chapter we briefly present the basic notions of the quantum formalism
which will be used in specialized contributions devoted to applications of this
formalism to problems of cognition, decision-making, economics, and finance
and social science. See also monographs Khrennikov (2010b), Busemeyer and
Bruza (2012), and Haven and Khrennikov (2012) for a ‘social science’ friendly
presentation of the formalism of quantum mechanics (QM). For a general
and condensed introduction to the field of QM, see Bowman (2008). See
also Morrison (1990) and Bransden and Joachain (2000) for more elaborate
textbooks.

We also present the standard formalism as it is used in quantum physics
and the methodology of its applications outside of physics will be discussed in
further chapters.We need tomention that in such applications quantum(-like)
observables appear in the form of questions or tasks and quantum(-like) states
represent belief states of people and collective social systems.
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It is well known that, although QM is established as an operational
formalism, its interpretation remains a complicated foundational problem.
The present situation (now about 100 years after the creation of QM) is
characterized by a huge diversity of various interpretations. Nowadays the
foundational debates are as hot as 100 years ago, see, for example, Jaeger et al.
(2011), Accardi et al. (2009). In this chapter we are not able to discuss the
problem of interpretations of QM. We proceed by considering its formalism
pragmatically, merely as a tool for the calculation of probabilities.

2 States and Observables

In the quantum formalism observables are represented by Hermitian Matrices1
or, in the abstract framework, by Hermitian operators. These operators act in
the complex Hilbert space2 H, that is, a complex linear space endowed with a
scalar product denoted as h 1j 2i.
Let us recall the mathematical definition and properties of a scalar product.

The scalar product is a function from the Cartesian product H�H to the field
of complex numbersC; 1;  2 ! h 1j 2i; having the following properties:

1. Positive definiteness: h j i � 0 with h ; i D 0 if and only if  D 0:
2. Conjugate symmetry: h 1j 2i D h 2j 1i.
3. Linearity with respect to the second argument: h�jk1 1 C k2 2i D

k1h�j 1i C k2h�j 2i; where k1; k2 are complex numbers.

Each scalar product induces the norm defined as

k k D
p
h j i:

The norm defines the metric (distance) on H W d( 1;  2) D k 1 � 2k; and
hence the metric topology. The Hilbert space is complete with respect to this
topology. In quantum information theory, and in applications of the quantum
formalism to cognition, decision-making, and economics and social science,
researchers typically use only finite dimensional Hilbert spaces as state spaces.

1We remind the reader that the matrix A D (aij) is called Hermitian if its elements satisfy the equalities
aij D Naji; where, for the complex number z D x C iy, Nz denotes its complex conjugate, Nz D x � iy.
2Note that the mathematical formalism of QM is based on complex numbers. However, this is not
surprising, since QM appeared as the development of classical wave mechanics (in any event in
Schrödinger’s approach). Complex numbers play an important role in the mathematical formalism of
the latter, e.g., in classical electromagnetism and, in particular, in electro and radio-engineering.
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Here the condition of completeness is satisfied automatically. A beginner in
quantum theory can ignore the presence of the topological structure and
explore just the linear space structure and the geometric structure given by
the scalar product.

By fixing in H an orthonormal basis (ej); that is, heijeji D ıij; we represent
vectors by their coordinates

 1 D (z1; : : : ; zn; : : :);  2 D (w1; : : : ;wn; : : :):

In the coordinate representation the scalar product has the form

h 1j 2i D
X

j

Nzjwj:

By using this representation the reader can easily verify the aforementioned
properties of the scalar product.

2.1 Pure States

Normalized vectors of H, that is,  such that h j i D 1; represent a special
(and the most important) class of states of quantum systems, pure states. In
fact, a pure state is determined by a normalized vector, up to the phase factor
ei� ; � 2 Œ0; 2�); that is, two vectors  1 and

 2 D ei� 1 (1)

determine the same pure state. Thus, rigorously a pure state is an equivalent
class of such vectors:  1 �  2 if (1) holds. However, it is convenient to work
not with equivalent classes of vectors, but with concrete vectors representing
such classes. Therefore the reader can simply identify pure states with their
representatives, normalized vectors.

Note that each pure state (vector) can be represented as a Hermitian
operator. For a pure state j i; we set P D j ih j; the orthogonal projector
on this vector, P � D h j�i : Here j ih j is the Dirac notation for the
projection operator P ; see Sect. 5 for more details.
By fixing an orthonormal basis in H; the projector corresponding to a pure

state is expressed by a matrix � D (�ij) satisfying the following conditions:

(a) Hermitian: �ij D N�ij; in particular, the diagonal elements are real,
(b) Positive definiteness: h��; �i � 0 for any vector �,
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(c) Its trace equals 1: tr� DPj �jj D 1.
(d) Its square equals to itself:

�2 D �: (2)

The eigenvalues of a Hermitian matrix are real numbers. In addition, a
Hermitian matrix with positive definiteness has non-negative eigenvalues.
Finally, from condition (c), the sum of all the eigenvalues equals 1.

As an example in the two-dimensional space C2, we introduce the operator
given by the following matrix

�qubit D
 
�11 �12

�21 �22

!

D
 
j˛j2 N̨ˇ
˛ Ň jˇj2

!

(3)

for the corresponding pure state vector

 D
 
˛

ˇ

!

:

Here ˛ and ˇ are complex numbers satisfying j˛j2 C jˇj2 D 1. The above
�qubit expresses the state of a quantum bit (called qubit hereafter), which is
often seen in quantum information theory (Nielsen and Chuang 2000).

2.2 Mixed States

The next step in the development of the notion of the quantum state consists in
proceeding without the constraint (2), that is, considering all possible matrices
satisfying conditions (a)–(c) as representing quantum states. They are called
density matrices and they represent the most general states of quantum systems.
In the abstract framework one considers operators satisfying conditions (a)–(c)
as density operators.

Each density operator can be written as a weighted sum of projection
operators corresponding to pure states. If such a sum contains more than one
element, then the state represented by this density operator is called a mixed
state: the mixture of pure states with some weights.3

3Although this terminology is widely used, it is ambiguous. The representation of a density operator as a
weighted sum of projectors corresponding to pure states is not unique. Thus, by using the terminology
‘mixed state’ one has to take into account this non-uniqueness.
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3 Quantum Probability

Consider a state represented by a density operator � and an observable repre-
sented by a Hermitian operator A D P

i aiPai ; where (ai) are its eigenvalues
and (Pai) are projectors onto corresponding eigen-subspaces. We note that in
the finite dimensional case any Hermitian operator can be represented in this
form.

Quantum theory indicates that the probability of obtaining the concrete
value ai as the result of measurement4 is given by Born’s rule:

p�(ai) � p�(Pai) D Tr�Pai : (4)

In particular, if � D j ih j is a pure state, then p�(ai) D hPai j i D
kPai k2:

Suppose now that after the measurement of the A-observable, one plans to
perform a measurement of another observable B represented by a Hermitian
operator B D P

i biQbi ; where Qbi are orthogonal projectors onto the eigen-
subspaces corresponding to the eigenvalues bi: Then one needs to know not
only the result of the A-measurement, but even the output state �ai : This state
is determined by the projection postulate5

�ai D
Pai�Pai

TrPai�Pai

: (5)

For theB-measurement following theA-measurement, this state plays the same
role as the state � played for the A-measurement. In particular, by applying
Born’s rule once again we obtain:

p�ai
(bj) � p�ai

(Qbj) D Tr�aiQbj D
TrPai�PaiQbj

TrPai�Pai

: (6)

In quantum theory this probability is treated as the conditional probability
p�(Qbj jPai) � p�(B D bjjA D ai): The rule (6) can be considered as a
quantum analog of the Bayes formula for classical conditional probability.

4By the spectral postulate of quantum theory, only eigenvalues can be obtained as measurement outputs.
5This postulate is also known as the Lüders postulate, which generalizes the von Neumann projection
postulate which was formulated in this form only for observables with nondegenerate spectra.
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3.1 Superposition, Measurement, and “State Collapse”

Consider a pure state  and an observable A: Suppose that A has a nondegen-
erate spectrum and denote its eigenvalues by a1; : : : ; am and the corresponding
eigenvectors by e1; : : : ; em (here ai 6D aj; i 6D j:). This is an orthonormal basis
in H:We expand the vector  on this basis:

 D c1e1 C � � � C cmem; (7)

where (cj) are complex numbers such that

jc1j2 C � � � C jcmj2 D 1: (8)

By using the terminology of linear algebra we say that the pure state  is a
superposition of the pure states ej:

The density matrix corresponding to  has the elements

�ij D ci Ncj: (9)

Hence, for the pure state  ; the basic probabilistic postulate of QM, Born’s
rule, has the form

p(aj) D �jj D cj Ncj D jcjj2: (10)

This postulate can be written without using the coordinates of the state
vector  on the basis of the eigenvectors of a quantum observable. Note
that, since the basis of the eigenvectors of a Hermitian operator can always
be selected as orthonormal, the coordinates cj can be expressed in the form:
cj D h ; eji: Hence, Born’s rule takes the form:

p(aj) D jh ; ejij2: (11)

In this case (of an observer with a nondegenerate spectrum and a pure
state) the projection postulate can be formulated as follows. As the result of a
measurement of the A-observable with the result ai; the superposition (7) is
reduced to the basis vector ei corresponding to this eigenvalue. This procedure
can be interpreted in the following way:

Superposition (7) encodes uncertainty in the results of measurements for
the observable A: Before measurement a quantum system “does not know
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how it will answer the question A:” The mathematical expression (10) encodes
potentialities for different answers. Thus, a quantum system in the superposition
state  does not have any value of A as its objective property. After a
measurement, the superposition is reduced to just one term in the expansion (7)
corresponding to the value of A obtained in the process of measurement.

This process is often called the quantum state collapse.6

4 Heisenberg’s Uncertainty Principle

In general quantum observables (represented by Hermitian operators) do
not commute. This noncommutativity is one of the most distinguishing
mathematical features of the quantum formalism. Physically it is expressed in
various phenomena. The uncertainty principle is one of its basic expressions.
This principle states that there is a limit on the precision with which some
of the physical parameters of one system can be known simultaneously. This
limit does not depend on the precision of the measurement devices used or
on the level of technology; it is fundamental. The uncertainty principle was
formulated for the first time by Werner Heisenberg in 1927. He pointed out
that the more precisely the position of a particle can be measured, the less
precisely its momentum can be determined. In 1928 the principle was stated
as an inequality:

�x�p � „
2
;

where �x is the standard deviation of position, �p is the standard deviation of
momentum, and „ is the reduced Planck constant, „ D h=2�:

Themost general form of the uncertainty relation is given by the Schrödinger
inequality:

�2
A�

2
B �

ˇ̌
ˇ̌1
2
hfA;Bgi � hAihBi

ˇ̌
ˇ̌
2

C
ˇ̌
ˇ̌ 1

2i
hŒA;B�i

ˇ̌
ˇ̌
2

; (12)

6Although, mathematically, the quantum state collapse is well defined, its proper physical interpretation
is a complicated problem. There are two main viewpoints to the projection postulate: (a) this is simply
the update of information about the quantum state (which is also interpreted as an information state);
(b) this is a physical event happening with the state of a quantum system (which is also interpreted as a
physical state). In this introductory chapter we try to avoid discussions about the foundational issues: we
proceed formally with the mathematical definition of the state-projection.
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where ŒA;B� D AB�BA is the commutator operator and fA;Bg D ABCBA
is the anti-commutator operator.

The derivation of the inequality is, in fact, reduced to the use of the Cauchy–
Bunyakovsky–Schwartz inequality for the scalar product:

jhf jgij2 � hf jf ihgjgi: (13)

In QM the position operator is defined by the formula:

( Ox )(x) D x �  (x) (14)

(the multiplication operator by the variable x) and the momentum operator is
defined by

( Op )(x) D „
i

d 

dx
(x): (15)

These operators act in the Hilbert space H D L2 of complex valued square
integrable functions,  (for a one-dimensional model) such that

k k2 D
Z
j (x)j2dx <1;

with the scalar product

h 1j 2i D
Z
 1(x) 2(x)dx:

Note that the L2-space is infinite-dimensional, so the real arena of quantum
physics is the infinite-dimensional state space. Finite-dimensional state spaces
used in quantum information are simply approximations of this infinite-
dimensional state space. This point has to be taken into account even in the
applications of the quantum formalism outside of physics. In such applications
we typically proceed with finite-dimensional state spaces, for example, the
belief-state space. We have to remember that this is not the complete state rep-
resentation, but just its simplification. Of course, it is mathematically difficult
to work in infinite-dimensional Hilbert spaces. For example, the operators Ox
and Op are not continuous and they are not defined on the whole L2-space,
but only on its dense subspaces. However, physicists typically totally ignore
these mathematical difficulties and proceed by manipulating with formal
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mathematical symbols. This way of operation can also be recommended to
beginners in quantum theory working in applications outside of physics.

The formulas (14), (15) give the rules of Schrödinger’s quantization estab-
lishing the correspondence between the observables of classical mechanics and
QM. We recall that in classical mechanics observables are mathematically
represented by functions on the phase space with the coordinates (x; p); where
x and p are the position and the momentum of a classical particle, respectively.
For example, the position and momentum observables are represented simply
as fx(x; p) D x and fp(x; p) D p; that is, by the coordinate functions
on the phase space. The energy of a classical particle is represented by the
function H(x; p) D p2

2m C V(x); where m is the mass of the particle and
V(x) is the potential function determining the classical force F(x) D �dF

dx (x):
Schrödinger proposed to quantize classical observables, functions f (x; p); by
using the rule

f (x; p)! f ( Ox; Op); (16)

where the operators Ox; Op are determined by the rules (14), (15). For example, the
energy function on the phase space (the Hamiltonian function) is quantized as
Op2

2mCV(x);where V(x) is the multiplication operator by the potential function,
 (x) ! V(x) (x): However, if a classical observable f (x; p) contains the
product of the phase space coordinates, for example, f (x; p) D xp; then the
rules of Schrödinger’s quantization do not determine a quantum observable
uniquely, for example, you can quantize xp as Of1 D Op Ox; or Of2 D Ox Op; or Of3 D
( Op OxC Ox Op)=2: Typically the latter is the most convenient, but others are also in
use. Note that there is a deep connection between Schrödinger’s quantization
and the theory of (in general infinite-dimensional) pseudo-differential operators.

Note that, as is the case with the majority of the basic elements of quantum
theory, the rules of Schrödinger’s quantization were simply postulated, that is,
they are not derivable from heuristic principles. Nevertheless, Schrödinger’s
quantization plays the fundamental role in QM, since it provides the possibil-
ity to construct quantum observables from classical observables. The absence
of so to say classical mental (or social) mechanics makes it impossible to apply
Schrödinger’s quantization in cognition, psychology, and sociology. This is an
important unsolved problem.

Note that the Robertson inequality is a trivial consequence of the Schrödinger
inequality (12):

�2
A�

2
B �

1

4
jhŒA;B�ij2:
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Finally, we note that the commutator of the operators of position and
momentum is given by

Œ Ox; Op� (x) D ( Ox Op � Op Ox) (x) D x
„
i

d (x)

dx
� „

i

dx (x)

dx
D i„I (x);

where I is the identity operator. Then in this case the Robertson inequality
becomes the Heisenberg inequality:

�2
A�

2
B �

1

4
„2:

Note that the Heisenberg uncertainty relation (i.e., noncommutativity of
the mathematical representation of quantum observables) plays the crucial role
in the formulation of the principle of complementarity by Bohr.
The noncommutativity of quantum observables is also responsible for

special features of quantum logic (see Sect. 9 for an introduction) which differs
crucially from classical Boolean logic. These differences are important for the
novel approach in the modeling of cognitive and social phenomena presented
in this handbook.

5 Dirac’s Notation

Dirac’s notation is widely used in quantum information theory. Vectors of H
are called ket-vectors and are denoted as j i: To be completely in accordance
with this notation the above formula for the projector P has to be written as

P j�i D h j�ij i; (17)

that is, formally (j ih j)j�i D h j�ij i:However, often states are denoted
simply by letters such as �;  and we use both symbols  and j i.
The elements of the dual space H0 of H; the space of linear continuous
functionals on H; are called bra-vectors, which are denoted as h j. Originally
the expression h j�i was used by Dirac for the duality form between H0 and
H; that is, h j�i is the result of the application of the linear functional h j to
the vector j�i: In mathematical notation it can be written as follows. Denote
the functional h j by f and the vector j�i simply by �: Then h j�i � f (�):
To simplify the model, Dirac later took the assumption that H is a Hilbert
space, that is, the H0 can be identified with H:
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Consider an observable given by the Hermitian operator A with nondegen-
erate spectrum and restrict our consideration to the case of a finite dimensional
H: Thus, the normalized eigenvectors ei of A form the orthonormal basis in
H: Let Aei D aiei: In Dirac’s notation ei is written as jaii and, hence, any
pure state can be written as

j i D
X

i

cijaii;
X

i

jcij2 D 1: (18)

Since the projector onto jaii is denoted as Pai D jaiihaij; the operator A can
be written as

A D
X

i

aijaiihaij: (19)

Now consider two Hilbert spaces H1 and H2 and their tensor product
H D H1 ˝ H2: Let (jaii) and (jbji) be orthonormal bases in H1 and H2

corresponding to the eigenvalues of two observables A and B: Then vectors
jaii ˝ jbji form the orthonormal basis in H: Typically, in physics the sign of
the tensor product is omitted and these vectors are written as jaiijbji or even
as jaibji:

6 Elements of Quantum Information Theory

In particular, in quantum information theory (Nielsen and Chuang 2000)
typically qubit states are represented with the aid of observables having the
eigenvalues 0; 1: Each qubit space is two dimensional:

j i D c0j0i C c1j1i; jc0j2 C jc1j2 D 1: (20)

A pair of qubits is represented in the tensor product of single qubit spaces,
where pure states can be represented as superpositions:

j i D c00j00i C c01j01i C c10j10i C c11j00i: (21)

where
P

ij jcijj2 D 1: In the same way, the n-qubit state is represented in the
tensor product of n one qubit state spaces (it has the dimension 2n):

j i D
X

xjD0;1

cx1:::xn jx1 : : : xni; (22)
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where
P

xjD0;1 jcx1:::xn j2 D 1: Note that the dimension of the n qubit state
space grows exponentially with the growth of n: The natural question about
possible physical realizations of such multi-dimensional state spaces arises.
The answer to it is not completely clear. It depends very much on the
used interpretation of the wave function. Even such an exotic interpretation
as the many worlds interpretation is widely used in quantum information
theory, especially in quantum computing (to clarify the possible source of
computational power of quantum computers). By applying the formalism
of QM to cognition and decision-making one has to think about the same
problem.7

7 State Dynamics for an Isolated
Quantum System

7.1 Schrödinger’s Equation: The Pure State Evolution

In QM the state dynamics of an isolated quantum system is described by
Schrödinger’s equation:

i„dj i
dt
D Hj i; (23)

whereH is the Hamiltonian which is a Hermitian positively defined operator,
representing the system’s energy, and „ D h=2� is the reduced Planck
constant. The solution to this equation uses the unitary operator. Please see
below (under the Remark).

Remark. Although in this chapter we try to proceed purely formally, that
is, without attempting to couple the quantum formalism to applications in

7In principle, one can ignore this problem completely (as the majority of the quantum information
people do) and proceed in the formal mathematical framework. However, if the brain really processes the
information in a quantum(-)like way, it might be useful to think about the possible sources which provide
the ability to represent the quantum(-like) states of huge dimensions. One of the most natural solutions
is to consider the brain as a quantum physical system, for example, Penrose (1989). Another possibility
is to derive the quantum(-like) processing of information from the functioning of the macroscopic and
classical physical brain, for example, on the basis of the classical electromagnetic field model (Khrennikov
2010a), or more generally the classical oscillators model (de Barros and Suppes 2009), or the model based
on tree-like distributed information processing (Khrennikov 2004). In the latter model the exponential
increase of the number of branches of a neuronal tree can be used to match the exponential increase of
the dimension of the n-qubit space.
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the social sciences, we would like to make a comment on the role of the
Planck constant h in cognition and decision-making; see Khrennikov (2010b),
Busemeyer and Bruza (2012) for deeper discussions. It would be naive to expect
that the Planck constant h will be precisely useful in applications outside of
physics. Instead of the Planck constant h; it is natural simply to use some
scaling factor 	 > 0:

i	
dj i

dt
D Hj i: (24)

It would be surprising if such a scaling factor was the same for all cognitive
systems when the dynamics of their decision-making is considered. However,
we cannot exclude its constancy for some concrete classes of cognitive systems
and (or) problems. Another foundational problem related to the use of
Schrödinger’s dynamics in social science is to find a proper interpretation of
the Hamiltonian H: The most natural analogy with physics is to treat it as a
mental energy operator.However, the notion ofmental energy by itself generates
complicated foundational issues. Therefore it may be useful to consider H
as a dimensionless quantity (in physics it has the dimension of energy). In
such a case the scaling factor 	 has to have the dimension of time. It can
be interpreted as the scale of the time evolution of the mental state (“belief
state”) of a cognitive system. This quantity can be in principle determined
experimentally (although this is far from a simple problem).

The Schrödinger equation is, in fact, a system of linear differential equations
with complex coefficients. In the one-dimensional caseH is just a real number
and the general solution has the form of the imaginary exponent:  (t) D
e

�itH
	  0: In the general case H is an operator and the solution is represented

in the form of an imaginary operator-exponent (for the fixed basis it is simply
the exponent of the matrix):

 (t) D Ut 
0; Ut D e

�itH
	 : (25)

As well as the one-dimensional imaginary exponent, the operator-exponent
describes oscillating dynamics. This is more complicated than in the one-
dimensional case and is a mixture of many oscillating imaginary exponents.

Note the following fundamental property of Schrödinger dynamics. The
evolution operator Ut; see (25), is a unitary operator, that is, it preserves the
scalar product:
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hUt jUt i D h j i: (26)

Thus, the dynamics transfer a pure quantum state to another pure quantum
state.

7.2 Von Neumann’s Equation: The Dynamics
of a Mixed State

Since any general quantum state, a density operator, can be represented as
a mixture of density operators corresponding to pure states, the Schrödinger
dynamics for pure states imply the following dynamics for density operators:

	
d�(t)

dt
D �iŒH; �(t)�; �(0) D �0: (27)

In quantum physics the Planck constant h is used instead of the scaling factor
	 . This equation is known as the von Neumann equation (von Neuman 1955).
By using representation (25) of the Schrödinger evolution for the pure state
we represent the evolution of the density operator (“mixed state”) in the form

�(t) D U�
t �

0Ut; (28)

where, for an operator W; the symbol W� denotes its adjoint operator. The
latter is defined by the equality

hW 1j 2i D h 1jW� 2iI (29)

by denoting the matrix elements of these operators as wij and w�
ij we have

w�
ij D Nwji:

8 Positive Operator Valued Measures

One widely used generalization of conventional QM involves replacing the
projection operators with positive-operator-valued measures.
A positive operator valued measure (POVM) is a family of positive Hermitian

operators fMjg (“effects”) such thatPm
jD1 Mj D I; where I is the unit operator.

We consider the simplest case: a discrete operator valued measure on the set
of indexes J D f1; 2; : : : ;mg: See, for example, Busch et al. (1995) for POVMs
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on continuous sets. A POVM can be considered as a random observable. Take
any set of labels ˛1; : : : ; ˛m; for example, for m D 2; ˛1 D yes; ˛2 D no:
Then the corresponding observable takes these values (for systems in the
state �) with the probabilities

p�(˛j) � p�(Mj) D Tr�Mj: (30)

It is convenient to use the following representation of POVMs:

Mj D V?
j Vj; (31)

where Vj W H ! H are linear operators. Note that such a representation is
non-unique. By using the representation (31) the probability p�(˛j) can be
represented as

p�(˛j) D TrVj�V?
j : (32)

We are also interested in the post-measurement states. Assume the state � was
given, a generalized observable was measured, and the value ˛j was obtained.
Then in the simplest (but most useful in applications) case the output state
after this measurement has the form

�j D
Vj�V?

j

TrVj�V?
j

: (33)

Since the representation (31) is not unique, the state transformer is not
uniquely determined by a POVM. This is an additional element of the
measurement theory, see Busch et al. (1995), Nielsen and Chuang (2000) for
details, as well as for the general theory of state transformers corresponding to
generalized observables.

9 Quantum Logic

Following von Neuman (1955) and Birkhoff and von Neumann (1936) we
represent events, propositions, as orthogonal projectors in complexHilbert space
H: This is the standard definition of an event which is used in quantum logic.
For an orthogonal projector P;we set HP D P(H); its image, and vice versa,

for subspace L of H; the corresponding orthogonal projector is denoted by the
symbol PL:
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The set of orthogonal projectors is a lattice with the order structure: P � Q
iff HP 	 HQ or equivalently, for any  2 H; h jP i � h jQ i:

We recall that the lattice of projectors is endowed with operations “and” (^)
and “or” (_). For two projectors P1; P2; the projector R D P1^P2 is defined
as the projector onto the subspace HR D HP1 \ HP2 and the projector S D
P1_P2 is defined as the projector onto the subspaceHR defined as theminimal
linear subspace containing the set-theoretic union HP1 [ HP2 of subspaces
HP1 ; HP2 W this is the space of all linear combinations of vectors belonging
to these subspaces. The operation of negation is defined as the orthogonal
complement: P? D fy 2 H W hyjxi D 0 W 8x 2 HPg:

The lattice of orthogonal projectors in complex Hilbert space is called a
quantum logic, see Beltrametti and Cassinelli (1979) for details.

In the language of subspaces the operation ‘and’ coincides with the usual
set-theoretic intersection, but the operations ‘or’ and ‘not’ are nontrivial
deformations of the corresponding set-theoretic operations. It is natural to
expect that such deformations can induce deviations from classical Boolean
logic.

Consider the following simple example. LetH be a two-dimensional Hilbert
space with the orthonormal basis (e1; e2) and let v D (e1 C e2)=

p
2: Then

Pv ^ Pe1 D 0 and Pv ^ Pe2 D 0; but Pv ^ (Pe1 _ Pe2) D Pv: Hence, for
quantum events, in general the distributivity law is violated:

P ^ (P1 _ P2) 6D (P ^ P1) _ (P ^ P2): (34)

As can be seen from our example, even mutual orthogonality of the events P1

and P2 does not help to save the Boolean laws.
At first sight, the representation of events by projectors/linear subspaces

might look as exotic. However, this is simply a prejudice of the common use
of the set-theoretic representation of events in modern classical probability
theory. The tradition of representing events by subsets was firmly established
by Kolmogorov (1933).8

8Note that before him the basic classical probabilistic models were not of a set-theoretic nature. For
example, the main competitor of the Kolmogorov model, the von Mises frequency model, was based
on the notion of a collective. One of the first rigorous mathematical models of classical probability was
invented by Boole (1854) and it was of an algebraic nature, based on Boolean algebras. In short, from
the operational viewpoint both mathematical representations of events, by sets or by projectors/linear
subspaces, have the same degree of justification.
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Quantization in Financial Economics:
An Information-Theoretic Approach

Raymond J. Hawkins and B. Roy Frieden

1 Introduction

A remarkable feature of quantum mechanics (QM) is its ubiquity beyond
the natural sciences (Khrennikov 2010), its explanatory power in the social
sciences generally (Haven and Khrennikov 2013), and its reach in economics
in particular.1 Given the introduction of risk and uncertainty into economics
by Knight (1921) and Keynes (1936) and the well-known relationship between
stochastic and quantum representations of dynamic phenomena2 it is perhaps
not surprising that the methodology of QM would be found to work in
economics. A key question, however, is whether quantization in economics

1See, for example, references Baaquie (2004, 2009), Choustova (2007a,b, 2008, 2009a,b), Haven (2005,
2008a,b,c, 2010), Haven and Khrennikov (2013), Ilinski (2001), Khrennikov (1999, 2003, 2010), and
Kleinert (2009).
2See, for example, references Gardiner (2009), van Kampen (1977), Kaniadakis (2001), Klein (2010),
Nelson (1966, 1967), and Risken (1996).
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is simply a convenient analytical consequence of the well-known stochastic
representation of financial economics or whether the link between QM and
economics has an alternative origin. Our work suggests a more fundamental
information-theoretic basis for quantization in economics, and the purpose of
this chapter is to present the case for this position.3

It is our view that all things economic are information-theoretic in origin:
economies are participatory, observer participancy gives rise to information,
and information gives rise to economics. Dynamical laws follow from a
perturbation of information flow which arises from the asymmetry between
J, the information that is intrinsic to the system, and I, the measured Fisher
information of the system: a natural consequence of the notion that any
observation is a result of the J ! I information-flow process. In this manner
financial-economic dynamics are a natural consequence of our information-
theoretic approach. These dynamics have a direct link to the formalism of QM
in that the equation of motion that follows from the extremization of Fisher
information is isomorphic to the Schrödinger equation. As we shall see, this
link enables both the interpretation of the coefficients of this equation in terms
of economics and the leveraging of the considerable literature of quantum and
stochastic dynamics in the interpretation of economic phenomena. We con-
sider this latter feature to be of particular importance as the field of economics
grapples with the aftermath of the recent financial crisis and works towards
a reconstruction of macroeconomics that embraces these dynamics (Aoki and
Yoshikawa 2007).

To this end we continue in Sect. 2 with an introduction of the Fisher-
information approach to constructing Lagrangians in economics. In this
section we show how a time-independent Schrödinger-like equation arises
as a straightforward result of extremizing Fisher information subject to the
constraints of observed market prices. From this one can obtain the ground
state (or, as it is usually referred to in economics, the equilibrium state) most
commonly associated with economic problems as well as the excited states
which are less commonly used in economics. With this complete set of states
one can construct the dynamics of an economy. An alternative and recent
approach to information-induced quantum-like dynamics in economics is
explored in Sect. 3 where we present a direct derivation of a time-dependent
Schrödinger-like equation, again based onminimization of Fisher information
but now incorporating the continuity equation for probability. In this deriva-
tion we use Nelson’s stochastic mechanics to link the model with traditional

3We will draw on references Frieden and Hawkins (2010), Frieden et al. (2007), Hawkins et al. (2010,
2005), and Hawkins and Frieden (2004a,b, 2012).
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financial economics and to provide an economic interpretation of all elements
in the model. We close with a discussion and summary in Sect. 4.

2 Fisher Information, Financial Economics, and
the Time-Independent Schrödinger Equation

2.1 General Derivation

Our object of consideration is the ideal, or ‘true value,’ price of a security which
for a given instant in time t0 we write as x0. At each point in time, however,
the measured price is xobs which is necessarily imperfect due to fluctuations x,
or

xobs D x0 C x : (1)

This fluctuation arises from both the inevitable uncertainty in the effective
present time t0, and the fact that the economy undergoes persistent random
change. The greater the fluctuation x the greater is one’s ignorance of the price.
Notice that Eq. (1) indicates that, for zero-mean noise x, the average observed
price equals the ideal price. This defines an ‘unbiased economy.’

To represent this fluctuation we introduce the probability amplitude  (x)
for the price fluctuation x, with the associated probability P(x; t) given by

P(x; t) �  (x; t) �(x; t) D j (x; t)j2 ; (2)

where the asterisk denotes the complex conjugate. While the use of probability
amplitudes is commonly associated with QM, amplitudes have been used by
others—most notably Fisher and Mather (1943)—as we shall see presently, as
a convenient means for simplifying statistical calculations. If we assume that
the statistics of xobs are independent of the price level x0, the likelihood law
for the process obeys4

P(xobsjx0; t) � P(xobs � x0; t) D P(x; t) (3)

4If scaling invariance holds in an economic system rather than the translation invariance assumed here a
different Schrödinger equation emerges where the equilibrium density in the absence of observed prices
is Zipf ’s law (Hernando et al. 2009, 2010).
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by Eq. (1). The classical Fisher information I for this problem is

I �
*�
@ ln .P(xobsjx0; t)/

@x0

�2
+

; (4)

where the angle bracket denotes an expectation over all possible data
xobs (Frieden 1998, 2004). This is a universal form that applies to all data
acquisition problems and measures the information in the data irrespective of
the intrinsic nature of that data. For our problem this can be reduced to

I D
Z

1

P

�
@P

@x

�2

dxdt D 4
Z
j 0(x)j2dxdt ; (5)

where j 0j2 D  0 0� and  0 D d =dx. Fisher information corresponds
well to our intuition regarding price discovery given in Eq. (1): if the price
fluctuation x is small then the level of information in the observation should
be high; whereas if x is large the information should be low. This intuition is
expressed in Eq. (5) by the shape of the probability density P since for small
price fluctuations P must be narrowly peaked at about x D 0 implying high
gradient dP=dx, a consequent high gradient d =dx, and a large value for I.
Similarly, if x has many large values then P will be broad, it and  will have
low gradients, and there will be a small value for I.

The intrinsic information J, mentioned above, is the present, most com-
plete, and perfectly knowable collection of information concerning the system
that is relevant to the measurement exercise. Systems have widely varying levels
of intrinsic information which map largely into three categories. The first is
exact knowledge characterized by a known unitary transformation between
the observation space and some conjugate space. Our derivation of Tobin’s Q
theory employed this approach using a Fourier transform between conjugate
spaces (Frieden et al. 2007; Frieden and Hawkins 2010). Knowledge of a phe-
nomenon requires its observation, and this must be in a given state. A necessary
condition for maximum acquired knowledge of the state is its observation with
maximum accuracy. This, in turn, requires—via the Cramer–Rao inequality—
amaximum level of Fisher information I. But, in fact, all statistically repeatable
phenomena, whether physical or social in nature, obey, a priori, maximum
Fisher information (Frieden and Gatenby 2013). If observation of economic
phenomena are required to convey maximum information, and knowledge,
they must likewise obey unitary transformations. The second category is the
use of induction by way of an invariance principle such as Noether’s theorem.
As this reflects less knowledge about the system the laws that come therefrom
are not exact, but can be highly accurate (Frieden 2007). The third category,



Quantization in Financial Economics: An Information-Theoretic Approach 23

and the focus of this chapter, is the use of empirical data for J in the manner
commonly employed in statistical mechanics, as a constraint on the implied
probability density.

We begin with the simplest case when the extent of one’s information J
about the probability density P(x; t) is that (1) the density is normalized and
(2) there exist observed data d1; : : : ; dM D fdmg that can be expressed as
averages of known functions ffm(x; t)g

Z
fm(x; t)P(x; t)dxdt D dm; m D 1; : : : ;M : (6)

In this situation the probability density one seeks is that which is (1) normalized
and (2) consistent with the observed data with a minimum of structure
in the associated probability density function. From this perspective Fisher
information is a regularizer, and ensuring that normalization and observation
are achieved in a manner consistent with minimal structure is obtained by
minimizing the Fisher information subject to the constraints that normaliza-
tion be achieved and observed data be recovered. This suggests a well-known
variational approach wherein one forms the Lagrangian L D I � J

L D
Z

1

P

�
@P

@x

�2

dxC 
0

�
1 �

Z
Pdx

�
C

MX

mD1


m

�
dm �

Z
fmPdx

�
; (7)

from which—employing standard variational calculus—one obtains (Frieden
1998, 2004)

P(x) D  (x) �(x) ; (8)

where

d2 (x)

dx2
D �1

4

"


0 C
MX

mD1


mfm(x)

#

 (x) ; (9)

the Lagrange multiplier 
0 corresponds to the normalization condition for the
probability density (

R
p(x)dx D 1), and the remaining Lagrange multipliers

f
mg ensure that the associated observed data fdmg are recovered by Eq. (6).
Equation (9) has the same form as the well-known Schrödinger equation5:

� „
2

2m

d2 (x)

dx2
D
h

EC V(x)
i
 (x) : (10)

5See, for example, Chap. III of Landau and Lifshitz (1977).
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2.2 Financial-Economic Interpretation
of the Schrödinger Equation

Comparing our Schrödinger-like equation (9) with Eq. (10) of QM we can
make some very straightforward identifications. First, our Eq. (9) corresponds
to a Schrödinger equation in units such that „2 D 8m where „ is Planck’s
constant and m is the mass. Second, as mentioned above, the Lagrange mul-
tiplier responsible for probability normalization replaces the term associated
with energy E. Third, the potential energy term in the Schrödinger equation
V(x) is represented by a linear combination of the functions from which the
observed data were generated. The data force the solution  (x) in financial
economics just as a physical potential forces a solution in physics, chemistry,
and engineering. Included in this data are structural details of securities that
determine, among other things, the range of support for the probability
density. Equity (common stock), for example, is a claimwithout liability on the
residual value of a firm. Consequently, the value of common stock cannot be
negative and the range of support for the probability density associated with
equity is Œ0;C1/ (Choustova 2007a,b, 2008, 2009a,b; Khrennikov 1999,
2003, 2010). Finally, in addition to a ground-state solution (
(0)

0 ;  0(x))
commonly associated with equilibrium, our Schrödinger-like Equation (9)
also has excited-state solutions (
(j)

0 ;  j(x)I j > 0) from which one can
construct dynamics.6
One of the simplest functions from which an expectation value can be

obtained is a linear function fm(x) D x, for which we have explored two
economic interpretations. First, if x is interpreted as the asset price, the
expectation corresponds to the expected or current price of that asset (Hawkins
and Frieden 2004a,b). Second, if x is interpreted as the current level of
production, the expectation corresponds to aggregate demand (Hawkins et al.
2010). In both cases the solutions to Eq. (9) are known to be Airy functions, the
lowest order of which corresponds to what is generally referred to in economics
as equilibrium and the higher order being the set of functions onto which
one can project disequilibrium economic states. The potential and probability
amplitudes associated with the expected price are shown in Fig. 1. The function
f1(x) that enters into Eq. (9) is f1(x) D x, and together with the associated

6See, for examples, references Flego et al. (2003), Frieden et al. (2002a,b, 2007), Hawkins et al. (2005),
van Kampen (1977), Plastino (2004), Plastino and Plastino (2007), and Risken (1996).
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Fig. 1 The potential function for an expected price as a function of the level of
the asset underlying the contract together with some of the associated probability
amplitudes from Eq. (9)

Lagrange multiplier 
1 forms the potential function. Given this potential our
Schrödinger-like equation (9) has a number of solutions (
(j)

0 ;  j(x)) which
are also shown in Fig. 1. The equilibrium state is the lognormal-like amplitude
shown in the lower portion of the graph with an indicated expected price
near 0.5. Were the economy to be in an equilibrium this is the density we
would associate with this contract. The lognormal-like shape of this amplitude
carries over into the associated equilibrium probability density and since the
lognormal density is often used to represent asset prices it follows that the
equilibrium results of our Schrödinger-like equation (9) would be similar
to those of standard financial-economic analysis. The disequilibrium solutions
(
(j)

0 ;  j(x)I j > 0), of which three are shown centered about the y-levels of
1–3 in Fig. 1, represent a new contribution of quantized financial economics:
the states onto which departures from equilibrium can be projected and, as we
shall see below, with which dynamics can be constructed.

A somewhat more complex but equally ubiquitous function of which
expectation values are observed are those associated with option prices. A call
option gives the holder the right—but not the obligation—to buy an asset at a
predetermined price known as the strike price. If we denote the strike price by
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k, the function corresponding to an observed call price is the payoff of the call:
fm(x) D max(x � km; 0). A closely related option known as a put option gives
the holder the right—but not the obligation—to sell an asset at the strike price
and has the corresponding function fm(x) D max(km � x; 0). The associated
observable option prices can be represented by

Call(km) D e�rt
Z 1

0
max(x � km; 0)P(x)dx ; (11)

and

Put(km) D e�rt
Z 1

0
max(km � x; 0)P(x)dx ; (12)

where r is the continuously compounded risk-free rate of interest and t is the
time frame over which the option contract exists.With a collection of observed
option prices one is able to reconstruct potential functions that are familiar in
QM (Frieden et al. 2007; Hawkins and Frieden 2004a,b). For example, if
the observed options were only a call and a put with the same strike price
one would have a potential that looked like a V. With more observed option
prices (and one does typically have more) a wide range of potential wells can
be constructed.

An example of this is shown below in Fig. 2 where we see the functions
of an expected price and a call option, the resulting potential, and some of
the solutions from Eq. (9). In panel (a) of Fig. 2 we see the expected price
function which we saw in the previous example. The payoff of a long call-
option contract is shown in panel (b) of Fig. 2. In this case the strike price
is 1.5. Since the call is the right to buy the asset, a holder of a call will only
exercise that right if it is advantageous to do so, and in this case the notion
of advantageous corresponds to the level of the underlying asset being greater
than 1.5. With the right to buy the asset at 1.5 when the then market price
of the asset is greater than 1.5 the holder of the call can make the difference
between themarket price and 1.5 by exercising his or her option to buy the asset
at 1.5 and immediately selling the asset at the higher market price. Conversely,
if the market price of the asset is less than 1.5 the holder of the option would
lose money by exercising the option and will, consequently, allow the option to
expire as worthless. This optionality is illustrated in the “hockey-stick” diagram
shown in panel (b) of Fig. 2. Taking the simple case of the expected price and
option contract, the two functions in the sum of Eq. (9) are f1(x) D x and
f2(x) D max(x � 1:5; 0). The formation of a potential well can be seen by
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Fig. 2 The function for an expected price and the payoff function for a call option
as a function of the level of the asset underlying these contracts, together with
a potential formed from these functions and some of the associated probability
amplitudes from Eq. (9)

considering what would result if 
1 D �2 and 
2 D 4, as shown in panel
(c) of Fig. 2. Over the range x < 1:5 where the call-option payoff is zero the
product of the expected price function and its Lagrange multiplier is the sole
contributor to the potential. For x > 1:5 the product of the long call and its
Lagrange multiplier offsets the negative-sloped function and the net potential
increases. By varying the Lagrange multipliers one can obtain the equilibrium
solution (
(0)

0 ;  0(x)) shown as the Gaussian-like amplitude in panel (d) of
Fig. 2; a solution that recovers the option price and which is normalized. As in
the case of the expected price discussed above, however, the quantum approach
to financial economics naturally results in disequilibrium solutions, one of
which is the dual-lobed amplitude shown in the panel. Other disequilibrium
solutions with more lobes exist and represent the basis upon which a complete
description of both equilibrium and disequilibrium states of an economy can
be expressed.

Finally, if one interprets x as the time t until a cash flow ct associated with
a bond (e.g. coupon and/or principal payment) is due, the observed price of
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a coupon bond can be written as the sum of the present value of each cash
flow where the present value is obtained by multiplying each cash flow by its
associated discount factor DF(t). The discount factor represents the amount
of money one would need to invest now in a risk-free account to have one unit
of currency at time t and which can be represented as the integral (Brody and
Hughston 2001, 2002)

DF(t) D
Z 1

t
p(�)d� D

Z 1

0
‚(� � t)p(�)d� ; (13)

where‚(x) is the Heaviside step function. The intuition behind this represen-
tation is that: (1) a unit of currency (e.g. a dollar) to be received immediately
is worth one unit of currency, consequently the discount factor for t D 0
is one; (2) a unit of currency to be received in the future is determined by
the rate at which interest compounds and is generally less than one, and
correspondingly the discount factor represents the amount by which this is
less than one; (3) as the time between now and when the unit of currency is to
be received increases, the amount needed to be deposited in an interest bearing
account to, through compounding, equal ultimately the unit of currency
decreases. Collectively this implies that the discount factor is a cumulative
density function as represented by Eq. (13) above (Brody and Hughston 2001,
2002). From this perspective the price of a bond—which like all assets is the
present value of its expected future cash flows—is the average of the functionPN

nD1 c(tn)‚(x � ti) where c(tn) for n < N are the coupon payments of
the bond and c(tN) is the sum of the final coupon payment and principal
payment (Frieden et al. 2007; Hawkins and Frieden 2004a; Hawkins et al.
2005). Thus, for a single cash flow, or zero-coupon bond, the associated
potential is the simple step-function barrier. For a complete coupon bond the
potential is a stepped ramp with each step corresponding to each coupon to
be paid together with a final large step associated with the final coupon and
principal payment.

The solution of Eq. (9) for a zero-coupon bond corresponds to the well-
known problem in QM and quantum electronics of a finite-height square
potential illustrated in Fig. 3. In this example we consider a zero-coupon
bond with a 10-year maturity, the associated potential implied from Eq. (13)
being the step function shown in the figure. Varying the associated Lagrange
multiplier until the observed discount factor is recovered in Eq. (13) leads to
the equilibrium amplitude—a cosine function within the potential well and
an exponential function outside of the potential well—shown in Fig. 3. From
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Fig. 3 The potential function for a zero-coupon bond together with the associ-
ated equilibrium probability amplitude and discount-factor function from Eq. (9)

this amplitude one can also obtain the implied discount factors for all tenors
illustrated in Fig. 3 by the decaying curve with the value of one for zero tenor;
from the discount-factor curve the interest rates commonly used in applied
financial economics (e.g. spot and forward) are easily obtained (Galitz 2013).

2.3 Segue to Dynamics

The temporal evolution of economic observables described by our time-
independent Schrödinger equation [Eq. (9)] can be derived from the rela-
tionship between the solutions of Eq. (9) and those of the Fokker–Planck
equation.7 The solutions of Eq. (9) f
(j)

0 ;  j(x)g form a general solution

P(x; t) D
1X

jD0

aj 0(x) j(x)e�#(
(j)
0 �
(0)

0 )t=4 (14)

7See references Frieden et al. (2007), Hawkins et al. (2005), van Kampen (1977), and Risken (1996).
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to the Fokker–Planck equation

@P(x; t)

@t
D @

@x

�
@U(x)

@x
C # @

@x

�
P(x; t) ; (15)

where the potential function U(x) is related to the equilibrium amplitude
 0(x) via

U(x) D �2# ln . 0(x)/ ; (16)

and to the observed functions by

� 1

4

MX

mD1


mfm(x) D U02(x)=4#2 � U00(x)=2# C const : (17)

Together, Eqs. (8)–(17) provide a practical information-theoretic basis for
economic dynamics. One can, however, directly introduce time dependence
into the Fisher-information approach to financial economics which leads to
the time-dependent Schrödinger equation of financial economics; and it is to
this that we now turn.

3 Fisher Information, Financial Economics, and
the Time-Dependent Schrödinger Equation

In a recent communication (Hawkins and Frieden 2012) we introduced
time dependence directly by employing the assumption that price trajectories
form a coherent system (Reginatto 1998; Synge 1960). This complements
Haven’s (Haven 2005, 2008a,b,c, 2010; Ishio and Haven 2009) analysis of
derivatives from a de Broglie–Bohm perspective—by providing (as we shall see
presently) an information-theoretic basis for the de Broglie–Bohm approach
in financial economics—and generalizes the work of Choustova (2007a,b,
2008, 2009a,b), Khrennikov (1999, 2003, 2010) on equity prices in the de
Broglie–Bohm framework as equity can be viewed as a derivative security,
namely a call option on the assets of the issuing firm (Black and Cox 1976;
Black and Scholes 1973; Merton 1974). The assumptions of time dependence
and coherence imply that the rate of change (or velocity) v of a cash flow at
price point x can be related to a real function S(x; t) by an expression of the
form (Reginatto 1998)
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v D 1

me

@S

@x
; (18)

where me is the effective mass of the price representing the ease with which
a security traverses price space and is a function of the economy.8 The
probability distribution then satisfies a conservation law of the form

@P

@t
C 1

me

@

@x

�
P
@S

@x

�
D 0 ; (19)

and, as discussed by Reginatto (1998), Eq. (19) can be derived from a varia-
tional principle, by minimization of the expression

Z
P

 
@S

@t
C 1

2me

�
@S

@x

�2
!

dxdt ; (20)

with respect to S.
To minimize the Fisher information I in a manner consistent with our

information J we again form the Lagrangian L D I � J which, with the
addition of the conservation law, takes the form (Reginatto 1998)

L D 
0

me

Z
1

P

�
@P

@t

�2

dxdt �
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C 1
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�
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�2
!
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�
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�
dn �
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fn(x; t)P dxdt

�
: (21)

Variation of the information asymmetry L with respect to S and P yields
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8This economic concept of economic mass is closely related to the physical notion articulated by
Synge (1960, p. 4) as “a measure of the reluctance of a body to change its velocity” and presented
in terms of market turnover which, as discussed in reference Hawkins and Frieden (2012), builds on
a considerable literature in both econophysics (Ausloos and Ivanova 2002; Choustova 2007a,b, 2008,
2009a,b; Khrennikov 1999, 2003, 2010) and financial economics (Blume et al. 1994; Karpoff 1987; Lee
and Swaminathan 2000).
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where

V(x; t) D
NX

nD1


nfn(x; t) : (24)

Equations (22) and (23) are, conveniently, the Madelung hydrodynamic
equations (Madelung 1927) that, via the Madelung transform  DpP
exp

�
iS=
p

8
0
�
, where i � p�1, are the real and imaginary parts of

i
@ 

@t
D �
p

2
0

me

�
@2 

@x2
� V(x; t)

�
 W (25)

a Schrödinger-like wave equation with a potential function V that, as we saw
in Sect. 2, is a linear combination of the associated functions of the observed
security prices in the economy.

As in the time-independent case above in Sect. 2, the Lagrange multipliers
are chosen to be consistent with our information J. One can resolve the
Lagrange multiplier 
0 in a manner consistent with the traditional stochastic
representation of financial economics by using Nelson’s stochastic mechan-
ics (Nelson 1966, 1967) in which the evolution of the price is represented by
the stochastic differential equation

dx(t) D b(x(t); t)dtC dw(t) ; (26)

where

b D
p

8
0

me

@

@x

�
1

2
ln PC S

�
; (27)

w(t) is a Wiener process, and dw(t) is Gaussian with zero mean and product
expectation Edwi(t)dwj(t) D 2�ıi;jdt, where � D p2
0=me is the dif-
fusion coefficient and ıi;j is the Kronecker delta function.9 So doing, one
finds that the Lagrange multiplier 
0 is a simple function of the turnover
and diffusivity of the economy: 
0 D m2

e�
2=2. The remaining Lagrange

multipliers 
1; : : : ; 
N are, as before, determined by the requirement that the
corresponding observed prices as expressed in Eq. (6) be recovered.

9The identity of the Lagrange multiplier 
0 depends on the context of the associated derivation. In QM,
Reginatto identified 
0 in terms of Plank’s constant as „ D p

8
0 (Reginatto 1998). Derivations in optics
or acoustics often identify 
0 in terms of a wavelength (see, for example, Schulman 1981 and references
therein). In this chapter we have identified it as a function of economic variables.
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4 Discussion and Summary

Our assertion in the Introduction that all things economic are information-
theoretic in origin is an adaptation to the social sciences of the Wheeler
program of physics (Wheeler 1990a,b, 1994). Though controversial in some
quarters of the physical sciences, theWheeler program has gained considerable
traction through the success of information theory as the basis of a wide
range of problems in the physical sciences generally (Frieden 1998, 2004;
Frieden and Gatenby 2007; Plastino 2004; Plastino and Plastino 2007) and
in statistical and thermal physics in particular.10

From the perspective of information theory, the quantum representation
of economics is a natural outcome of the process of inference using Fisher
information. A convenient consequence of this approach is that the calculated
P(x; t) is consistent with all observed security prices (i.e. is arbitrage free) by
construction. A measure of the price uncertainty in the economy �2 can be
had through the use of the Cramer–Rao inequality �2 � 1=I (Cramér 1946;
Rao 1945) with which a lower bound of the price variance, or the notion of
implied volatility employed widely in derivatives trading, is seen to be the
inverse of the Fisher information (Hawkins and Frieden 2004a,b). At a deeper
level, Bohm’s interpretation of the final term on the left-hand side of Eq. (23)
as a quantum potential (Bohm 1952a,b) provides, as discussed by Reginatto
(1998), unique insight into the ontological and epistemological content of
this theory: the epistemological content being the use of the minimization of
Fisher information to choose the probability distribution that describes prices
in an economy; the economic content being the assumption that the price-
space motion of securities is a coherent structure and the existence of observed
prices (Hawkins and Frieden 2012). Extending the insights of Reginatto and
Bohm regarding the quantum potential to financial economics—most notably
that (1) “the average value of the quantum potential is proportional to the
Fisher information” and (2) that the quantum potential acts together with
the potential function V on prices—it follows that the forces acting on prices
“depend on the probability assignment used to infer their” level and are “a
consequence of the inference process”: both of which are fundamental tenets
of behavioral financial economics (Keynes 1936, 1937; Minsky 1977, 2008;
Soros 2003).

10See, for example, references Balian (1982), Ben-Naim (2008), Flego et al. (2003), Frieden et al. (1999,
2002a,b), Hernando et al. (2009, 2010), Katz (1967), Plastino (2004), and Plastino and Plastino (2007).
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Quantization arises naturally in economics due to the manner in which
uncertainty arises.11 In this chapter we have shown how the use of information
theory to infer probability in a manner common to both the natural and
social sciences yields a canonical result of QM: the Schrödinger equation. The
ubiquity of information generally, and of Fisher information in particular, as a
fundamental theoretical framework throughout the sciences, can thus be seen
as a source of the ubiquity of quantum structure across the sciences, be they
natural or social.

Acknowledgements We thank Professor EwanWright formany helpful conversations
regarding information theory, the statistical basis of QM, and for encouragement.

References

Aoki, M., & Yoshikawa, H. (2007). Reconstructing macroeconomics: A perspective
from statistical physics and combinatorial stochastic processes. Japan-U.S. Center UFJ
Bank Monographs on international financial markets. New York, NY: Cambridge
University Press.

Ausloos, M., & Ivanova, K. (2002). Mechanistic approach to generalized technical
analysis of share prices and stock market indices. European Physical Journal B, 27,
177–187.

Baaquie, B. E. (2004). Quantum finance: Path integrals and Hamiltonians for options
and interest rates. Cambridge: Cambridge University Press.

Baaquie, B. E. (2009). Interest rates and coupon bonds in quantum finance. Cambridge:
Cambridge University Press.

Balian, R. (1982). Information theory and statistical entropy, Chapter 3. In From
microphysics to macrophysics: Methods and applications of statistical physics (Vol. 1).
New York: Springer.

Ben-Naim, A. (2008). A farewell to entropy: Statistical thermodynamics based on
information. Singapore: World Scientific.

Black, F., & Cox, J. C. (1976). Valuing corporate securities: Some effects of bond
indenture provisions. Journal of Finance, 31(2), 351–367.

Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities.
Journal of Political Economy, 81, 637–654.

Blume, L., Easley, D., & O’Hara, M. (1994). Market statistics and technical analysis:
The role of volume. Journal of Finance, XLIX (1), 153–181.

11See references Choustova (2007a,b, 2008, 2009a,b), Ishio and Haven (2009), Haven (2005, 2008a,b,c,
2010), Khrennikov (1999, 2003, 2010), Kleinert (2009), and Wright (2007).



Quantization in Financial Economics: An Information-Theoretic Approach 35

Bohm, D. (1952a). A suggested interpretation of the quantum theory in terms of
“hidden” variables. I. Physical Review, 85(2), 166–179.

Bohm, D. (1952b). A suggested interpretation of the quantum theory in terms of
“hidden” variables. II. Physical Review, 85(2), 180–193.

Brody, D. C., & Hughston, L. P. (2001). Interest rates and information geometry.
Proceedings of the Royal Society A, 457, 1343–1363.

Brody, D. C., &Hughston, L. P. (2002). Entropy and information in the interest rate
term structure. Quantitative Finance, 2, 70–80.

Choustova, O. (2007a). Quantum Bohmian model for financial market. Physica A,
374, 304–314.

Choustova, O. (2007b). Quantum modeling of nonlinear dynamics of stock prices:
Bohmian approach. Theoretical and Mathematical Physics, 152(2), 1213–1222.

Choustova, O. (2008). Application of Bohmian mechanics to dynamics of prices
of shares: Stochastic model of Bohm–Vigier from properties of price trajectories.
International Journal of Theoretical Physics, 47, 252–260.

Choustova, O. (2009a). Quantum-like viewpoint on the complexity and randomness
of the financial market. In F. Petri & F. Hahn (Eds.), Coping with the complexity of
economics (pp. 53–66). New economic windows. Milan: Springer-Verlag Italia.

Choustova, O. (2009b). A quantum probability and financial market. Information
Sciences, 179, 478–484.

Cramér, H. (1946).Mathematical methods of statistics. Princeton: Princeton University
Press.

Fisher, R. A., & Mather, K. (1943). The inheritance of style length in Lythrum
salicaria. Annals of Eugenics, 12, 1–23.

Flego, S. P., Frieden, B. R., Plastino, A., Plastino, A. R., & Soffer, B. H. (2003).
Nonequilibrium thermodynamics and Fisher information: Sound wave propaga-
tion in a dilute gas. Physical Review E, 68, 016105.

Frieden, B. R. (1998). Physics from Fisher information. Cambridge: Cambridge
University Press.

Frieden, B. R. (2004). Science from Fisher information: A unification. Cambridge:
Cambridge University Press.

Frieden, B. R. (2007). Introduction to Fisher information: Its origin, uses and
predictions. In B. R. Frieden & R. A. Gatenby (Eds.), Exploratory data analysis
using Fisher information (pp. 1–41). London: Springer.

Frieden, B. R., & Gatenby, R. A. (Eds.). (2007). Exploratory data analysis using Fisher
information. Springer: London.

Frieden, B. R., & Gatenby, R. A. (2013). Principle of maximum Fisher information
from Hardy’s axioms applied to statistical systems. Physical Review E, 88(4),
042144.

Frieden, B. R., & Hawkins, R. J. (2010). Asymmetric information and economics.
Physica A, 389, 287–295.



36 R.J. Hawkins and B.R. Frieden

Frieden, B. R., Hawkins, R. J., & D’Anna, J. L. (2007). Financial economics from
Fisher information. In B. R. Frieden & R. A. Gatenby (Eds.), Exploratory data
analysis using Fisher information (pp. 42–73). London: Springer.

Frieden, B. R., Plastino, A., Plastino, A. R., & Soffer, B. H. (1999). Fisher-based
thermodynamics: Its Legendre transform and concavity properties. Physical Review
E, 60, 48–53.

Frieden, B. R., Plastino, A., Plastino, A. R., & Soffer, B. H. (2002a). Non-equilibrium
thermodynamics and Fisher information: An illustrative example. Physics Letters
A, 304, 73–78.

Frieden, B. R., Plastino, A., Plastino, A. R., & Soffer, B. H. (2002b). Schroedinger
link between nonequilibrium thermodynamics and Fisher information. Physical
Review E, 66, 046128.

Galitz, L. (2013). The financial times handbook of financial engineering: Using
derivatives to manage risk. Harlow: Financial Times/Pearson.

Gardiner, C. W. (2009). Stochastic methods: A handbook for the natural and social
sciences (4th ed., Vol. 13). Springer series in synergetics. New York: Springer.

Haven, E. (2005). Pilot-wave theory and financial option pricing. International
Journal of Theoretical Physics, 44(11), 1957–1962.

Haven, E. (2008a). Elementary quantum mechanical principles and social science: Is
there a connection? Romanian Journal of Economic Forecasting, 5(1), 41–58.

Haven, E. (2008b). Private information and the ‘information function’: A survey of
possible uses. Theory and Decision, 64, 193–228.

Haven, E. (2008c). The variation of financial arbitrage via the use of an information
wave function. International Journal of Theoretical Physics, 47, 193–199.

Haven, E. (2010). The Blackwell and Dubins theorem and Rényi’s amount of
information measure: Some applications. Acta Applicandae Mathematicae, 109,
743–757.

Haven, E., & Khrennikov, A. (2013). Quantum social science. New York: Cambridge
University Press.

Hawkins, R. J., & Frieden, B. R. (2004a). Econophysics. In Science from Fisher
information: A unification, Chapter 13 (pp. 333–355). Cambridge: Cambridge
University Press.

Hawkins, R. J., & Frieden, B. R. (2004b). Fisher information and equilibrium
distributions in econophysics. Physics Letters A, 322, 126–130.

Hawkins, R. J., & Frieden, B. R. (2012). Asymmetric information and quantization
in financial economics. International Journal of Mathematics and Mathematical
Sciences, 2012, 470293, 11 pp.

Hawkins, R. J., Aoki, M., & Frieden, B. R. (2010). Asymmetric information and
macroeconomic dynamics. Physica A, 389, 3565–3571.

Hawkins, R. J., Frieden, B. R., & D’Anna, J. L. (2005). Ab initio yield curve
dynamics. Physics Letters A, 344, 317–323.

Hernando, A., Puigdomènech, D., Villuendas, D., Vesperinas, C., & Plastino, A.
(2009). Zipf ’s law from a Fisher variational-principle. Physics Letters A, 374, 18–21.



Quantization in Financial Economics: An Information-Theoretic Approach 37

Hernando, A., Vesperinas, C., & Plastino, A. (2010). Fisher information and the
thermodynamics of scale-invariant systems. Physica A, 389, 490–498.

Ilinski, K. N. (2001). Physics of finance: Gauge modelling in non-equilibrium pricing.
Chichester: Wiley.

Ishio, H., & Haven, E. (2009). Information in asset pricing: A wave function
approach. Annalen der Physik (Berlin), 18(1), 33–44.

Kaniadakis, G. (2001). Statistical origin of quantum mechanics. Physica A, 307,
172–184.

Karpoff, J. (1987). The relation between price changes and trading volume: A survey.
Journal of Financial and Quantitative Analysis, 22(1), 109–126.

Katz, A. (1967). Principles of statistical mechanics: The information theory approach.
San Francisco: W. H. Freeman.

Keynes, J. M. (1936). The general theory of employment, interest, and money. San Diego:
Harvest/Harcourt.

Keynes, J. M. (1937). The general theory of employment. The Quarterly Journal of
Economics, 51, 209–223.

Khrennikov, A. Y. (1999). Classical and quantum mechanics on information spaces
with applications to cognitive, psychological, social, and anomalous phenomena.
Foundations of Physics, 29(7), 1065–1098.

Khrennikov, A. Y. (2003). Quantum-psychological model of the stock market.
Problems and Perspectives of Management, 1, 136–148.

Khrennikov, A. Y. (2010). Ubiquitous quantum structure. Berlin: Springer.
Klein, U. (2010). The statistical origins of quantum mechanics. Physics Research

International, 2010, 808424.
Kleinert, H. (2009). Path integrals in quantum mechanics, statistics, polymer physics and

financial markets (5th ed.). Singapore: World Scientific.
Knight, F. H. (1964). Risk, uncertainty and profit. Reprints of Economic Classics.

Augustus M. Kelley, New York, 1921. Reprinted in 1964.
Landau, L. D., & Lifshitz, E. M. (1977). Quantum mechanics: Non-relativistic theory.

Course of theoretical physics (3rd ed., Vol. 3). New York: Pergamon Press.
Lee, C. M. C., & Swaminathan, B. (2000). Price momentum and trading volume.

Journal of Finance, LV (5), 2017–2069.
Madelung, E. (1927). Quantentheorie in hydrodynamischer form. Zeitschrift für

Physik, 40(3–4), 322–326.
Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest

rates. Journal of Finance, 29(2), 449–470.
Minsky, H. P. (1977). The financial instability hypothesis: An interpretation of Keynes

and an alternative to “standard” theory. Nebraska Journal of Economics & Business,
16, 5–16.

Minsky, H. P. (2008). Stabilizing an unstable economy. New York: McGraw-Hill. A
reissue of 1986 publication.

Nelson, E. (1966). Derivation of the Schrödinger equation from Newtonian mechan-
ics. Physical Review, 150(4), 1079–1085.



38 R.J. Hawkins and B.R. Frieden

Nelson, E. (1967). Dynamical theories of Brownian motion (2nd ed.). New York:
Princeton University Press.

Plastino, A. (2004). A conceptual framework for the Wheeler program. Physica A,
340, 85–91.

Plastino, A., & Plastino, A. R. (2007). Information and thermal physics. In B. R.
Frieden & R. A. Gatenby (Eds.), Exploratory data analysis using Fisher information
(pp. 119–154). London: Springer.

Rao, C. R. (1945). Information and the accuracy attainable in the estimation of
statistical parameters. Bulletin of the Calcutta Mathematical Society, 37, 81–89.

Reginatto, M. (1998). Derivation of the equations of nonrelativistic quantum
mechanics using the principle of minimum Fisher information. Physical Review
A, 58(3), 1775–1778.

Risken, H. (1996). The Fokker-Planck equation: Methods of solution and applications
(2nd ed., Vol. 18). Springer series in synergetics. New York: Springer.

Schulman, L. S. (1981). Techniques and applications of path integration. New York:
Wiley.

Soros, G. (2003). The alchemy of finance. Wiley investment classics. Hoboken: Wiley.
Synge, J. L. (1960). Classical dynamics. In S. Flügge (Ed.), Principles of classical

mechanics and field theory. Encyclopedia of physics (Vol. III/1, pp. 1–225). Berlin,
DE: Springer.

van Kampen, N. G. (1977). A soluble model for diffusion in a bistable potential.
Journal of Statistical Physics, 17, 71–88.

Wheeler, J. A. (1990a). Information, physics, quantum: The search for links. InW.H.
Zurek (Ed.), Complexity, entropy and the physics of information. Santa Fe Institute
studies in the sciences of complexity (Vol. VIII, pp. 3–28). Santa Fe, NM: The
Santa Fe Institute.

Wheeler, J. A. (1990b). It from bit. In S. Kobayashi, H. Ezawa, Y. Murayama, &
S. Nomura (Eds.), Proceedings of the 3rd International Symposium on Foundations of
Quantum Mechanics, Tokyo, 1989 (p. 354). Tokyo: Physical Society of Japan.

Wheeler, J. A. (1994). Time today. In J. J. Halliwell, J. Perez-Mercader, & W. H.
Zurek (Eds.), Physical origins of time asymmetry (pp. 1–29). Cambridge: Cambridge
University Press.

Wright, R. (2007). Statistical structures underlying quantum mechanics and social
science. International Journal of Theoretical Physics, 46 (8), 2026–2045.



Quantum Game Theoretical Frameworks
in Economics

Edward W. Piotrowski and Jan Sładkowski

1 Introduction: Quantum and Quantum-Like
Models

Recently the field of “Quantum social science” has emerged (Haven and
Khrennikov 2013; Slanina 2014). What sort of entity is hiding behind this
term? There is no simple answer to this question. It hardly corresponds to
the reduction of human behavior to intermolecular interactions. Roughly
speaking, the idea is to use the apparatus developed to describe quantum phe-
nomena to analyse macroscopic complex systems (including living systems).
But why? Since its beginning, the development of mathematics has mostly
corresponded to practical needs. From ancient times through the Middle Ages
mathematical creativity focused on arithmetic and geometry. To some extent,
farther development was stimulated by new discoveries in physics. Differential
geometry was used for modeling the universe as a whole, probability theory
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helped us to cope with uncertainties, and functional analysis created the
mathematical apparatus of quantum theory to describe phenomena in the
microworld, cf. Haven and Khrennikov (2016) or Susskind and Friedman
(2014). Nowadays these tools are widely used almost everywhere in mathe-
matics, computing, chemistry, and biology. The analysis of human decisions
has revealed that the foundations of probability theory and Boolean logic are
often violated in the process (Busemeyer and Bruza 2012;Moreira andWichert
2014). The sure-thing principle formulated by Savage (1954) is a well known
example. The mathematical apparatus of quantum theory seems to offer a
solution to some problems of this kind. The simplest examples come from
game theory (Osborne 2003; Osborne and Rubinstein 1994), where a general
notion, mixed strategy is widely used. A mixed strategy is an assignment of
a probability to each pure (basic) strategy and a random adoption of a pure
strategy. In quantum theory, instead of “adding probabilities” one is allowed
or even forced to use (normalized) complex linear combinations of states
(amplitudes), in which only the squared modulus of such amplitudes defines
the probability. This idea is at the root of quantum game theory (Meyer
1999; Eisert et al. 1999; Piotrowski and Sładkowski 2003a): the assembling
of probabilities happens at the level of probability amplitudes. This trick is
also used in the Fisher information approach in statistics (Frieden 2004). The
most interesting fields where this approach can be applied include:

• Pricing of financial instruments. Here, the path integral (Baaquie 2004,
2009; Kleinert 2009) and quantum game theory (Haven 2005; Choustova
2006; Segal and Segal 1998; Piotrowski and Sładkowski 2004) can be used.

• Theory of decisions. Here various important aspects have been approached
(Deutsch 2000; Haven and Khrennikov 2009; Asano et al. 2011; Piotrowski
and Sładkowski 2003b).

• Risk theory. Here, besides problems related to decision science, the for-
malism of noncommutative quantum mechanics (QM) can be explored
(Piotrowski and Sładkowski 2001).

• Game theory. Here a whole new subfield was developed. Quantum mech-
anism design seems to be a very promising field of research that has mostly
been neglected up to now (Wu 2011a).

• Psychology. Here, various paradoxes can be discussed from a quantum-like
point of view (Busemeyer and Bruza 2012); even problems connected with
consciousness can be approached (Baaquie 2009; Miakisz et al. 2006).

• Network theory. This is quite a new development with plenty of possible
applications.
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All this means that the mathematical formalism of QM is not firmly adjoined
with quantum physics, but can have a much wider class of applications.
We are not able to review all these fields, therefore we focus on quantum
game theoretical models in economics and interested readers are referred to
other contributions in this volume and more specialized books and references
(Haven and Khrennikov 2013; Busemeyer and Bruza 2012; Slanina 2014).

2 Quantum Game Theory

Information processing is a physical phenomenon and therefore information
theory is inseparable from both applied and fundamental physics. Attention to
the quantum aspects of information processing has revealed new perspectives
in computation, cryptography, and communication methods. In numerous
cases a quantum description of the system provides some advantages over the
classical situation, at least in theory. But does QM offer more subtle mecha-
nisms for playing games? In game theory one often has to consider strategies
that are probabilistic mixtures of pure strategies (Osborne 2003; Osborne
and Rubinstein 1994). Can they be intertwined in a more complicated way
by exploring interference or entanglement? There certainly are situations in
which it can be assumed that quantum theory can enlarge the set of possible
strategies (Meyer 1999; Eisert et al. 1999; Piotrowski and Sładkowski 2003a).
This is a very nontrivial issue as genuine quantum systems usually are unstable
and their preparation and maintenance might be difficult, for example due
to decoherence, the practically inevitable destructive interactions with the
environment. We have already mentioned the astonishing fact that quantum
formalism can be used in game theory in a more abstract way without any
reference to physical quantum states—the decoherence is not a problem in
such cases. The question is whether quantum games are of any practical
value. In some sense the answer is positive: commercial cryptographical and
communication methods/products are already available. The abstract field
of using the quantum apparatus outside physical systems is also appealing.
Here we aim at providing a theoretical explanation of decisions or behavior
in quantum mechanical terms (Haven and Khrennikov 2013; Busemeyer and
Bruza 2012; Slanina 2014; Miakisz et al. 2006).
By a quantum game we usually understand a quantum system that can be

manipulated by at least one party and for which the utilities of moves can
be reasonably defined. Here we will use the concept of quantum game in a
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more abstract sense.1 Therefore, we assume that the analysed system can be
with satisfactory accuracy represented by a density operator (matrix) related
to a more or less abstract vector space2 (Haven and Khrennikov 2016). We
shall suppose that all players know the state of the game at the beginning and,
possibly, at some crucial stages of the actual game being played.3 We neglect
the possible technical problems with actual identification of the state—we will
assume that the corresponding structures are definable. Implementation of a
genuine quantum game should in addition include measuring apparatuses and
information channels that provide necessary information on the state of the
game at crucial stages and specify the moment and methods of its termination.
We will not discuss these issues here.

We will consider only two-player quantum games: the generalization for
the N players case is straightforward. Therefore we will suppose that a two-
player quantum game  D (H; �i; SA; SB;PA;PB) is completely specified by
the underlying Hilbert spaceH of the quantum system, the initial state given
by the density matrix �i 2 S(H), where S(H) is the associated state space,
the sets SA and SB of quantum operations representing moves (strategies) of
the players, and the pay-off (utility) functions PA and PB which specify the
pay-off for each player after the final measurement performed on the final
state �f . A quantum strategy sA 2 SA, sB 2 SB is a collection of admissible
quantum operations, that is the mappings of the space of states onto itself.
One usually supposes that they are completely positive trace-preserving maps.
Schematically we have:

�i 7! (sA; sB) 7! �f 7! measurement) (PA;PB) :

This scheme for a quantum two-player game can be implemented as a
quantum map:

�f D J
�1 ı S ı D ı J(�i); (1)

where initially

�i D j00ih00j (2)

1Quantum auctions are the only exception, as their implementation seems to be feasible.
2Actually a Hilbert space, though this should not bother us at the moment.
3Actually one can consider quantum games played against Nature. In such cases the agents might not even
be aware of playing the game!
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describes identical starting positions of Alice (A) and Bob (B). J describes
the process of creation of entanglement in the system and D the possible
destructive noise effects that will be neglected here. The use of entanglement
is one of several possible ways to utilize the power of QM in quantum games.
One of the possibilities is that the states of players are transformed using

J(�) D J(	)�J(	)� (3)

with

J(	) D cos(	=2)I ˝ I C i sin(	=2)�x ˝ �x (4)

into an entangled state. Here I and �x denote the identity operator and the
Pauli matrix, respectively. The additional parameter 	 describes the possible
destructive role of the environment (noise).

Equation (3) has the following explicit matrix form for the initial state given
by Eq. (2) (Flitney and Abbott 2003a):

J(�i) D

0

B
BB
@

cos(	=2)2 0 0 i cos(	=2) sin(	=2)
0 0 0 0
0 0 0 0

�i cos(	=2) sin(	=2) 0 0 sin(	=2)2

1

C
CC
A
: (5)

The individual strategies of players SX, X D A(lice); B(ob) are implemented
as unitary transformations of the form:

S(�) D (SA ˝ SB)�(SA ˝ SB)�; (6)

where the quantum strategy is realized by unitary transformations. For exam-
ple, both SA and SB can have the general matrix form in the two-dimensional
case (Flitney and Abbott 2003a) :

U(�; ˛; ˇ) D
 

ei˛ cos(�=2) ieiˇ sin(�=2)
ie�iˇ sin(�=2) e�i˛ cos(�=2)

!

: (7)

The short description of quantum games presented here will be sufficient for
our aims. Interested readers are referred to Piotrowski and Sładkowski (2003a)
and Flitney and Abbott (2003a) for further clarification and details.
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3 Quantum Approach to Risk

Let us begin with an abstract interlude. We will consider the generalization of
QM, the so-called “noncommutative” QM. The adjective "noncommutative"
reflects the additional assumptions that the operators Oxi fulfil

Œ Oxi; Oxj� D i � ij; � ij 2 C; (1a)

Œ Oxi; Oxj� D i Cij
k Oxk; Cij

k 2 C; (1b)

Oxi Oxj D q�1 ORij
kl Oxk Oxl; ORij

kl 2 C:

Labels i; j; k; l take values from 1 to N. The parameters q, � ij, Cij, and Rij

describe the model; their actual values are not important. Suppose that the
strategies of agents are given by vectors j i from the corresponding Hilbert
spaceH (Piotrowski and Sładkowski 2003c). Let the probabilities of signaling
of private values for random variables p and q by Alice and Bob using
strategies j iA and j iB be given by (that is, by the corresponding probability
amplitudes after normalization):

jhqj iAj2
Ah j iA

jhpj iBj2
Bh j iB dqdp ; (8)

where hqj iA is the probability amplitude of Alice’s bid of value q. The reverse
position of Bob is represented by the amplitude hpj iB (Bob ask p). Of course,
the deal is not always realized. Recall that (Elton et al. 2013; Luenberger
2009):

• In classical error theory second moments of a random variable are related
to its “random” errors.

• In Markowitz’s portfolio theory variance (� ) “measures” risk.
• In Bachelier’s option valuation model the random variable q2 C p2 “mea-

sures” the joint risk associated with the buying-selling process.

Therefore, we are tempted to define the operator of inclination to risk as:

H(Pk;Qk) WD (Pk � pk0)2

2 m
C m!2(Qk � qk0)2

2
;
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where pk0 WD kh jPkj ik

kh j ik
, qk0 WD kh jQkj ik

kh j ik
, ! WD 2�

�
. � , roughly speaking,

denotes the mean duration of the whole cycle of buying-selling (Piotrowski
and Sładkowski 2003d). The parameter m > 0 is introduced to describe a
possible asymmetry in risk connected with selling and buying. If you browse
through any textbook on QM you will discover that the above operator H is
the energy operator for harmonic oscillation, a classical issue in physics, if one
notices thatPk � Opk andQk � Oxk (Haven and Khrennikov 2016). This allows
for the following analogy. There exists some constant hE that characterizes the
minimal inclination to taking risk (theminimal energy level in physics).4 Here,
it is equal to the product of the minimal eigenvalue of the operator H(Pk;Qk)
and the parameter 2� . This means that, in our interpretation, 2� gives the
minimal period when it makes sense to calculate profits. Note that, in general,
Qk do not commute for different k. This should not surprise us: agents observe
each other and react accordingly. Any ask or bid influences the market, at least
for a short period. This explains why we have used the noncommutative QM
instead of the “classical” one. For example, if

Œxi; xk� D i‚ik WD i‚�ik

then the results of Hatzinikitas and Smyrnakis (2002) suggest that‚modifies

our “economic Planck constant” ¯E !
q
¯2

E C‚2 and the eigenvalues of
H(Pk;Qk). This implies the obvious conclusion that the activity of agents
modifies their attitudes toward risk. Strategies with definite values of risk are
given by eigenvectors of H(Pk;Qk). Remember that the minimal value of risk
is always greater than zero. Interesting, isn’t it?

4 Quantum Approach to Market Phenomena

Let the real random variable q

q WD ln cq � E(ln cq) (9)

correspond to the logarithm of the (bid) withdrawal price cq, that is the
maximal price at which the agent adopting the strategy j ik is willing to buy

4In physics hE is the Planck constant.
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the good G. We define q to ensure that its expectation value in the state j ik
is zero, E(q) D 0. In turn, the random variable p

p WD E(ln cp) � ln cp (10)

corresponds to the analogous situation for the supplier ofG adopting strategy
j ik (ask). Note that q and p do not depend on the units selected for G, and
we can use units such that E(ln c) D 0. Let us consider the general situation
of simultaneous trading of an arbitrary amount of goods. The state of the
game is given by the vector j‰iin WD P

k j ik living in the direct sum of
the Hilbert spaces of the agents (Haven and Khrennikov 2016)

P
k˚Hk.

Hermitian operators of demand Qk and supply Pk acting on subspaces Hk

form canonically conjugated observables (Susskind and Friedman 2014). We
will denote their eigenvalues by q and p respectively. This construction can be
validated in the following way. If the unique price e�p (ask p) results from the
application of Pk there is no sense in agent k reporting bids at the same price,
and the corresponding operators should not be simultaneously measurable
(commuting). The corresponding capital flows are determined according
to some algorithm A representing the clearing house. The transaction is
described by the scattering operator T� mapping the initial state j‰iin to the
final state j‰iout WD T� j‰iin, where

T� WD
X

kd

jqikd kdhqj C
X

ks

jpiks kshpj

is a projection operator given by the partition � of the set of agents k into
two disjoint sets fkg D fkdg [ fksg of agents buying at prices eqkd and selling
at prices e�pks at this round. The algorithm A should determine the market
partition � , prices fqkd ; pksg, and the capital flows. Capital flows are fixed
according to the probability distributions

Z ln c

�1
jhqj ikj2
kh j ik dq ; (11)

and Z ln 1
c

�1
jhpj ikj2
kh j ik dp (12)

giving the probabilities of selling and buying G at price c, respectively. These
probabilities are conditioned on the partition � . We can envisage a future
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market administered by a quantum computer where the above quantum
computations can be implemented, though at this moment this is only a
theoretical tool. More details and some simulations can be found in Piotrowski
and Sładkowski (2002a,b, 2004). There are natural ways of incorporating
the subjectivity of decisions to this formalism, cf. Piotrowski and Sładkowski
(2009) and Piotrowski et al. (2010).

Another interesting model of a quantum market based on the second
quantization method was put forward by Gonçalves and Gonçalves (2007).
They introduced a “population number” n1; n2; : : : ; nm for all alternative
combinations of strategies. This is implemented by bosonic creation and
annihilation operators a�k and ak (Susskind and Friedman 2014). The number
of all possible combinations, m D Q

k Nk, is unlimited (Nj is the number
of alternative strategies for the jth player). The jth agent strategy profile is
jpji DP

i cijsi(pj)i, where ci is the probability amplitude of strategy si. The
unitary evolution of the strategy state jpj; tfini D U(tfin; tini)jpj; tiniiis governed
by a unitary operator of the form

U(tfin; tini) D
kfinY

kD0

U(tkC1; tk);

where k parameterizes the kfin C 1 trading rounds. In a simplified single-asset
model, where there are only two strategies (buying and selling), for each agent
the unitary evolution for the kth trading round can be given in the following
form:

U(tkC1; tk) D exp(
1X

jD0

(�j(k; �k)a�j � �j(k; �k)�aj));

where �k is the duration of each trading round, �j(k; �k) D �i�k�j(k) with
�j(k) a game-dependent real number that incorporates the dynamics.

5 Quantum Auctions

We now discuss the concept of a quantum auction, its advantages and
drawbacks. Quantum auctions are quantum games designed for various goods
allocations that one should anticipate. It is well known that for some types of
auctions the associated computational issues are difficult to cope with Cram-
ton et al. (2005). There is hope that in future, due to quantum computation
speed up, that some of these problems can be overcome. We envisage that the
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implementation might not be an easy task. Quantum information processing,
in principle, can provide tools for secure transmission of bids and asks and
their treatment. Such topics have been discussed in the case of sealed-bid
auctions (Naseri 2009; Zhao et al. 2010; Liu et al. 2014). Here we would like
to focus on more specific issues of using quantum theory for designing the
very mechanisms of auctions.5 We will begin by presenting the general idea
of a quantum auction. Then we will suggest methods of gaining an advantage
over “classical opponent” and describe some proposals of quantum auction.
Farther we will proceed to the quantum mechanism design problems, that is
the theory of construction of quantum games with equilibria implementing
given social choice rules (Haven and Khrennikov 2016). Finally we will try
to show some problems that should be addressed in the near future. In a
discussion we will use quantum auction theory as a formal theoretical tool,
though widespread opinion is that it seems probable that it will be used in the
future for massive combinatorial auctions or in compound securities trading.
A genuine quantum bidding language might have to be developed to this end.
Encoding bids/asks in quantum states is a challenge to quantum game theory.
Quantum auctions would almost always be probabilistic and may provide us
with specific incentive mechanisms and so on. As the outcome may depend on
amplitudes of quantum strategies, sophisticated apparatus and specialists may
be necessary. Therefore, we envisage some changes in the law and in practices.
Commercial implementation of quantum auctions is a demanding challenge
that cannot be accomplished without a major technological breakthrough in
controlling and maintaining quantum systems. Extreme security and privacy
are certainly strong points of quantum auctions. Currently, it is difficult to
find out if this is a feasible task, but as a theoretical tool it is also very
interesting (Piotrowski and Sładkowski 2008; Patel 2007). Quantum auctions
are specified by the following data.

• Auctioneer specifies conventional “classical” details of the auction such as
the schedule and goods to be sold.

• Auctioneer specifies the implementation of the quantum auction.
• Auctioneer specifies the initial state distribution, implementation of strate-

gies, andmain features of the search algorithms to be used (e.g. probabilistic,
deterministic).

• Search for the winners and good allocations (this process might be repeated
several times).

5We call such auctions “genuine quantum auctions.”
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• Methods of goods delivery and clearing, which is a standard issue.

This scheme is consistent with our definition of a quantum game.

5.1 Examples of Quantum Auctions

In the first model all possible prices of items are encoded in strings of
qubits (Hogg et al. 2007). The auctioneer wants to sell n items and to this
end distributes to m bidders p qubits initially in state joi (p � m qubits
in total6). Each bidder can only operate on his or her qubits and encodes
via unitary operation the details of the bid qubits (prices for all bundles of
items). Thus each bidder has 2p possible bid values, and can create super-
positions of these bids: for multiple-item auctions the bid is a superpositionP

j ˛jjbundleji˝ jpriceji for each bundle of items. A superposition of qubits
specifies a set of distinct bids, with at most one allowed to win7; amplitudes
of the superposition correspond to the likelihood of various outcomes for the
auction. The protocol uses a distributed adiabatic search that guarantee that
bidders’ strategies remain private. The search operation, processing input from
the bidders, is implemented by unitary operators, giving the overall operator
U D U1 ˝ U2 ˝ : : :˝ Um, where m is the number of bidders and Ui stands
for the operator of the ith bidder. This “brute force” proposal seems to be the
easiest to implement and especially suitable for combinatorial auctions.

Piotrowski and Sładkowski discussed an abstract model of bargaining
(Piotrowski and Sładkowski 2002a). In their approach a two-dimensional
complex Hilbert space is associated with two agents, Alice and Bob. The
vectors (qubits) are called polarizations, which are identified with elements
of a one-dimensional complex projective spaceCP1. On an orthonormal basis
(j0i; j1i), j�i D �0j0i C �1j1i 2 Hs. The scalar product of two vectors
j� 0i; j� 00i 2 Hs is given by

h� 0j� 00i D N� 0
0�

00
0 C N� 0

1�
00
1 D N� � � ; (13)

where N�k, k D 0; 1 denotes the complex conjugate of �k. The proportional
vectors j�i and tj�i (t 2 C n f0g) are identified. The probability of measuring
the strategy j� 00i in the state strategy j� 0i is given by the squared module of
the scalar product (13) of the states. The following interpretation of Alice’s

6To implement this model additional qubits will be necessary for error correction.
7This corresponds to the XOR bidding language. This assumption can be relaxed.
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polarization state j�iA 2 HsA (that is of her strategy) is proposed. If she
formulates the conditions of the transaction we say she has the polarization
1 (and is in the state j�!r iA D j1i). In quantum bargaining (q-bargaining) this
means that she put forward the price. In the opposite case, when she decides
whether the transaction is to be made or not, we say she has the polarization
j0i. (She accepts or not the conditions of the proposed transaction.) The
vectors (j0i; j1i) form an orthonormal basis in HsA, the linear hull of all
possible Alice polarization states. Bob’s polarization is defined in an analogous
way. The states of Alice and Bob became entangled if they enter into q-
bargaining. The reduction of the state j�iA (Alice) to j1iA or j0iA always results
in Bob finishing in the state j0iB or j1iB, respectively. The polarizations of q-
bargaining form a two-dimensional complex Hilbert spaceHs 	 HsA

NHsB

spanned by two orthonormal vectors j10i WD j1iAj0iB and j01i WD j0iAj1iB.
A market process resulting in q-bargaining is described by a projection Pj1i W
HsA

NHsB ! Hs. This model of bargaining can be generalized to describe
quantum English auctions (Piotrowski and Sładkowski 2003e).

6 Quantum Mechanism Design
and Implementation Theory

Mechanism design (reverse game theory) is a field in game theory that studies
solution concepts for various classes of games (e.g. private information games)
(Hurwicz and Reiter 2006; Narahari 2014). According to Leonid Hurwicz, in
a design problem the goal function is the main “given,” while the mechanism
is the unknown. In that sense the design problem is the “inverse” of traditional
game theory, which is typically devoted to the analysis of the performance of
an externally given mechanism. One defines a game form as a method for
modeling the rules of a game or an institution, independently of the players’
utility functions. An n-agent game form  D (S;A; g) is defined by a set
of n strategy spaces of the players, S1; : : : ; Sn, a set of alternatives A, and an
outcome function g W S �! A, where S DQiDn

iD1 Si. An (n-agent) mechanism
is defined by n agents’ message spaces M1; : : : ;Mn, a set of alternatives A,
and an outcome function g W M �! A, where M D QiDn

iD1 Mi. Shortly, a
game form (mechanism) maps profiles of strategies (messages) into feasible
outcomes. In contrast, a game as such assigns a profile of payoffs (utilities) to
each profile of strategies (messages)! The idea is to use the “invented” mech-
anism in practice. Implementation theory provides a systematic methodology
for designing an information exchange process followed by allocation processes
that are “optimal” with respect to some pre-specified performance criteria. It
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provides analytical frameworks for the analysis and design of allocations among
agents in various information contexts e.g. as a Bayesian game). One assumes
that agents behave strategically and are self-utility maximizers. Information
exchange among the agents might be allowed or even necessary. Let N D
f1; : : : ; ng denote a finite set of agents, n � 2, and A D fa1; : : : ; akg be a
finite set of alternatives. We assume that an agent can have private information
encoded as his or her type. Next, let Ti be the finite set of agent i’s types, and
the private information possessed by agent i is denoted as ti 2 Ti. A profile of
types t D (t1; : : : ; tn) is referred to as a state and T DQi2N Ti denote the set
of states. At state t 2 T , each agent i 2 N is assumed to have a complete and
transitive preference relation �t

i over the set A. Let �tD (�t
1; : : : ;�t

n) denote
the profile of preferences in state t. The utility of agent i for alternative a in
state t is ui(a; t) W A� T ! R, that is, ui(a; t) � ui(b; t) if and only if a 
t

i b.
We denote by >t

i the strict preference part of �t
i. Fixing a state t, we refer to

the collection E D< N;A; (�t
i)i2N > as an environment. Let � be the class of

possible environments. A social choice rule F is a mapping F W � ! 2Anf;g.
Finally, a mechanism  D ((Mi)i2N ; g) consists in prescribing a message
(strategy) set Mi for agent i, and an outcome function g WQi2N Mi ! A.

The distribution of information among the agents plays the key role in
determining their actions, therefore specific implementation should involve
an appropriate solution concept (equilibrium), for example Nash equilibrium
implementation, Bayesian implementation, and Pareto efficient implementa-
tion. If one is trying to design a mechanism to achieve, for example, a Pareto
optimal solution, one needs to take into account how individuals are likely
to behave if one attempts to implement the mechanism. It can be shown
that even in the case of simple voting rules some of the desirable properties
which they appear to have if agents vote truthfully may disappear if agents
have an incentive to vote strategically (Hurwicz and Reiter 2006). Therefore
an important requirement is that of universality: the mechanism should work
no matter what the individual preferences happen to be. Maskin provided
an almost complete characterization of social choice rules that were Nash
implementable. It should come as no surprise for you to learn that one can
“design” quantum games and mechanisms; but would they be any good?
Haoyang Wu fromWan-Dou-Miao Research Lab, Shanghai was the first who
recognized this problem (Wu 2011a, 2013). Following the general model of a
quantum game a sequential (multistage) scheme (Moore and Repullo 1988)
can be developed (Wu 2011a):

type

selection
) measurement

of coin state
) message

processing
) outcome: g(m) :
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where the agents have “quantum coins” and “classical cards.” Each agent
independently realizes strategies by a local unitary operation [Eq.(7)] on his or
her own quantum coin:

J
�1 ı quantum coin ı U ı J! measurement

of coin state
:

As usual, J creates (annihilates) entanglement. The designer (e.g. auctioneer)
receives the overall strategy as the cards and announces the result. Details of the
resulting algorithms can be found in the original papers. Note that quantum
mechanisms would certainly be probabilistic in nature. Therefore quantum
mechanisms are substantially nontrivial, and simple or direct extensions of
“classical” mechanisms that do not involve uncertainty are not possible cf.
Ieong et al. (2007). If quantum effects (i.e. strategies) are possible, the
traditional sufficient conditions of no-go theorems for the implementation of
some types of social choice rules may fail (Wu 2011b; Bao and Halpern 2015;
Makowski and Piotrowski 2011a).
In mechanism design theory one usually supposes that agents’ preferences

are transitive. Various simulations show that intransitive preference relations
(Makowski 2009; Makowski and Piotrowski 2006, 2011a,b; Makowski et al.
2015) form a key ingredient of quantum mechanisms. This issue certainly
deserves further investigation.

7 More Specific Quantum Games

In the previous section we discussed the modeling of whole branches of
economics and the social sciences in a quantum game-theoretical setting.
There are a whole lot more specific situations that can be successfully described
as a game. Most of them can in principle be or have already been “quantized.”
We have put the word quantized in inverted commas to stress that the quan-
tization of games does not exactly correspond to its physical counterpart. By
quantization of a concrete game we mean the construction of such a quantum
game that, after usually drastic reduction, strategy sets reproduce the initial
(classical) game. In some cases some paradoxes or conundrums can be resolved
in that way, but a review of these results is beyond the scope of this text.
We only mention some results that we think are representative or interesting.
The prisoner’s dilemma is one of the flagships of game theory. Its quantum
version is usually discussed in the context of cooperation (Eisert et al. 1999;
Nawaz 2013) and network games (Pawela and Sładkowski 2013a; Li and Yong
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2014). Quantum games on networks, hypernetworks, and cellular automata
are being intensively studied as they involve cooperation, coordination, and
synchronization problems (Li et al. 2012; Pawela and Sładkowski 2013a;
Miszczak et al. 2014; Alonso-Sanz 2012). Another interesting class of problems
that can be studied in the quantum setting is related to the famous Parrondo
paradox (Flitney and Abbott 2003b; Meyer and Blumer 2002; Pawela and
Sładkowski 2013b). New light can be shed on various aspects of Bertrand
duopoly analysis (Khan et al. 2013; Lo and Kiang 2004), Cournot duopoly
(Sekiguchi et al. 2010), and Stackelberg duopoly (Lo and Kiang 2005; Wang
et al. 2013). The ultimatum game studied in experimental economics has also
been analysed from the quantum game theory point of view (Frąckiewicz and
Sładkowski 2014). The quantum battle of the sexes also became a popular
research topic (Frąckiewicz 2009; Nawaz and Toor 2004; Weng and Yu 2014).
A lot more can be said, but we have to stop somewhere. We apologize to
authors whose works have not been mentioned here.

8 Conclusions

Quantum game theory aspires to be a fruitful theoretical tool in various fields
of research. Quantum auctions have potential commercial value, but their
implementation is a demanding challenge that would hardly be accomplished
without a major theoretical and technological breakthrough. Nevertheless, we
envisage the emergence of quantum computational choice theory and related
fields (Bisconi et al. 2015). Quantum-like description will remain an important
theoretical tool, even if never commercially implemented.
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The Intrinsic Quantum Nature of Classical
Game Theory

Y. Pelosse

1 Introduction

The notion of mixed strategy, as originally introduced by Von Neumann
and Morgenstern (1944) is a basic ingredient of classical game theory. Yet,
as pointed out by von Neumann and Morgenstern themselves, the idea that a
rational player may have to use a randomizing device, such as a coin flip, to
decide on their actions poses some insuperable conceptual difficulties:

This is certainly no maximization problem, but a peculiar and disconcerting
mixture of several conflicting maximum problems (: : :) we face here and now a
really conceptual—and not merely technical—difficulty. And it is this problem
which the theory of “games of strategy” is mainly devised to meet.

As acknowledged in the subsequent game-theoretic literature (see, e.g.
Aumann 1987), the introduction of the Nash equilibrium (Nash 1950, 1951)
has just rendered this puzzle even more unpalatable. A Nash equilibrium is
defined as a n-tuple of strategies or strategy profile (one strategy for each player)
if each player’s strategy is optimal against the others’ strategies. According to
Nash’s theorem (Nash 1950, 1951), the very existence of such “equilibrium
points” relies on the use of such “randomized strategies,” which leads to
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the following conundrum. In equilibrium, each player has to be completely
indifferent to the different actions of his or her mixed strategy. Moreover, the
idea that decisions must appear indeterminate in order to be rational is rather
troubling. Although there are many attempts to explain the underpinnings
of mixed strategies, none has been unanimously accepted as satisfactory
(see, e.g. Aumann 1987).1 In the present chapter, we shall review a recent
result proven in Pelosse (2016) which establishes the intrinsically quantum-
mechanical nature of mixed Nash equilibria. It turns out that this eliminates
all the aforementioned conceptual difficulties associated with such randomized
strategies. So this raises an immediate question: why is this foundational
problem of game theory connected to the apparently far removed field of
quantum physics?

In a nutshell, the thread that connects the two theories can be traced back
from the initial under-determination of the game model. On the one hand,
the game model does not initially endow players of any pre-existing strategies
and beliefs, that is statements about whether a strategy or belief is rational are
neither true, nor false, but indeterminate in the sense of the three-valued logic
of Lukasiewicz (1930). This means that the origin and genesis of a rational
choice of a player in the classical game model is ex nihilo, depending of its
own deliberation process, rather than the mere elaboration of the past. On
the other hand, the crucial distinction between classical and quantum physics
is that the behavior (e.g. the position and momentum of a particle) of a
quantum system (an electron, an atom, etc.) is not a function of the past.2 In
fact, the orthodox view—the so-called “Copenhagen interpretation”— is that
the hallmark of quantum mechanics (QM) is its “irreducible indeterminism,”
also called “indefiniteness,” suggesting that we cannot attribute values to a
quantum system until the occurrence of a measurement. In plain terms, this
means that a question like “Where was a particle before the measurement?”
is “the particle wasn’t really anywhere.” As well put by Jordan [the citation is
taken from Kochen and Specker (1967)], “observations not only disturb what is
to be measured, they produce it ... We compel the particle to assume a definite
position.” This interpretation of QM is notably supported by the fact that
alternative interpretations of quantum theory, based on the assumption of
“hidden variables theories,” have failed; a well-known series of results inQM—

1The alternative foundation—the so-called mass action approach—avoids becoming entangled in such
philosophical issues. Rather than considering randomizations implemented by individual players, it
addresses the question of how evolutionary selection processes or social learning allow us to understand an
equilibrium as an aggregate statistical behavior, in the spirit of Harsanyi’s purification method (Harsanyi
1973).
2A standard textbook on quantum mechanics is Mermin (1985).
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the so-called “no-go theorems”—entail that measurements do not reveal the
pre-existing properties of a quantum system (see Sakurai 1994).3 Thus, our
main result states that the classical von Neumann–Morgenstern paradigm is
not only compatible with a quantum-mechanical description of players but
is in fact its inevitable consequence, once we take into account the inherent
initial indeterminism of the game model.

Our starting point is an equivalence result established in Pelosse (2016),
which shows that the initial under-determination of the game model, that is
each player has free choice and free belief, leads each player to “self-interact”
into a Nash equilibrium.4 This ontological foundation of the Nash equilib-
rium concept proves that, unlike conventional wisdom, an “equilibrium point”
is not an interactive solution concept, but a process of “rational deliberation”
followed by each player in order to unravel the initial indeterminism of the
game model.

We shall use this equivalence result in order to uncover formally a structural
connection—an isomorphism—between the knowledge structure of a player,
without any initial strategy and beliefs in his or her mind, and the algebraic
structure of an individual quantum system. The implications of the quantum
nature of equilibrium mixtures for our understanding of players’ behavior in a
game are multifold. We shall illustrate and discuss some of its most important
consequences by way of the following “gedankenexperiment.” The proofs of
all the claims stated in this chapter can be found in Pelosse (2016).

2 A Game-Theoretic Gedankenexperiment

Consider the game of Figure 1 (Table 1). In this game, Ann chooses the row,
Bob chooses the column, Charlie chooses the matrix. For Ann and Bob, this is
simply the “Battle of the Sexes”; their payoffs are not affected by Charlie’s
choice. We first need to explore the implication of formally incorporating
the absence of pre-existing beliefs in the game of Figure 1. Let us focus
our discussion on Ann and on the following Nash equilibrium of this game
( 2

3N ˚ 1
3S;

1
3n ˚ 2

3s;N): In the classical model, the absence of pre-existing

3Briefly stated, the Kochen–Specker theorem is a mathematical result about the nature of Hilbert spaces
(the special type of vector spaces that are the most general representation of the state space for a quantum
system). It states that if properties are represented as operators on a Hilbert space in a 1 � 1 fashion (i.e.,
each property is represented by a unique operator), then these properties cannot all be said simultaneously
to have values.
4Brandenburger (2008) provides an insightful discussion on the notion of “indeterminism” in the classical
game model.
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Table 1 Figure 1

n s
N 2,1,0 0,0,0
S 0,0,0 1,2,0

N

n s
N 2,1,0 0,0,0
S 0,0,0 1,2,0

S

rational strategies and beliefs for Ann implies that she must literally “create”
what she deems as being rational. Formally, this means that when she has to
choose a destination all statements like “The North Pole is rational,” “The South
Pole for Charlie and the North for Bob are rational beliefs for Ann,” or “The
South Pole for Charlie and the North Pole for Bob are rational,” and so on, are
all indeterminate statements; these statements are neither true, nor false, but
indeterminate in the sense of the three-valued logic of Pelosse (2016). This
is the initial lack of sharp truth values that leads Ann to ” create” the truth
value of statements like “The (mixed) strategy �A is rational” is true because
the statement “The (mixed) strategy �C for Charlie and the (mixed) strategy �B

for Bob are rational strategies” is true. Hence, this in turn requires that Ann
determines whether statements like “The (mixed) strategy �C for Charlie and
the (mixed) strategy �B for Bob are rational strategies” are true or not. Doing
so means that she must simultaneously “put herself in the shoes” of Bob and
Charlie while she is considering her own decision problem. Of course, Ann
must also be rational when she adopts the decision problems of others, that is
when she adopts Bob and Charlie’s decision problems at AB˝C: This raises the
question: What are the “mental states” that Ann has to take in order to break
the above initial under-determination of the game of Figure 1?

The quick answer is that the determination of a rational strategy is equiv-
alent to Ann “self-interacting” in a mixed Nash equilibrium of the game of
Figure 1. Here is a visual way to grasp this situation more clearly. Imagine
that Ann is sitting simultaneously in two different transparent “cubicles” (the
term is taken from Kohlberg and Mertens (1986, p. 1005)) AA and AB˝C.
In order to deliberate, Ann must simultaneously put herself “in the shoes” of
Bob and Charlie (the meta-perspective AB˝C) and in her own shoes (her own
perspective AA). This deliberation process can be identified by the directed
graph,

AA

describing the informational process “input-output” by which Ann can deter-
mine her rational strategy (the output) given that she has determined her
beliefs over Bob and Charlie (the input). For short, let( denote this mental
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process. The converse process is Ann determining her beliefs, that is a profile
of a mutually rational profile of strategies for Bob and Charlie. Hence, the
“dual” directed graph

AB⊗C

corresponds to Ann determining the truth value of the input of the first
process. For short, we represent this “dual” mental process by (()�, that is
the “dual” directed graph, representing the converse direction, output-input.
Note that � is the operation which changes the direction of the mental process
that would yield an involution in the sense that (()�� D (. This “duality
property” of the graph is not accidental; it is directly linked to the dual
algebraic structure between vector and co-vectors (or linear mappings) of the
Hilbert space structure of QM. The formal definition of the classical game
model implies that Ann’s beliefs are on a par with her (rational) strategies: both
are initially nonexistent in Ann’s mind. This implies that each process( ( or
(()�) alone cannot yield anything; Ann cannot turn some nonexistent beliefs
(resp. rational strategy) into a rational strategy (resp. beliefs). This simple
observation leads us to conclude that the only possible process for Ann to create
a rational strategy in her mind is to combine the two processes simultaneously,

AB⊗C AA

A AAB⊗C

The result of this deliberational process allows Ann to determine that state-
ment “1

3n˚ 2
3s is rational for Bob and the South Pole is rational for Charlie” is

true in her cubicle AB˝C; because Ann can check—by taking a look at cubicle
AA—that the statement “2

3N ˚ 1
3S is rational for Ann” is indeed true in the

corresponding cubicle, AA; relative to the statement that “2
3N˚ 1

3S is rational
for Bob and the South Pole is rational for Charlie” is true in cubicle AB˝C, which
she knows to be true by looking from her cubicle AA, and so on. The bottom
line of this story is thus that the mere determination of a rational strategy
induces Ann to find a Nash equilibrium of the game, that is she must at least
adopt two perspectives.

Of course, Ann could arrive at a similar result by sitting in the three distinct
glass cubicles, AA, AB, and AC, instead of the big cubicle AB˝C. However, as
shown in Pelosse (2016), models withmore than two perspectives are in fact not
well-defined. The reason is that these models would not induce Ann to play a
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well-defined probability measure—her equilibrium mixture 2
3N˚ 1

3S—in an
experiment. This result allows us to streamline the theory considerably and to
focus attention on the class of canonical models with exactly two perspectives.5
Note that the above “self-interaction” process is reminiscent of the “dynamic

models of deliberation” and very much in line with the “deliberational
equilibrium” of Skyrms (11, 12). It turns out that this inevitable deliberation
process leads to a view of mixed strategies which differs radically from the
usual interpretations. Consider the above mixed Nash equilibrium wherein
Ann chooses the North Pole (N) with a probability 2

3 and the South Pole (S)
with probability 1

3 : Suppose that an outside observer can read the mind of
Ann. What would he or she observe before Ann chooses a destination (before
she makes her actual choice)?

According to the classical view, a mixed strategy represents deliberate
randomizations on the part of players. In this case a player commits to a
randomization device and delegates the play to a trustworthy party. Thus,
everyone, including the player him or herself, is just ignorant about the actual
choice made by the random device. Hence, in this approach an observer would
realize that Ann believes she will go to the North Pole with probability 2

3 and
to the South Pole with probability 1

3 .
The epistemic approach would suggest a different answer. Under this

approach, a mixed-strategy equilibrium is interpreted as an expression of what
each player believes his or her opponent will do. Therefore, in the present
thought experiment, an observer reading Ann’s mind would realize that she is
completely determined.6

The result of Ann’s deliberation required to break the initial under-
determination of the game model results in the determination of a Nash
equilibrium. So, by looking simultaneously through the transparent walls of
her two cubicles—during her introspection—Ann has been able to determine
that:

(1) “Strategy 2
3N˚ 1

3S is rational for Ann” is true at AA and;
(2) “Strategy 2

3N˚ 1
3S is rational for Ann” is true at AB˝C.

5Of course, we could also examine the situations of a player adopting (simultaneously) the perspectives of
all players. However, it can be shown [see Pelosse (2011, 2016)] that a player cannot simultaneously assign
truth values to statements for all players, without “checking” that a given profile is indeed a fixed point of
the combined best-response mapping.
6If a player does have the option of making a randomized choice, this can be added to the (pure) strategy
set. Of course a similar interpretation follows in the “mass-action” interpretation of Nash (1950), as a
mixed-strategy profile is formally identical with a population distribution over the pure strategies.
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In other words, Ann thinks that strategy 2
3N ˚ 1

3S is rational for her in each
of her two cubicles ((meta)-perspectives). Of course, this is just the usual
definition of an equilibrium: The common belief of Bob and Charlie at AB˝C

meets the mixed strategy of Ann. Now we ask: How would an outside observer
describe the equilibrium state of mind of Ann?

Let us first point out that Ann’s state of mind should respect the following
minimal reasonable properties:

[Indivisibility] Ann is a single player (she is in the flesh!);
[Independence] AA and AB˝C are mutually independent perspectives (in

her mind, Ann determines simultaneously each statement in two different
“cubicles”). Moreover, at AA, Ann determines her mixed strategy, while she
determines the common belief of Bob and Charlie at AB˝C;

[Rationality] Operationally, if an outside observer runs an experiment with
many copies of Ann, the empirical frequencies of outcomes N and S must
agree with what each copy of Ann has determined in her mind as a rational
strategy.

The axiom of indivisibility is just the fact that, in an experiment, Ann has to
choose a unique action. Transported in the mind of Ann, this means that a
choice occurs if and only if the pole chosen by Ann at one of her two cubicles
matches the other. So we can visually describe a choice as the situation where
Ann picks a choice in each of her two cubicles, AA and AB˝C, while looking
simultaneously through the windows of her cubicles.

The axiom of independence simply states that Ann remains seated in her
two cubicles, AA and AB˝C, which corresponds to the “non-cooperative”
assumption of the game model. The last axiom amounts to stating that, in
a series of experiments, the empirical probability measure obtained by an
observer would exactly reflect Ann’s rational mixed strategy, 2

3N˚ 1
3S.

Now we return to the description of the state of mind of Ann. First, recall
that, in (any) mixed equilibrium, Ann is indifferent to going either to the
North Pole or to the South Pole.7 Taken together, the axioms entail that Ann
may think in her two cubicles that the choice of the North Pole and the South
Pole are rational. The upshot is that the state of mind of Ann will be given by
a 2 � 2 matrix (see Figure 2), which is the simplest example of the so-called
“density matrices” (in fact an orthogonal projector describing a pure quantum
state) of QM. What are the entries of this matrix?

7It is well known that if a strategy profile, (� i)i2N , is a Nash equilibrium, then every pure strategy in the
support of each strategy � i is a best reply to i’s belief ��i:
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The faithful property implies that the diagonal elements, (N;N) and (S;S),
take on values 2

3 and 1
3 , respectively, together with the property that the vector

representing Ann when she is in cubicle AA can be distinguished from her
vector representing her cubicle AB˝C. Thus, by the axiom of independence,
we conclude that complex vectors like, for example, ( 1p

6
˙ i 1p

2
)N˚ ( 1

2
p

3
˙

i1
2 )S WD z1N˚ z2S characterize the state of mind of Ann (her mixed strategy)
when she is in perspective AA, while its conjugate, ( 1p

6
� i 1p

2
)N ˚ ( 1

2
p

3
�

i1
2 )S WD z1N ˚ z2S reflects her state of mind (the common belief of Bob
and Charlie) at AB˝C:Why do we have such complex vectors? Intuitively, we
are looking for a faithful algebraic characterization of a pair of Ann’s states of
mind. Such a faithful representation is an isomorphism, which explains the
occurrence of such complex vectors. How do we interpret these vectors?

Table 2 Figure 2.
Ann’s equilibrium
state of mind is a
density matrix

N S
N 2

3 z1z2

S z2z1
1
3

The matrix of Figure 2 (Table 2) represents the global structure of knowl-
edge of Ann i.e., her equilibrium state of mind. For example, the complex
weight z1z2 assigned to entry (N;S) represents the fact that Ann has not yet
fixed her mind on N or S: When sitting in cubicle AA she thinks that going to
the North Pole is rational but she simultaneously thinks in the other cubicle,
AB˝C, that the South pole is also rational. Alternatively put, the matrix of
Figure 2 is the expression of the ignorance of Ann about her own choice of a
definite destination during a measurement. We can now answer the question:
What is the nature of equilibrium mixtures in games?

The quick answer is that the nature of these game-theoretic probabilities
are epistemic and ontic. On the one hand, in a mixed Nash equilibrium, the
state of mind of a player is a state of knowledge. This state is thus epistemic
in nature since it is only expressible in terms of the player’s knowledge. On
the other hand, this epistemic state is also ontic, that is, it is a state of reality,
because it provides the actual complete specification of all the properties of
the player. The upshot is thus that these probabilities have an “ontological
status”—a player has not singled out a particular pure action in his mind prior
to his being asked to do so—rather than reflecting the ignorance of an outside
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observer—a player has already fixed his mind on a particular action, but the
other players cannot read his mind. Alternatively put, we could also say that
these equilibrium mixtures are maximally informative, in the sense that they
describe the fact that the state of knowledge of a rational player is on a par with
the state of knowledge of an ideal observer (or any other player in the game).

The above Gedankenexperiment is the illustration of our main finding—
that each player is characterized by a quantum state of mind in a Nash
equilibrium. Loosely stated, the main result established in Pelosse (2016) is
as follows.

Suppose we have a finite n-person game in strategic form where each player is
rational and has no extra piece of information than the payoff matrix itself, that is
the axiom of no-supplementary data holds. Then, in any mixed Nash
equilibrium profile (� i)i2N of the game being played, each player i is described by a
superposition of states of mind over the pure strategies si in the support of � i, that is
a pure quantum state representing the global state of mind of player i is given by an
orthogonal projector (or dyad) with complex off-diagonal terms, and the empirical
probability of having a pure strategy si in an experiment is given by the Born rule,
as in QM.

2.1 “Deliberational Interference”

Let us now see how non-additive probabilities enter the picture of the classical
game model. We consider the following extension of the previous thought
experiment. As before, Ann is still playing the game illustrated by Table 1. But
now we append a hypothetical experimental set-up in which an experimenter
can read the mind of Ann before she makes a definite choice. More precisely,
this “mind reading machine” translates Ann’s states of mind onto a fluorescent
sphere representing the Earth, so that each time she thinks she will go to one
of the two poles, her thought is registered as a flash of light on the sphere at
one of the continents of the hemisphere containing the pole chosen by her.
For instance, a flash of light on Europe is the sign that Ann has fixed her mind
on N. Note that if we force Ann to say the South Pole, then we oblige her to fix
her mind on one of the continents of the southern hemisphere, and we see one
flash on one of the continents of this hemisphere. That is, we do not observe
a flash on Europe.

We suppose that the occurrence of a flash on a particular continent lying
in the hemisphere is random. This randomness has nothing to do with
the choice of Ann in the game, it simply reflects some additional charac-
teristics of the players, like nationality, or the culture of Ann, which are



68 Y. Pelosse

not under the control of the experimenter. From an operational viewpoint,
we can construct an empirical probability distribution by counting up the
number of flashes on a continent to obtain the fraction of flashes that
occur on this continent when a large number of copies of Ann play the
game. Let PN(x) (resp. PS(y)) be the probability that we observe a flash of
light on a continent x 2 fEurope;Africa;Asia;Americag (resp.
y 2 fAntarctica;Australia;Africa;Asia;Americag) of the
hemisphere when Ann’s state of mind is fixed on the North Pole (resp. South
Pole). Note that we cannot directly observe the state of mind of Ann, because
if we knew that her state of mind was fixed on, say, the North Pole, then
this would imply that she knows it too, which would mean that we have
forced her to make up her mind in some way. Otherwise stated, the state
of mind of Ann must be treated as a latent variable. Now, note that if Ann
had fixed her mind on one of the two poles prior to making a choice, we
would observe for each copy of her a single flash of light, either on a region of
the continent of the northern hemisphere or of the southern hemisphere. In
this case, we would then expect that the probability of observing a flash on a
continent z overlapping the two hemispheres is PNS(z) D PN(z)C PS(z); for
z 2 fAfrica;Asia;South Americag, in conformity with the classical
probability calculus. What are the formulae of these probabilities in this case?

If Ann has fixed her mind on one of the poles during an experiment,
this is tantamount to saying that she has to pick the same destination d in
her two perspectives AA and AB˝C. Let ‰d(z) for d D N;S; (resp. ‰d(z))
be the complex weight (resp. its conjugate) assigned to the directed graph
representing the knowledge structure of Ann at perspective AA (resp. AB˝C)
when she picks continent z, given that she knows that destination d is rational.
The case when Ann views the same destination d as rational, simultaneously,
in her two perspectives, and picks a continent z, is illustrated below.

From the above illustration we can therefore conclude that if these weights
induce the probabilities that, given a choice of d, Ann picks a continent z, then
Pd(z) D ‰d(z)‰d(z), which is the Born rule of QM, and the total probability
is such that

PNS(z) D j‰N(z)j2 C j‰S(z)j2 :

Now, we ask: What is the probability of a flash of light on a continent z both
in the southern and northern hemispheres, if we do not ask each copy of Ann
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to choose one of the two poles in the game, so that we only observe the mental
state of mind of her determining her rational mixed strategy in the game?

In this case, we can only indirectly observe the state of mind of Ann via a
flash of light on the sphere. According to Theorem 1, the state of mind of Ann
prior to a measurement has to be described by a wave, as a consequence of the
“indifference condition,” since her state of mind is not yet settled. Formally,
this means that Ann knows simultaneously that N or S (the strategies of Ann,
when viewed from her own perspective) are rational at AA, on the one hand,
and that N or S (recall that the strategies of Ann coincide with the beliefs
of Bob and Charlie when she contemplates the perspective of these players)
are rational at AA˝B, on the other hand. Here is a visual way to derive the
probability formula in this situation, in the light of the knowledge structure
of Ann.

This set of weighted directed graphs depicts—formally defined in Pelosse
(2016)—the compositions of the different parts of the knowledge structure of
Ann. Here, the operation

W
corresponds to the usual logical connective “or.”

Given a perspective, Ann can consider N or S. The operation
V

coincides with
the logical connective “and,” since Ann has to adopt the two perspectives AA

and AA˝B, simultaneously. As already discussed, we have to assign a complex
number ‰d(z), for d D N;S, to each directed graph in order to have a
faithful algebraic description of Ann’s knowledge structure (an isomorphism).
From this, we conclude that the total probability P(z) of a flash of light on
a continent z both in the southern and northern hemispheres is given by
P(z) D j‰N(z)C‰S(z)j2 ; which coincides with the theory of interference of
waves. In fact, we have just derived the formulae used in the classical two-slit
experiment in physics. The first formula, PNS(z), corresponds to the situation
where the experimental set-up allows us to monitor which slit the electron
passed through (we force Ann to make a choice), while P(z) is the correct
formula when the experimenter does not devise an experiment to determine
which slit an electron passes through (we do not oblige Ann to “make up her
mind” on one of the two poles). The upshot is thus, as in this classical physics
experiment, that the predictions on the future behavior of Ann require the
use of non-additive probabilities since P(z) ¤ PN(z)C PS(z). This inequality
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is due to the interference term 2‰S(z)‰N(z). This non-zero additional term
is easily derived from the above picture and its meaning is crystal clear: In
addition to the cases of perfect correlation between the two perspectives of
Ann—that is given that she considers the same pole, she picks the same
continent z—we must also add the cases where she picks the same continent
z; while she is considering N at one perspective and S at the other. The twist is
thus that the seemingly exotic non-classical probability calculus of QM arises
in the classical game model as the consequence of the rationality of a player, via
his or her (necessary) deliberation in a Nash equilibrium.

3 Discussion

What does the description of the mental state of a player through the wave
functions of QM tells us about the behavior of a rational player? First,
the presence of wave probability amplitudes allows us to understand why
equilibrium mixtures have been so difficult to interpret. These probabilities
reflect the real physical “act of creation” of the future states of mind of a player
(with itself ), while classical probabilities proceed from the mere ignorance of
the actual state of mind of the player. This is the fact that the classical game
model does not presume any pre-determined beliefs that lead inevitably to this
peculiar form of probabilities.

Second, the wave description of a player’s mental state prior to his or her
definite choice solves the so-called “mixing problem.” Indeed, it is well-known
that equilibrium mixed strategies raise the question of why we should expect
players to randomize; see, for example, Aumann (1987). More precisely, this
puzzle goes like this:

In equilibrium, each player i is required to randomize in exactly the way that
leaves the other players indifferent between the elements in the support of their
equilibrium strategies. But i has no reason to randomize in this way, precisely
because i too is indifferent between the elements in the support of his equilibrium
strategies.

The quantum-mechanical nature of mixed strategies offers a natural reso-
lution of this puzzle. It states that the “indifference condition” is not the sign
of a randomization, but the reflection of the indefinite state of mind of the
player prior to his or her making a definite choice in an experiment, that is,
the player’s state of mind is not yet fixed on a particular pure action of the
support. Hence, the prima facie exotic wave function of QM has a clear-cut
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game-theoretic interpretation: mathematically a wave, that is a unit vector of
a complex Hilbert space, implies that the linear combination of any states of
mind corresponding to the choices of any pure actions in the support of the
determined (rational) mixed strategy of the player is itself a possible state of
mind for this player prior to his or her making an actual choice. Thus, the
so-called “quantum superposition” is nothing but the expression of the fact that
the player has not “made up his or her mind” until he or she is asked to do
so in an experiment. Indeed, this property is nothing but the informational
or epistemic characterization of the “indifference condition.” Equivalently
put, the wave function represents the real mental state of the player, in the
sense that the relative height of the graphical representation of the probability
distribution induced in equilibrium does not represent the relative likelihood
that some agents are assigned to the two definite pure actions (definite states of
mind) of the player. Rather, the relative height of the probability distribution
is a property of the player representing his or her unsettled state of mind, before
he or she makes an actual choice in an experiment. The twist is thus that the
“indifference condition,” which has long been regarded as a serious defect of
the Nash equilibrium, has in fact a very intuitive meaning. It is indeed almost
tautological to say that, prior to his or her definite choice in an experiment, a
player must not have settled his or her mind on a particular action of support.

The upshot is thus that the “indifference condition” should not be inter-
preted as reflecting a randomization on the part of the players. A Nash
equilibrium is a self-interactive solution concept, wherein no player expects
any other player to randomize since they are all in a quantum superposition,
as a result of their own determination of a strategy–belief pair. Third, as
illustrated above in our “game-theoretic two-slit experiment,” non-additive
probabilities—which have often been regarded as the hallmark of quantum
phenomena (see, e.g. Feynman et al. (1965))—enter the picture of the classical
game model.

Only a few papers have tried to make a connection between classical game
theory and QM. Pietarinen (2002) is the first to raise explicitly the possibility
of some fundamental connections between extensive form games of imperfect
information, quantum logic, and QM. More recently, Brandenburger (2010)
establishes a formal connection between classical game theory with the non-
local correlations arising in QM. Here, we have pointed out a fundamental
connection between the two theories. This suggests the potential existence of
an underlying principle behind QM, the notion of free choice in physics, and
the ultimate nature of consciousness. (see, e.g. Conway and Kochen 2006,
2009).
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Decision-Making and Cognition Modeling
from the Theory of Mental Instruments

Irina Basieva and Andrei Khrennikov

1 Introduction

The measurement theory plays a crucial role in quantum mechanics (QM).
According to Bohr, QM is not about the microworld as it is, (Bohr 1987)
(see also Plotnitsky 2006, 2009). It is about the results of our measurements
performed for ensembles of microsystems (Bohr 1987):

There is no quantum world. There is only an abstract quantum physical
description. It is wrong to think that the task of physics is to find out howNature
is. Physics concerns what we can say about Nature.

Everything that can be said about nature is obtained from measurements.
Therefore creation of the formalism describing quantum measurements was
one of the most important steps in the development of QM, see Von Neuman
(1955) and Dirac (1995) for the first crucial contributions, and the later works
of Davies and Lewis (1970), Holevo (2001), Ozawa (1984, 1997), and Busch
et al. (1995). Note that all these contributions to the quantum measurement
theory were based on advanced mathematics. And one of the aims of this
chapter is to present this theory in a humanities friendly way.
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We emphasize that the cognitive and social sciences can also be treated
as theories of measurements. Here a great deal of effort has been put into
the development of measurement formalisms, compare with, for example,
the time-honored Stimulus-Organism-Response scheme for explaining cognitive
behavior (Woodworth 1921). As well as in quantum physics, cognitive and
social scientists cannot approach the mental world directly; they work with
the results of observations. Both quantum physics and the cognitive and
social sciences are fundamentally based on the operational formalisms for
observations. As we have emphasized from the start, the operational viewpoint
regardingQMhas already been presented by Bohr; see also the aforementioned
papers (Davies and Lewis 1970; Holevo 2001; Ozawa 1984, 1997; Busch
et al. 1995). Recent years have been characterized by attempts to derive the
quantum theory from a few natural operational principles (D’ Ariano 2007).
The operational viewpoint can be found in works on cognition, decision-
making, and psychology, for example, Machina (2003):

While advances in neuroscience may ultimately do for decision theory what
vivisection did for anatomy, decision theory currently remains very much a
“black box” science. Although decision theorists can (and do) use introspection
to suggest theories and hypotheses, the rigorous science consists of specifying
mutually observable independent variables (in particular, the objects of choice
available for selection), mutually observable dependent variables (the selected
alternative), and refutable hypotheses linking the two.

From this viewpoint, QM is similar to the cognitive and social sciences, but
with one crucial proviso: cognitive and social systems are able to perform self-
measurements (Khrennikov 2010)—contrary to physical systems. In quantum
physics an observer is always external with respect to a physical system exposed
to measurement. This separation between an observer and a system plays
an important role in quantum foundations, at least for physicists using the
conventional Copenhagen interpretation of QM. However, human beings or
even animals (or maybe even cells (Asano et al. 2012)) are able to ask questions
to themselves and in this way to perform self-measurements. An ability for self-
measurement makes an important difference between physics and cognition.
Therefore by applying the quantum formalism to the cognitive and social
sciences (as we plan to do) we have to reconsider the principles of quantum
measurement theory. We have to understand whether it can be treated in such
a way that it even covers self-measurement. We shall see that, in principle, this
is possible by using the quantum model of indirect measurements, see Sect. 3
(although we understand well that our solution is formal and the problem of
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embedding self-measurements into quantum measurement theory is of huge
complexity and in future will have to be studied in more detail).

The basic notion of the operational formalism for quantum measurement
theory is quantum instrument (Davies and Lewis 1970; Ozawa 1984, 1997).
Quantum instruments are mathematical structures representing at a high
level of abstraction the physical apparatuses used for measurements. They
encode the probabilities of the results of observations and the back-actions
of measurements to the states of physical systems. Such back-actions are
mathematically represented with the aid of an important mathematical struc-
ture, a quantum operation (state transformation). Our aim is to explore the
theory of quantum instruments and especially the part devoted to indirect
measurement in the cognitive and social sciences. The scheme of indirect
measurement is especially useful in applications: both in quantum physics and
the humanities.

In this scheme, apart from the “principal system” S, there is considered to be
a probe system S0 and a measurement on S which is composed of the unitary
interaction with S0 and measurement on the latter. This approach provides the
possibility to extend the class of quantummeasurements which originally were
only von Neumann–Lüders measurements of the projection type. The aim of
such an extension was not only the natural desire for generality. Generalized
quantum measurements have some new features which we plan to explore
in the cognitive and social sciences, and we will concentrate only on those
features. There are other physically important features which we do not discuss
in this chapter, because they are not relevant to our project on quantum-like
cognition.

For us, one of the main problems of exploring solely projective (direct)
measurements is their fundamentally invasive nature: as the feedback of a
measurement, the quantum state is “aggressively modified”—it is projected
onto the subspace corresponding to the result of this measurement. This
feature of the projection measurement is often referred to as the collapse of
the wave function. The notion of collapse is very controversial and the use
of the projection postulate is still actively debated in quantum foundations
(Ballentine 1990; Khrennikov and Basieva 2014). In any event, this feature
is not so natural for the evolution of the mental state. Its “collapse” as the
back-reaction to answering any question, solving any problem, and decision-
making in general would make its evolution extremely discontinuous. This
picture does not match (first of all) with the self-inspection of the evolution of
our own mental states. Roughly speaking the use of the collapse model implies
a collapse of the self.
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In the scheme of indirect measurements, the state transformation (“quan-
tum instrument”) induced by a measurement can be essentially less invasive
than the projective transformation. And we plan to explore this feature of
generalized quantum measurements in the cognitive and social sciences.

In this chapter social systems will be treated as special cognitive systems.
Therefore we will not put special effort into specifying the features of “social
instruments,” although we understand that there are differences in transfor-
mations of the belief-state of a brain and the belief-state of a social system.
However, we proceed at such a level of abstraction that these differences are
not so important. Therefore in this presentation we shall write about transfor-
mations of the belief-states of cognitive systems (resulting frommeasurements,
including self-measurements), but we shall bear in mind the possibility of
applications to transformations of the belief-states of social systems.

Another important issue for our applications feature of quantum instru-
ments is that a variety of different quantum instruments describing back-
reaction transformations resulting from measurements can correspond to
the same observable on the principal system S: Thus the same statistics of
measurement can correspond to very different state transformations (very
different types of interaction between the principal and probe systems). InQM
(asM.Ozawa emphasized (Ozawa 1997)) the same observable can bemeasured
by different apparatuses having different state-transforming quantum instru-
ments. This is a very important characteristic of the theory of generalized
quantum measurements. It is also very useful for cognitive modeling, since
it reflects the individuality of measurement apparatuses/instruments which
are used by cognitive systems (e.g., human beings) to answer the same
problem/question. Roughly speaking this individuality cannot be discovered
from the statistics of answers to one question, because it is encoded in the
post-answering states which can be very different for the same probability
distribution of answers.

We would point out that the scheme of indirect measurements repre-
sents the state dynamics in the process of measurement and not just the
“yes”/“no” collapse as in the original von Neumann–Lüders approach. The
possibility of describing mathematically the dynamics of the mental state
in the process of decision-making by using the quantum formalism is very
attractive from the viewpoint of cognitive science and psychology. A study
in this direction has already been presented in the work of (Pothos and
Busemeyer 2013), although without appealing to the operational approach
to QM. In the series of works of Asano et al. (2010a,b, 2011) and Ohya and
Tanaka (2016) the process of decision-making was described by a novel scheme
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of measurements generalizing the standard theory of quantum instruments
(Asano et al. 2010a,b, 2011; Ohya and Tanaka 2016).
As general references to studies in quantum-like modeling of cognition,

decision-making, economics, and finance we may mention the monographs
(Khrennikov 2010; Haven and Khrennikov 2012; Busemeyer and Bruza 2012).
Note that nowadays generalized quantum observables represented by POVMs
are widely used in quantum-like modeling, see, for example, Khrennikov
(2010), Asano et al. (2010a), Khrennikov and Basieva (2014), and Khrennikov
et al. (2014).

We proceed formally and avoid deep discussions about the self (of an
individual and of a social system) and the interrelation of the unconscious
and conscious, though we shall make a few remarks about them in Sect. 6.

2 Mental Instruments

The basics of the quantum formalism are presented in chapter “A Brief
Introduction to Quantum Formalism” of this handbook (Khrennikov and
Haven 2016); we shall use the notions of pure and mixed states, unitary
transformations, partial trace, tensor product, and POVMs. We shall proceed
with finite dimensional state spaces by making remarks on the corresponding
modifications in the infinite dimensional case. As in Khrennikov and Haven
(2016), D(H) denotes the space of density operators in the complex Hilbert
space HI L(H) the space of all linear operators in H (bounded operators in the
infinite dimensional case).

The space L(H) can itself be endowed with the structure of the linear space.
We also have to consider linear operators from L(H) into itself; such maps,
T W L(H) ! L(H), are called superoperators. We shall use this notion only in
Sect. 4. Thus, for the moment, the reader can proceed without it.

On the space L(H) it is possible to introduce the structure of Hilbert space
with the scalar product

hAjBi D TrA?B:

Therefore, for each superoperator T W L(H) ! L(H); there is defined its
adjoint (super)operator T? W L(H) ! L(H); hT(A)jBi D hAjT?(B)i;A;B 2
L(H):

Consider a cognitive system, specifically a human individual. She fronts
some questions/problems, that is, she has to make decisions. In the
quantum(-like) model the space of her mental states is represented by complex
Hilbert spaceH (pure states are represented by normalized vectors and mixed
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states by density operators). In the model under construction H is tensor-
factorized into two components, namely, H D H ˝ K; where H is the space
of belief-states and K is the space of decision-states. The states of the latter are
open for conscious introspection, but the states of the former are in general not
approachable consciously.

Suppose that this individual fronts some concrete question A with possible
answers (decisions) labeled ai; i D 1; 2; : : : ;m:We denote the set of possible
values of A by the symbol O; that is, O D fa1; ::; amg: At this instance of
time, she has the belief-state � (e.g., a pure state, i.e., � D j ih j;  2
H; k k D 1): To answer A; the individual will use a “mental instrument,”
denoted A; which will produce the results (answers) ai randomly with the
probabilities p(aij�); the output probabilities.1 An instrument represents not
only decisions and the corresponding probabilities, but also the results of
the evolution of the initial belief-state � as induced by the back-reaction
to the concrete decision ai: This is a sort of state reduction, a “belief-state
collapse,” as the result of the concrete decision aiI thus � is transformed into
the output state �ai :However, as we shall see, in general this belief-state update
can be sufficiently harmonious, so our model differs crucially from orthodox
quantum models of cognition (Busemeyer and Bruza 2012) based on the
projection-type state update. Thus each mental instrument A corresponding
to the question/problem A is mathematically represented by

• probabilities for concrete decisions p(aij�)I
• transformations of the initial belief-state corresponding to the concrete

results of measurements,
�! �ai : (1)

The rigorous mathematical description of such state transformations leads
to the notion of a quantum instrument, see Sect. 4.

2.1 Mixing Law

In the quantum operational formalism it is assumed that these probabilities,
p(aij�); satisfy the mixing law. Note that, for any pair of states (density
operators) �1; �2 and any pair of probability weights q1; q2 � 0; q1Cq2 D 1;

1We are moving toward the creation of a cognitive analog of the quantum operational model of
measurements with the aid of physical apparatuses.
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the convex combination � D q1�1 C q2�2 is again a state (density operator).
In accordance with the mixing law any instrument produces probabilities such
that

p(aijq1�1 C q2�2) D q1p(aij�1)C q2p(aij�2): (2)

A probabilistic mixture of beliefs produces the mixture of probabilities for decision
outputs. This is a very natural assumption, although an additional analysis of
its validity in cognitive science and psychology has to be done.

2.2 Composition of the Instruments

It is natural to assume that after answering some question A a person is ready to
answer another question BI such a sequence of decision-making is represented
as a new mental instrument, the composition of the instruments A and B W
BA: Its outputs are ordered pairs of decisions (ai; bj): It is postulated that the
corresponding output probabilities and states are determined as

p((ai; bj)j�) D p(bjj�ai)p(aij�)I (3)

�(ai;bj) D (�ai)bj : (4)

The law (3) can be considered as the quantum generalization of Bayes’ rule.
The law (4) is the natural composition law.

3 Decision-Making Through Unitary
Interaction Between the Belief and
Decision-States

The above operational description of decision-making was formulated solely
in terms of belief-states. However, a belief-state is a complex informational
state which is in general unapproachable for conscious introspection. The
operational representation of observables in the space of belief-states is not
straightforward and in general it cannot be formulated in terms of mutually
exclusive decisions. Later we shall consider this problem in more detail.

It is more fruitful to define the observable decision directly in terms of
the question/problem A by using an additional state space, the space of the
decision-states K: In the decision space a question-observable can be defined as
the standard von Neumann–Lüders projection observable.
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Example 1

Consider the simplest case. There is just one question A; it is dichotomous, that
is, there are two possible outcomes of “mental measurement,” “no”=0 and
“yes”=1. This question can be represented by the pair of projectors (P0;P1) onto
the subspaces K0 and K1 of the decision space K: Since the answers a0 D 0 and
a1 D 1 are mutually exclusive, and sharply exclusive (later we shall discuss the
meaning of sharp/unsharp in the measurement context), the subspaces K0 and K1

are orthogonal. Hence, the projectors P0 and P1 can be selected as orthogonal.
The question A can be represented by the conventional von Neumann–Lüders
observable OA D a0P0 C a1P1(D P1): However, we emphasize that this represen-
tation is valid only in the decision-state space K: It is often (but not always!)
possible to proceedwith one-dimensional projectors, that is, to represent possible
decisions just by the basis vectors in the two-dimensional decision-state space,
(j0i; j1i): Here each decision-state can be represented as a superposition

� D c0j0i C c1j1i; jc0j2 C jc1j2 D 1: (5)

Measurement of A leads to probabilities given by squared coefficients, p0 D
jc0j2; p1 D jc1j2:

In general (in the case of the finite-dimensional decision-state) a question-
observable A can be represented as

A D X

i

aiPi; (6)

where (Pi) is the family ofmutually orthogonal projectors in the space of decision-
states K, and (ai) are real numbers encoding possible answers (decisions).

Nowwe shall explore the cognitive analog of the standard scheme of indirect
measurements. Here “indirectness” means that the belief-states are in general
unapproachable for conscious introspection. Therefore it is impossible to
perform the direct measurement on the belief-state � (in particular, on a
pure state � D j ih j): Moreover, in the belief-state the alternatives, say
“no”/“yes,” encoded in a question-observer A, are not represented exclusively,
for they can have overlap. Mathematically this situation is described as follows.
In the belief space an observable A is represented as an unsharp observable
of the POVM type. Roughly speaking, in the H-representation the A-“no”
contains partially the A-“yes” and vice versa. The latter is simply a consequence
of interpretation of POVM observables as unsharp observables.

Remark 1. To map the quantum physics scheme (Ozawa 1984, 1997) of
indirect measurements onto the quantum(-like) cognition scheme, one has
to associate the state of the principal physical system S with the belief-state
and the state of the probe physical system S0 with the decision-state. Note
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that in the cognitive framework we do not consider analogs of systems. In
principle, one can consider the belief-system S as a part of the neuronal
system representing human beliefs and the decision system S0 as another
part of the neuronal system representing possible decisions. The latter can
be specified: different question-observables can be associated with different
neuronal networks responsible for the corresponding decisions. However, in
principle we need not associate belief and decision-states with special physical
neuronal networks. Moreover, in the case of cognition, the usage of isolated
physical systems as carriers of the corresponding information states might
be ambiguous. The interconnectivity of neuronal networks is very high. (Of
course, even in physics the notion of an isolated system is just an idealization of
the real situation.) Therefore it is useful to proceed with the purely information
approach by operating solely with states, without coupling them to bio-
physical systems. This is, in fact, the quantum information approach, where
systems play the secondary role, and one operates with states, especially for the
information interpretation of QM (Zeilinger 2010).

Typically, at the beginning of the process of decision-making, the belief
and decision-states, � and �; are not entangled.2 Thus mathematically (in
accordance with the quantum formalism) the integral belief-decision-state, the
complete mental state (corresponding to the problem under consideration),
can be represented as the tensor product R D � ˝ �: It is natural to
suppose that the initial decision-state � is, in fact, a pure state represented
by a superposition of possible decisions, see, for example, (5): the situation of
complete uncertainty is represented by superposition

� D (j0i C j1i)=p2: (7)

In the process of decision-making, the belief and decision-states (cf.
Remark 1) “interact” and the evolution of the belief-decision-state R is
mathematically represented by a unitary operator3 U W H! H W

R! Rout � URU?: (8)

2One can say that they are independent. But one needs to use this terminology carefully, since the notion
of quantum independence is more complicated than the classical one and is characterized by a diversity
of approaches.
3As was mentioned, in the works of Asano et al. (2010a,b, 2011) and Ohya and Tanaka (2016) even non-
unitary evolutions were in charge.
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In the space of belief-decision-statesH the question-observer A is represented
by the operator I ˝ A: Thus the probabilities of decisions are given by

pA˝I
ai
D TrRout(I ˝ Pi) D TrURU?(I ˝ Pi); (9)

where the projectors (Pi) form the spectral decomposition of the Hermitian
observable A in KI see (6). Since only the decision-state belonging to K is a
subject of conscious introspection, at the conscious level the decision process
can be represented solely in the state space K: The post-interaction decision-
state �out can be extracted from the integral state Rout with the aid of the
operation of the partial trace:

�out D TrHRout: (10)

Then the question answering can be represented as the result of the A-
measurement (measurement of the projection type) in the decision space, the
measurement on the output state �out: The probabilities of the answers (ai)
are given by the standard Born rule:

pA
ai
D TrK�outPi D TrK(TrHURU?)Pi D TrURU?(I ˝ Pi) D pA˝I

ai
: (11)

Thus (9) and (11) match each other.
What happens in the belief space? The expression (9) for the probability of

the decision ai can be represented as

p(aij�) D pA˝I
ai
D TrU�˝ �U?(I ˝ Pi) D Tr�˝ �U?(I ˝ Pi)U D TrH�Mai ;

(12)
where

Mai D TrK(I ˝ � )U?(I ˝ Pi)U: (13)

The operator MiIH ! H can also be represented in the following useful form
(a consequence of the cyclic property of the trace operation):

Mai D TrKU?(I ˝ Pi)U(I ˝ � ) (14)

Note that (13) implies:

X

i

Mai D TrK(I ˝ � )U?

 

I ˝
X

i

Pi

!

U D TrKI ˝ � D (TrK� )I:
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Note also that each operator Mai is positively defined and Hermitian. Thus
in the belief space the decision-observable of the projection-type A (acting in
K) with the spectral family (Pi) is represented as POVM M D (Mi): Note
that in general the operators Mi are not projectors. Such measurement cannot
separate sharply the answers (decisions) (ai) for different i: In the decision ai

there are nontrivially present beliefs that the decision might even be aj; j 6D i.
The operational formalism also gives the post-decision belief-state

�ai D
TrKU(�˝ � )U?(I ˝ Pi)

TrU(�˝ � )U?(I ˝ Pi)
: (15)

The output belief-state depends not only on the initial belief-state �; but
also on the initial decision-state �; interaction between beliefs and possible
decisions given by U, and the question-observable A acting in K:

4 General Viewpoint Regarding State
Transformers: Quantum Instruments

The considered model of decision-making, as the result of unitary interaction
between the belief-state and the decision-state, describes an important class of
transformations of the belief-state, see (15). We now turn to the general case
which was considered in Sect. 2, see (1). Set

E(ai)� D p(aij�)�ai (16)

and, for a subset  of O; where O D fa1; : : : ; amg is the set of all possible
answers (decisions), we set

E()� D
X

ai2
E(ai)� D

X

ai2
p(aij�)�ai : (17)

We point to the basic feature of this map:

TrE(O)� D
X

ai2O

p(aij�)Tr�ai D 1: (18)
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For each concrete decision ai; E(ai) maps density operators to linear operators
(in the infinite dimensional case, these are trace-class operators, but we proceed
in the finite dimensional case, where all operators have finite traces). The
mixing law implies that, for any  	 O;

E()(q1�1 C q2�2) D q1E()�1 C q2E()�2: (19)

As was shown by Ozawa (1997), under the assumption of the existence of
composition of the instruments, any such map E() W D(H)! L(H) can be
extended to a linear map (superoperator)

E() W L(H)! L(H) (20)

such that:

• each E() is positive, i.e., it transfers the set of positively defined operators
into itself;

• E(O) DPi E(ai) is trace preserving:

TrE(O)� D Tr�: (21)

The latter property is a consequence of (18).4
Thus the two very natural and simple assumptions, the mixing law for prob-

abilities and the existence of composite instruments, have the fundamental
mathematical consequence of being the representation of the evolution of the
state by a superoperator (20).

In quantum physics such maps are known as state transformers (Busch
et al. 1995) or DL (Davies and Lewis 1970) quantum operations.5 Thus each
decision induces the back-reaction which can be formally represented as a state
transformer. In these terms

�ai D
E(ai)�

TrE(ai)�
(22)

4If one wants to continue E() from the set of density operators to the set of all linear operators (in the
infinite dimensional case it has to be the set of finite-trace operators) by linearity then it has to be set as
E()� D E()Tr�(�=Tr�) D Tr� E()(�=Tr�) and, in particular, E(O)� D Tr� E(O)(�=Tr�) D
Tr�:
5DL notion of the quantum operation is more general than the notion used nowadays. The latter is based
on complete positivity, instead of simply positivity as the DL notion, see Sect. 5 for the corresponding
definition and a discussion on whether the reasons used in physics to restrict the class of state transformers
can be automatically used in cognitive science.
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Note that the map  ! L(L(H)); from subsets of the set of possible
decisions O into the space of superoperators, is additive:

E(1 [ 2) D E(1)C E(2); 1 \ 2 D ;: (23)

This is a measure with values in the space L(L(H)): Such measures are
called (DL) instruments (Davies and Lewis 1970). To specify the domain of
applications in our case, we shall call them mental instruments.
The class of such instruments is essentially wider than the class of instru-

ments based on the unitary interaction between belief and the decision
components of the mental state, see (15). The evident generalization of
the scheme of Sect. 3 is to consider nonunitary interactions between the
components of the mental state. Another assumption which can evidently be
violated in the modeling of cognition is that the initial belief and decision
states are not entangled (“independent”), see Asano et al. (2010a,b, 2011) and
Ohya and Tanaka (2016) for generalizations of the aforementioned scheme.

We start with a discussion on the possible nonunitarity of interaction between
the belief and the decision states. In quantum physics the assumption of
unitarity of interaction between the principal system S and the probe system
S0 (representing a part of the measurement apparatus interacting with S) is
justified, because the compound system SC QS0 can be considered (with a high
degree of approximation) as an isolated quantum system, and its evolution can
be described (at least approximately) by the Schrödinger equation. The latter
induces the unitary evolution of a state.

In cognition the situation is totally different. The main scene of cognition
is not the physical space–time, but the brain. And it is characterized by
huge interconnectivity and parallelism of information processing. Therefore
it is more natural to consider the belief and decision states corresponding
to different questions (problems) as interacting, especially at the level of the
belief-states. Thus the decision-making model based on the assumption of
isolation of different decision-making processes one from another seems to
be too idealized, although it can be used in many applications, where the
concentration on one fixed problem may diminish the influence of other
decision-making processes.

In physics the assumption that the initial state of the system S C QS0 is
factorized is also justified, since the exclusion of the influence of the state of
the measurement device to the state of a system S prepared for measurement
(and vice versa) is the experimental routine. In cognition the situation is more
complicated. One cannot exclude that in some situations the initial belief and
decision state are entangled.
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The representation of probabilities with the aid of POVMs is not a feature of
only the unitary interaction representation of instruments, see (12). In general
any DL instrument generates such a representation. Take an instrument E ;
where, for each ai 2 O; E(ai) W L(H)! L(H) is a superoperator. Then we can
define the adjoint operator E?(ai) W L(H)! L(H): Set Mai D E?(ai)I; where
I W H ! H is the unit operator. Then, since pai D TrE(ai)� D Tr II E(ai)� D
hIjE(ai)�i DD hE?(ai)Ij�i D Tr(E?(ai)I)� D TrMai�: By using the
properties of an instrument it is easy to show that Mai is a POVM. Thus
each mental instrument can be represented by a POVM. We interpret this
POVM as the mathematical representation of “unconscious measurements”
which the brain performs on the belief states as the back-reactions to decisions
which are taken at the conscious level. Such “unconscious measurements” are
not sharp, they cannot separate completely different decisions ai which are
mutually exclusive at the conscious level.

5 On the Role of the Condition of Complete
Positivity in the Operational Approach to
Cognition

Nowadays the theory of DL instruments is considered old-fashioned; the
class of such instruments is regarded as too general: it contains mathematical
artifacts which have no relation to real physical measurements and state
transformations as back-reactions to these measurements. The modern theory
of instruments is based on the extendability postulate invented by Ozawa
(1984), see also the textbook of Nielsen and Chuang (2000):
For any instrument AS corresponding to the measurement of observable

A on a system S and any system QS non-interacting with S there exists an
instrument ASCQS representing measurement on the compound system SC QS
such that

• p(aij�˝ r) D p(aij�)I
• (�˝ r)ai D �ai ˝ r

for any state � of S and any state r of QS:
This postulate is very natural: if, besides the quantum system S which is the

object of measurement, there is (somewhere in the universe) another system QS
which is not entangled with S; that is, their joint pre-measurement state has the
form � ˝ r; then the measurement on S with the result ai can be considered
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as a measurement on S C QS as well with the same result ai: It is clear that
the back-reaction cannot change the state of QS: Surprisingly this very trivial
assumption has tremendous mathematical implications.

Since we proceed only in the finite dimensional case, the corresponding
mathematical considerations are simplified. Consider an instrument ES repre-
senting the state update as the result of the back-reaction from measurement
on S: For each ; this is a linear map from L(H)! L(H); where H is the state
space of S: Let W be the state space of the system QS: Then the state space of the
compound system SC QS is given by the tensor product H˝W:Note that the
space of linear operators in this state space can be represented as L(H˝W) D
L(H)˝ L(W): Then the superoperator ES() W L(H)! L(H) can be trivially
extended to the superoperator ES() ˝ I W L(H ˝ W) ! L(H ˝ W): It is
easy to prove that the state transformer corresponding to the instrument for
measurements on SC QS has to have this form ESCQS(ai) D ES(ai)˝ I:Hence,
this operator also has to be positively defined. Note that if the state spaceW has
the dimension k; then the space of linear operators L(W) can be represented
as the space of k � k matrices which is further denoted as Ck�k:

Formally, a superoperator T W L(H)! L(H) is called completely positive if it
is positive and its trivial extension T˝I W L(H)˝Ck�k ! L(H)˝Ck�k is also
positive. There are natural examples of positive maps which are not completely
positive (Nielsen and Chuang 2000).

A CP quantum operation is a DL quantum operation which is
additionally completely positive; a CP instrument is based on CP
quantum operations representing back-reactions to measurement. As was
pointed out, in modern literature only CP quantum operations and
instruments are in use, so they are called simply quantum operations and
instruments.

The main mathematical feature of (CP) quantum operations is that the class
of such operations can be described in a simple way, namely, with the aid of
the Kraus representation (Ozawa 1984, 1997):

T� D
X

j

V?
j �Vj; (24)

where (Vj) are some operators acting in H: Hence, for a (CP) instrument, we
have: for each ai 2 O; there exist operators (Vaij) such that

E(ai)� D
X

j

V?
aij�Vaij: (25)
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Thus
�ai D

P
j V?

aij
�VaijP

j V?
aij
�Vaij

; (26)

where the trace one condition (18) implies that

X

i

X

j

V?
aijVaij D I: (27)

The corresponding POVMs Mai can be represented as

Mai D
X

j

V?
aijVaij: (28)

This is really elegantmathematical representation.However, it might be that
this mathematical elegance and not the real physical situation has contributed
to the widespread adoption of CP in quantum information theory, cf. Shaji
and Sudarshan (2005).

Is the use of the extendability postulate justified in the operational approach to
cognition?

It seems not (although this is a complex problem and further analysis has
to be done). Any concrete decision is made at the conscious level and it is
based on interaction with beliefs related to the problem under consideration
(question-observable A): The state of these beliefs corresponds to the state of
the system S in the above considerations. To be able to consider the state of
another group of beliefs, the analog of the state of the system QS; the brain has
to activate these beliefs. Thus we cannot simply consider all possible beliefs
as existing in some kind of mental universe simultaneously and, hence, we
cannot interpret a mental measurement based on one special group of beliefs,
with the state space H; as extended to a mental measurement in combination
with another group of beliefs.

It seems more natural to develop a theory of mental instruments as a
theory of DL instruments and not CP instruments. In particular, although
the Kraus representation can be used as a powerful analytic tool, one has not
to overestimate the possibility of its use in the modeling of cognition.
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6 Concluding Remarks

In this chapter we have presented a mental version of the quantum operational
approach. This approach can be applied for a large range of the problems in
cognitive science, psychology, social science, politics, economics, and finance.
In the operational approach, quantum systems are considered as black boxes;
compare with the citation from Machina (2003) in the introduction to this
chapter. In quantum physics the Copenhagen position is commonly accepted:
it is in principle impossible (forbidden) to open these black boxes (Zeilinger
2010). To support this position, physicists use various no-go theorems, for
example, von Neumann’s theorem or Bell’s theorem. In this, note that we
did not question this position; compare with, however, Khrennikov (2010).
The self is defined operationally as a system performing sequential self-
measurements which produce probabilistically and in accordance with the laws
of quantum probability and information theory updates of mental states (in
particular, belief-states).

Finally, we would remark that in quantum physics the operational theory
of measurements (Davies and Lewis 1970; Holevo 2001; Ozawa 1984, 1997;
Busch et al. 1995) describes all possible measurements. It is not self-evident
that the same operational model (based on the same mathematical structures)
would describe completely, for example, cognitive measurements. Although
the quantum-like modeling of cognition and social behavior is very successful,
there are some pitfalls which canmake the realization of the project “quantum-
like cognition”more difficult than was expected at the beginning. In particular,
the possibility of covering all measurements in cognitive psychology by the
operational quantum formalism was questioned in Khrennikov et al. (2014).
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Adaptive Dynamics and an Optical Illusion

Masanori Ohya and Yoshiharu Tanaka

1 Introduction

Optical illusion is one of the fundamental phenomena depending on experi-
mental contexts (settings). Figure 1 is called a Schröder stair (Schröder 1858).
We can see stairs in the middle of the figure, and it has two possible ways of
observing it: One way is that “the left part (L) is front and the right part (R) is
back,” and another way is its converse. Such visual perception is called bistable
perception (Atmanspacher et al. 2004). Experimentally, it is confirmed that the
tendency of the perception depends on the angle � . In � D 0, most of us see
that (L) is front. Oppositely, in the � D 90, most of us see that (R) is front.

Such biased perception is induced due to our experience that we have
not seen the top-heavy stairs. We can naturally select the most reasonable
perception. The bistable perceptions are considered as the result of decision-
making in the visual perception process for ambiguous stimulus. When angle
� is around 45ı, we feel more ambiguity, and such fluctuation of bistable
perceptions is seen in the probability of an answer by a subject.

In this study, we explain the context dependency of the optical illusion
within non-classical probability theory (non-Kolmogorov probability theory).

Recently, it has been reported that there exist the experimentally obtained
data which violate the laws of classical (Kolmogorov) probability theory. Such

M. Ohya (�) • Y. Tanaka
Department of Information Sciences, Tokyo University of Science, Tokyo, Japan
e-mail: ohya@is.noda.tus.ac.jp; tanaka@is.noda.tus.ac.jp

© The Editor(s) (if applicable) and The Author(s) 2017
E. Haven, A. Khrennikov (eds.), The Palgrave Handbook of Quantum
Models in Social Science, DOI 10.1057/978-1-137-49276-0_6

95

mailto:ohya@is.noda.tus.ac.jp
mailto:tanaka@is.noda.tus.ac.jp


96 M. Ohya and Y. Tanaka

Fig. 1 Schröder Stair is an ambiguous figure which has two different interpreta-
tions, “the left part (L) is front and the right part (R) is back,” and its converse.
Humans perceive either of them, and the tendency of the perception depends on
the rotation angle �

violation is often seen in the experiment of context dependent phenomena,
such as Escherichia coli’s selectivemetabolism of sugar (Asano et al. 2012c,d). So
far, mathematical treatment of such experimental data has been investigated.

First of all, in Sects. 2–4 we introduce the idea of adaptive dynamics
(AD) (Ohya and Volovich 2011; Ohya 2008; Asano et al. 2013a), which has
been used to study the context dependent phenomena (Asano et al. 2014).
The concept of AD is used for the study of chaos (Kossakowski et al. 2003;
Ohya and Volovich 2011), the satisfiability problem (SAT) (Ohya and Volovich
2003, 2011; Accardi and Ohya 2004), and so on. In Sect. 2 we explain the
conceptual meaning of AD. In Sect. 3 we explain the mathematical framework
of AD in order to discuss the definition of non-Kolmogorov joint probability
for the study of context dependent phenomena (Asano et al. 2013a, 2012c,d).
In Sect. 4, we briefly introduce the applications of AD.

Further, in Sect. 5, we demonstrate the experimental data of the optical
illusion of the Schröder stair. In our tests, we rotate the figure, that is,
change the angle � , gradually, and ask how the perception is changed, (L)
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Fig. 2 Optical illusion is affected by memory bias: the subject’s perception is
shifted in response to the rotation direction of the figure

or (R). We found that the way of seeing the Schröder stair depends on the
direction of rotation. Remarkably, there is a difference between perceptions
in clockwise rotation and in counterclockwise rotation. We will show the
experimentally observed difference in Fig. 2 in Sect. 5. Note that the direction
of rotation is considered as the context of this cognitive experiment. The
context dependency of the visual perception process was observed in the result
of our tests.

In Sect. 6, we quantitatively explain the context dependency within the
framework of non-Kolmogorov probability theory, which contains the usual
quantum probability theory. We have the statistical probability of the data
of our tests, for example joint probability of the answers for the figures at the
several different angles. We check if the probabilistic data of our test violate the
inequality which is derived under the assumption that there exists a common
joint probability regardless of rotation directions. Such inequality is obtained
by generalizing the Leggett–Garg inequality (Leggett and Garg 1985) from the
view point of contextuality.

In Sect. 7, we propose the non-Kolmogorov probabilistic model of bistable
perceptions. This model is based on the framework of AD which is explained
in Sect. 3.2. From a mathematical point of view, the map of lifting and the
operator function are used for modeling the process of visual perception.

2 Conceptual Meaning of Adaptive Dynamics

In physics the mathematical formalization of the adaptive dynamics (AD) has
implicitly appeared in a series of papers (Ohya 1983b, 1998; Accardi and Ohya
1999; Inoue et al. 2000; Ohya and Volovich 2003, 2011; Inoue et al. 2002;
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Kossakowski et al. 2003; Accardi and Ohya 2004; Ohya 2008) for the study
of compound quantum dynamics, chaos, and the quantum realization of the
algorithm on the satisfiability problem (SAT algorithm). The name of AD was
deliberately used in Ohya (2008). AD has two aspects, one of which is the
“observable-adaptive,” another is the “state-adaptive.” We now present very
general statements about these two types of adaptivity.

The observable-adaptive dynamics is a dynamics characterized as follows:

1. Measurement depends on how to see an observable to be measured.
2. The interaction between two systems depends on how a fixed observable exists,

that is, the interaction is related to some aspects of observables to be measured
or prepared.

The state-adaptive dynamics is characterized as follows:

1. Measurement depends on how the state and observable to be used exist.
2. The correlation between two systems depends on how the state of at least one of

the systems exists, e.g., the interaction Hamiltonian depends on the state.

3 Mathematical Representation of Adaptive
Dynamics

3.1 Lifting and Channels

In this section, we present the notions of lifting (Accardi and Ohya 2004)
and channels which are advanced tools of quantum information (Accardi and
Ohya 1999). They will play a basic role in AD. For simplicity, we proceed in
the finite dimensional case.

Let H be a complex Hilbert space. Denote the spaces of linear operators
acting in this space by the symbolO(H): (Thus A W H! H; linearity means
that A transforms linear combinations of vectors into linear combinations.
By fixing an orthonormal basis in H we can represent it as Cn and O(H)
as the space of all n � n complex matrices. However, we prefer to use the
operator terminology, which can be applied even to infinite dimensional
Hilbert spaces.) The space of all quantum states, that is, density operators in
H; is denoted by the symbol S(H):
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LetH andK be two complex Hilbert spaces and letH˝K be their tensor
product. We shall also use O(H ˝ K) as the space of observables for the
compound system.

Definition. Quantum-like lifting is a map

E� W S(H)! S(H˝K):

A Lifting is called pure if it maps pure states onto pure states.

We shall also use a very general definition of a quantum channel:

Definition. A quantum-like channel is a map

ƒ� W S(H)! S(H):

A channel is called pure if it maps pure states onto pure states.

In the same way, we define a channel from S(H) to S(K):Note also that, in
fact, each channel can be represented as a lifting by selecting one of the Hilbert
spaces as the one-dimensional complex space C: The reader can check this by
taking into account that, for an arbitrary Hilbert spaceH; the tensor product
H˝ C can be identified withH:
We now present some important examples of liftings.

Example 1

Isometric lifting: Let V W H ! H˝K be an isometry, that is, a linear map satisfying
the restriction

V�V D I;

where I � IH is the unit map inH and V� denotes the adjoint operator. Then the
map

E�� D V�V�

is a lifting. Liftings of this type are called isometric. Every isometric lifting is a
pure lifting.
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Example 2

Reduction (open system dynamics): If a system †1 interacts with an external
system †2 described by another Hilbert space K and the initial states of †1 and
†2 are �1 and �2, respectively, then the combined state �t of †1 and †2 at time t
after the interaction between the two systems is given by

�t � Ut(�1 ˝ �2)U�

t ;

where Ut D exp(�itH) with the total Hamiltonian H of †1 and †2. A channel is
obtained by taking the partial trace w.r.t. K such as

�1 ! ƒ��1 � trK�t:

Example 3

The projected quantum measurement process is written, in the terminology of
lifting, as follows. Any observable can be represented as A D P

n an�n; where
�n; n D 1; : : : ;m; are the projectors on the eigensubspaces corresponding to the
eigenvalues an (we state again that we work in the finite dimensional case).
In accordance with the projection postulate, the postmeasurement state (if the
result of measurement is not specified) will be

ƒ�� D X

n

�n��n;

where � is the input state. This is a channel. Now we fix a discrete probability
�: This is given by a sequence of weights, say �n � 0;

P
n �n D 1: The lifting E�

associated with this channel ƒ� and with a fixed decomposition of � as

� D X

n

�n�n

where �n 2 S(H) is given by

E�� D X

n

�n�n ˝ƒ��n:

3.2 Joint Probability

In this section, we will discuss how to use the concept of lifting to explain
phenomena which break the usual probability law.
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The adaptive dynamics implies that the dynamics of a state or an observable
after an instant (say the time t0) attached to a system of interest is affected by the
existence of some other observable and state at that instant. Let � 2 S .H/ and
A 2 O .H/ be a state and an observable before t0, and let � 2 S .H˝K/
and Q 2 O .H˝K/ be a state and an observable to give an effect to the state
� and the observable A. In many cases, the effect to the state is dual with that
to the observable, so that we will only discuss the effect to the state. This effect
is described by a lifting E�

�Q; so that the state � first becomes E�
�Q�, before

becoming trKE�
�Q� � ��Q. The adaptive dynamics here is the whole process

such as
Adaptive Dynamics W �) E�

�Q�) ��Q D trKE�
�Q�:

That is, what we need to know is how to construct the lifting for each problem
to be studied, that is, we properly construct the lifting E�

�Q by choosing � and
Q properly. The expectation value of another observable B 2 O .H/ in the
adaptive state ��Q is

tr��QB D trHtrKB˝ IE�
�Q�:

Now suppose that there are two quantum event systems

A D fak 2 R;Fk 2 P .H/g ;
B D ˚bj 2 R;Ej 2 P .K/

�
;

where we do not assume Fk, Ej are projections, but that they satisfy the
conditions

P
k Fk D I;

P
j Ej D I as positive operator valued measures

corresponding to the partition of a probability space in the classical system.
Then the “joint-like” probability obtaining ak and bj might be given by the
formula

P(ak; bj) D trEj � FkE�
�Q�; (1)

where� is a certain operation (relation) between A and B. More generally, one
can take a certain operator function f (Ej;Fk) instead of Ej � Fk. If �;Q are
independent of any Fk, Ej and the operation � is the usual tensor product
˝, so that A and B can be considered as two independent systems or to
be commutative. The above “joint-like” probability then becomes the joint
probability. However, if this is not the case, for example, Q is related to A
and B; the situation will be more subtle. Therefore, the problem is how to set
the operation � and how to construct the lifting E�

�Q in order to describe the
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particular problems associated with the systems of interest. In the following, we
will discuss this problem in the context-dependent systems of visual perception
in optical illusions.

4 Applications of Adaptive Dynamics

As shown in Sect. 2, the adaptive dynamics has two aspects, one of which is
the “observable-adaptivity” and the other is the “state-adaptivity.”

The idea of observable-adaptivity comes from studying chaos. We have
claimed that any observation will be unrelated to or even contradicted by
mathematical universalities such as taking limits, supremum, and infimum.
Observation of chaos is a result due to taking suitable scales of, for example,
time, distance, or domain, though it will not be possible in the limiting cases.
Examples of observable-adaptivity are used to understand chaos (Ohya 1998;
Kossakowski et al. 2003) and examine the violation of Bell’s inequality, namely
the chameleon dynamics of Accardi (1997). The idea of state-adaptivity
is implicitly initiated when constructing a compound state for quantum
communication (Ohya 1983a,b, 1989; Accardi and Ohya 1999) Examples
can be seen in the algorithm for solving NP-complete problems, which is
an issue that has been pending for more than 30 years, and which asks
whether there exists an algorithm that will solve an NP-complete problem
in polynomial time, as discussed (Ohya and Volovich 2003, 2011; Accardi and
Ohya 2004).

We will discuss, in Sect. 7, how we can apply adaptive dynamics to the
cognitive system of visual perception. The concept of adaptivity naturally
exists in such systems. Our formulation here contains some treatments shown
in the book (Ohya and Volovich 2011) to understand the evolution of HIV-1,
the brain function, and the irrational behavior of prisoners.

5 Method and Results of Experiment

In this section, we explain the tests of optical illusion of rotating the Schröder
stair. The subjects in the test were 151 students of the Department of Informa-
tion Science, TokyoUniversity of Science. They were divided into three groups
(nA D 55; nB D 48; nC D 48). For all three, we showed 11 pictures which
were leaning at different angles. Subjects answered L D“I can see that the left
side is front,” or they answered R D“I can see that the right side is front”
for each picture. For the first group (A), the order of showing the pictures
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was randomly selected for each subject. For the second group (B), the angle
� changed from 0 to 90 as if the picture was rotating clockwise. Inversely, for
the third group (C), the angle � was changed from 90 to 0. As a result, we
obtained a tendency of perceptions with respect to angles; see Fig. 2.

We denote the probability that a subject answers “Left side is front” by
P(X� D L). We can say that the probability P(X0 D L) is approximately
equal to one. That is, practically every subject says “Left side is front”at the
angle � D 0. Conversely, the probability P(X90 D L) is approximately equal
to zero, that is, practically every subject says “Right side is front” at the angle
� D 90.We can interpret the result as the fact that subjects feel little ambiguity
regarding the picture for � D 0 and 90. In fact, it takes less than 1 s for a subject
to make her or his decision when the angle � is around 0 or 90ı. However,
in the middle range of the angle, we can see the difference among the three
groups.

6 How to Find the Non-Kolmogorov Property
of Collected Data: The Violation of Classical
Probabilistic Law

In this section, we show the non-Kolmogorov property of the data. As shown
in the previous section, we have 11 observables (random variables) X� . Now
we check whether we have found a common joint probability of X� s.
Here we introduce the inequality of Leggett and Garg (LG) (Leggett

and Garg 1985). The LG inequality is classical (or Kolmogorov axiomatic)
probabilistic law with respect to the correlation functions of time sequential
measurements, which we will explain shortly in Sect. 6.1. However, to be
matched in our test, we need some generalization of the LG inequality from
the viewpoint of contextuality. In Sect. 6.2, we will discuss the generalization
to check the existence of the joint probability for our tests. In Sect. 6.3, we
confirm that the statistical data of our tests violate the contextually generalized
LG inequality. Finally, we discuss the statistical significance of the violation
with a non-parametric method.

6.1 Origin of LG Inequality

Setting aside bistable perception, let us begin the derivation of the LG
inequality. In the paper Leggett and Garg (1985), LG postulated the following
two assumptions:
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(A1) Macroscopic realism: A macroscopic system with two or more macroscop-
ically distinct states available to it will at all times be in one or the other of
these states.

(A2) Noninvasive measurability: It is possible, in principle, to determine the
state of the system without arbitrarily small perturbation on its subsequent
dynamics.

In the original version of the inequality, LG consider three pairs of instances
of time, (t1; t2); (t2; t3); (t3; t4); where t1 < t2 < t3: They then discuss
the correlation function of two measurements which are performed at two
of those times. Quantum mechanics violates the LG inequality as well as
the same analog of Bell’s inequality or the Clauser-Horne-Shimony-Holt
(CHSH) inequality. Therefore this violation means that at least one of the
two assumptions fails for quantum systems.

LetQ be an observable quantity which takes eitherC1 or�1. In the original
discussion by LG, Q is the observable of the position of a particle in the two
potential wells. However, we can discuss other two-level systems, for example,
a spin-1

2 system.
The measurement of the two-level system is performed on a single system at

different times t1 < t2 < t3. We denote the observable at time tk by Qk (k D
1; 2; 3). By repeating a series of three measurements, we can estimate the value
of the correlation functions by

Cij D 1

N

NX

nD1

q(n)
i q(n)

j ;

where q(n)
i (or q(n)

j ) is a result of the nth measurement of Qi (or Qj). Note
that the correlation between Qi and Qj takes the maximum value Cij D 1
when q(n)

i q(n)
j equals 1 for all the repeated trials. Here, consider the assumption

A1; then the state of the system is determined at all times, even when the
measurement does not perform on the system. Therefore, the values of the
joint probabilities of Q1;Q2, and Q3 are determined a priori at initial time t0.
We denote this by the symbol Pi;j .Q1;Q2;Q3/. Note that the pairs of indexes
i; j encode the situation that only two observables Qi and Qj are measured. In
other words, the joint probability depends on the situations in which pairs of
observables are measured. (We can consider pairs of indexes, instances of time,
as parameters encoding three temporal contexts, Ct1t2 ; Ct1t3 ; Ct2t3 ; cf. Sect. 6.2.)
However, if one considers (A2), then the joint probabilities do not depend on
temporal contexts:
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Pi;j .Q1;Q2;Q3/ D P .Q1;Q2;Q3/ 8i; j

Then we have the following equalities:

P .Q1;Q2/ D
X

Q3D˙1

P .Q1;Q2;Q3/ ;

P .Q2;Q3/ D
X

Q1D˙1

P .Q1;Q2;Q3/ ;

P .Q1;Q3/ D
X

Q2D˙1

P .Q1;Q2;Q3/

which are consequences of the additivity of classical (Kolmogorov) probability.
Thus pairwise joint probability distributions are context independent [as a
consequence of (A2)]. We also have

P .Q1/ D
X

Q2D˙1

P .Q1;Q2/ D
X

Q3D˙1

P .Q1;Q3/ I (2)

P .Q2/ D
X

Q1D˙1

P .Q1;Q2/ D
X

Q3D˙1

P .Q2;Q3/ I (3)

P .Q3/ D
X

Q1D˙1

P .Q1;Q3/ D
X

Q2D˙1

P .Q2;Q3/ I (4)

Thus, for each observable, its probability distribution is also context indepen-
dent (as a consequence of (A2)). Violation of these equalities is interpreted as
exhibition of contextuality. In psychology and cognitive science the equalities
(2)–(4) represent the special case of so-called marginal selectivity (Dzhafarov
2003; Dzhafarov and Kujala 2013, 2014). It is clear that if at least one of
these equalities is violated then one cannot assume the existence of context-
independent, joint-probability distribution.

Under the assumption of existence of the joint (triple) probability Dis-
tribution, the correlation functions are written with the joint probabilities
P
�
Qi;Qj

�
as

Cij D P
�
Qi D 1;Qj D 1

�C P
�
Qi D �1;Qj D �1

�

� P
�
Qi D �1;Qj D 1

� � P
�
Qi D 1;Qj D �1

�

D 2
˚
P
�
Qi D 1;Qj D 1

�C P
�
Qi D �1;Qj D �1

�� � 1:
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We set K D C12CC23 �C13. This can be represented in the following form:

K D 1 � 4 fP .Q1 D 1;Q2 D �1;Q3 D 1/C P .Q1 D �1;Q2 D 1;Q3 D �1/g :
(5)

This representation implies the LG inequality:

K � 1: (6)

As we know, for example, Leggett and Garg (1985) and Goggin et al. (2011),
for the quantum correlation functions Cij, the above inequality can be violated
(theoretically and experimentally).

6.2 Contextual LG Inequality: The Generalization of LG’s
Assumptions in the Sense of Contextuality

Here we express LG’s assumptions in terms of context-dependent probabilities
(Khrennikov 2009, 2010b). Note that these probabilities cannot be repre-
sented in common Kolmogorov probability space. Therefore one can consider
such contextual probabilistic models as non-Kolmogorovian probabilistic
models.

Readers may compare our contextual generalization with the original LG
inequality, shown in Sect. 6.1. We present the original LG derivation by
considering time as a context parameter.

(A1) There exists a joint probability PC .Q1;Q2;Q3/ under a certain condition
of experiments (context) C. And the Kolmogorovness of PC .Q1;Q2;Q3/

is ensured within the context C:

PC .Q1;Q2/ D
X

Q3D˙1

PC .Q1;Q2;Q3/ ;

PC .Q2;Q3/ D
X

Q1D˙1

PC .Q1;Q2;Q3/ ;

PC .Q1;Q3/ D
X

Q2D˙1

PC .Q1;Q2;Q3/ ;



Adaptive Dynamics and an Optical Illusion 107

and

PC .Q1/ D
X

Q2D˙1

PC .Q1;Q2/ D
X

Q3D˙1

PC .Q1;Q3/

D
X

Q2D˙1

X

Q3D˙1

PC .Q1;Q2;Q3/ ;

PC .Q2/ D
X

Q1D˙1

PC .Q1;Q2/ D
X

Q3D˙1

PC .Q2;Q3/

D
X

Q1D˙1

X

Q3D˙1

PC .Q1;Q2;Q3/ ;

PC .Q3/ D
X

Q2D˙1

PC .Q2;Q3/ D
X

Q1D˙1

PC .Q1;Q3/

D
X

Q1D˙1

X

Q2D˙1

PC .Q1;Q2;Q3/ :

(A2) Consider three different contexts CA; CB and CC; then there exists a
context C unifying these contexts such that

PCA .Q1;Q2/ D
X

Q3D˙1

PC .Q1;Q2;Q3/ ;

PCB .Q2;Q3/ D
X

Q1D˙1

PC .Q1;Q2;Q3/ ;

PCC .Q1;Q3/ D
X

Q2D˙1

PC .Q1;Q2;Q3/ :

From these assumptions, one can obtain the inequality (5) for K given by

K D 1� 4(PC .Q1 D 1;Q2 D �1;Q3 D 1/C PC .Q1 D �1;Q2 D 1;Q3 D �1/):
(7)

6.3 Violation of Inequality in Optical Illusions

As we explained in Sect. 2, we have three kinds of experimental data based on
the angle of the Schröder stair: (A) it changes randomly, (B) it ranges from 0
to 90, (C) it ranges from 90 to 0. These contexts of experiments are denoted
by CA; CB and CC. Let X� be a random variable which takes ˙1. The event
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Table 1 (Left) .�1; �2; �3/ D .0; 10; 20/; (Right) .�1; �2; �3/ D .40; 45; 50/

C12 C23 C13

CA 1.000 0.964 0.964
CB 0.917 0.833 0.750
CC 0.917 1.000 1.000

C12 C23 C13

CA 0.091 0.091 0.127
CB 0.375 0.625 0.083
CC 0.625 0.375 0.167

Table 2 The triple of angles .0; 10; 20/

X ;Y;Z CA; CA CA; CB CA; CC CB; CA CB; CB CB; CC CC; CA CC; CB CC; CC

CA 1.000 1.214 1.047 0.870 1.083 0.917 1.036 1.250 1.083
CB 0.917 1.130 0.964 0.786 1.000 0.833 0.953 1.167 1.000
CC 0.917 1.130 0.964 0.786 1.000 0.833 0.953 1.167 1.000

The values of K for various combinations of contexts. For the contexts .CA; CC; CB/, K
approaches its maximal value

in which a subject says “left side is front” corresponds to the result X� D
C1. Then, from the repeated trials for each experimental context, we have the
experimentally obtained values of the joint probabilities:

PCA .X0;X10; � � � ;X90/ ; PCB .X0;X10; � � � ;X90/ ; PCC .X0;X10; � � � ;X90/ :

The correlation functions are given by

C12 D 2 fPX .X�1 D 1;X�2 D 1/C PX .X�1 D �1;X�2 D �1/g � 1;

C23 D 2 fPY .X�2 D 1;X�3 D 1/C PY .X�2 D �1;X�3 D �1/g � 1;

C13 D 2 fPZ .X�1 D 1;X�3 D 1/C PZ .X�1 D �1;X�3 D �1/g � 1:

Here, the triple .X ;Y ;Z/ is given by a combination of the contexts CA; CB

and CC. We show the values of C12;C23 and C13 in Table 1.
We estimate the LHS of the inequality:

K(�1; �2; �3) D C12 C C23 � C13:

Tables 2 and 3 show the value of K with respect to (�1; �2; �3) D .0; 10; 20/
and (40; 45; 50). The value of K exceeding one is seen in several cases.
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Table 3 The triple of angles .40; 45; 50/

X ;Y;Z CA; CA CA; CB CA; CC CB; CA CB; CB CB; CC CC; CA CC; CB CC; CC

CA 0.055 0.099 0.015 0.589 0.633 0.549 0.339 0.383 0.299
CB 0.339 0.383 0.299 0.873 0.917 0.833 0.623 0.667 0.583
CC 0.589 0.633 0.549 1.123 1.167 1.083 0.873 0.917 0.833

The values of K for various combinations of contexts. For the contexts .CC; CB; CB/, K
approaches its maximal value

6.4 Statistical Analysis

We start from the random variable:

K D Q1Q2 C Q2Q3 � Q1Q3:

Here, K takes �4;�2; 0 or C3 since Qi takes C1 or �1. The probability
distribution of K is not known, but it has a mean value � and variance �2,
and their statistical estimates can be found. To find the confidence interval
in such a situation, we apply the simplest method of nonparametric statistics,
namely, the method based on the Chebyshev inequality.1 (However, note that
this method gives us only a rough estimate for the confidence interval.)

We can apply the Chebyshev inequality to sample the mean of K

P .jm � �j > c/ � �2

nc2

with positive constant c. Here, m is a sample mean of independent random
variables K1; : : : ;Kn:

m D K1 C K2 C � � � C Kn

n
:

Although we do not know the value of �2, we can estimate �2 with unbi-
ased sample variance. Then � is estimated by m with confidence interval
Œm � c;mC c�.

We take the 80 % confidence level. In the case that the order of the contexts
is .X ;Y ;Z/ D .CA; CC; CB/, and the angle � D 0; 10; 20 (this case has a
maximum value of K) , we estimate the value of K as follows.

1This method was recently used (Khrennikov et al. 2014) for analysis of statistical data from the Vienna
test for the Bell-type inequality, the Eberhard inequality, which finally closed the fair sampling loophole.
In this test, because of the presence of slight drift depending on experimental setting, one cannot assume
Gaussianity of data and it seems that usage of the Chebyshev inequality is the simplest way to resolve this
problem.
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K D 1:250˙ 0:213:

Statistical analysis shows that the violation of the LG inequality is statistically
significant. This nonparametric method is a very conservative analysis since
the confidence interval is much wilder than the interval calculated by the usual
method of assuming Gaussian distribution for the random variables.

A violation of the contextual LG inequality by statistical data collected for
observations of the Schröder stair rotated for different angles supports the
contextual cognition paradigm presented in the series of works (Khrennikov
2010b; Asano et al. 2013a; Khrennikov 2010a; Asano et al. 2011b,a, 2012a,b,
2013b). Our experimental statistical data is fundamentally contextual. The
brain does not have a priori prepared “answers” to the question about the
right/left structure of the Schröder stair for the fixed angle �: Answers are
generated depending on the context. There are practically no (at least not so
many), so to say, “absolute mental quantities”; “answers” to the same question
vary essentially depending on context. This conclusion is not surprising in the
framework of cognitive science and psychology, where various framing effects
are well known. Thus we demonstrate the applicability of a statistical test of
contextuality borrowed from quantum physics.We can also consider this study
as a step towards the creation of a unified mathematical picture of the world:
physical and mental phenomena can be described by the same equations, cf.
Khrennikov (2010b).

7 Non-Kolmogorov Model of Bistable
Perception

In this section, we model the bistable perceptions of Schröder stairs with non-
Kolmogorov probability. In psychology, the idea of unconscious inference
is well-known in order to describe the process of visual perception (von
Helmholtz 1866). In the scheme of unconscious inference, it is assumed that
there exists a state of sensation, that is, the stimulus of an image, and that
perception is the result of decision-making with sensation and memory bias,
which comes from personal experience and so on. Recently, the mathematics
of unconscious inference has become sophisticated; compare with Bayesian
inference (Asano et al. 2012).
Here we interpret the sensation as the pre-recognized perception which

is not biased. Then the state of sensation is expressed as the quantum
superposition of two alternative perceptions, (L) or (R). (We will express this
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in Eq. (8) in the next section.) The reason why we use quantum superposition
is to describe the mental fluctuation that the subject feels as ambiguity toward
the figure.

From the mathematical point of view, the aim of this study is to define joint
probability which describes the interaction between sensation and perception.
To define joint probability accompanied with context dependency, the concept
of adaptive dynamics is available. We note that the mathematical formulation
of joint probability based on adaptive dynamics is to be seen in the paper of
Asano et al. (2013a). In the next section, we construct the mathematical model
of bistable perception in the manner of adaptive dynamics. In Eqs. (10) and
(11), we express the probability of perception given as the marginal of the joint
probability.

7.1 Quantum Adaptive Approach to Definition of
Non-Kolmogorovian (Joint) Probabilities for
Unconscious Inference

Let HS;HP be Hilbert spaces, and let HS ˝ HP be a tensor product of
HS and HP. Suppose that HS D HP D C

2. A state of sensation (resp., a
state of perception) is expressed as a density operator on HS (resp., HP). Let
fjeLi ; jeRig be a fixed orthonormal basis in two-dimensional space C2. After
an input signal comes to the receiver, the state of sensation is given by the
density operator

�S D jsi hsj

corresponding to the state vector

js� i D px� jeLi C exp .i�/
p

1 � x� jeRi ; x� 2 Œ0; 1� ; � 2
h
0;
�

2

i
: (8)

Here x� is a parameter of the probability distribution of sensation:

P .
� D L/ D jheL; s� ij2 D x� ; P .
� D R/ D jheR; s� ij2 D 1 � x� : (9)

On the other hand, before the information of sensation is transmitted to the
system of perception, the state of perception is not parameterized. The initial
state of sensation is given by a pure state �0 such as

�0 D jeCi heCj I jeCi D 1p
2
jeLi C 1p

2
jeRi :
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Note that the state �0 is interpreted as a neutral state of two perceptions X� D
L;R.
The state on the entire systemHS ˝HP is written as

�S ˝ �0 D js� i hs� j ˝ jeCi heCj :

Further, the initial state of perception �0 on HP interacts with the sensation
state �S. The interaction is given by a unitary operator onHS ˝HP such as

U D jeLi heLj ˝ .jeLi heCj C jeRi he�j/C jeRi heRj ˝ .jeRi heCj C jeLi he�j/ ;

where je˙i denotes .jeLi ˙ jeRi/ =
p

2.
We define the state after the interaction by lifting:

E��S D U .�S ˝ �0/U�:

The state E��S is an entangled state which is expressed as

j i D U .js� i ˝ jeCi/
D px� jeLi ˝ jeLi C exp .i�/

p
1 � x� jeRi ˝ jeRi 2 HS ˝HP:

We can calculate the joint probability with the aid of the following formula
(the basic formula of the formalism of quantum adaptive dynamics (Asano
et al. 2013a)):

P .
� D i;X� D j/ D tr
˚�

Ei ˝ Ej
�
E��S

�

D ˇˇ˝ei ˝ ej;  
˛ˇˇ2 ;

where Ei is the projection of jeii heij (i D L;R). Then we have

P .
� D L;X� D R/ D P .
� D R;X� D L/ D 0

for any x� 2 Œ0; 1�. Therefore the interaction describes the unbiased inference,
that is, P .
� D i/ D P .X� D i/.
In order to describe the bias effect, let us introduce the two Hermitian

operators A and B which act on the Hilbert spaceHS andHP, respectively. In
general, A and B are given by the following matrix representation with respect
to the basis feL; eRg W
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A D
 

1 � p �

� q

!

.p 2 Œ0; 1� ; � > 0/ ;

B D
 

p �

� 1 � q

!

.q 2 Œ0; 1� ; � > 0/ :

Here the parameters p and q correspond to conditional probabilities
P .X� D Rj
� D L/ and P .X� D Lj
� D R/, respectively, and non-negative
real numbers � and � characterize the intensity of the bias effect. (We discuss
the details later.)

Note that we can represent A and B through their spectral decompositions
as

A D
1X

iD0

aiSi; B D
1X

jD0

bjTj:

Here ai (resp. bj) is an eigenvalue of A (resp. B), and Si (resp. Tj) is a projection
onto its eigenspace. Put

c0 D a0; c1 D a1; c2 D b1; c3 D b2

and

C0 D S0 ˝ EL; C1 D S1 ˝ EL;

C2 D T0 ˝ ER; C3 D T1 ˝ ER:

Then the joint probability P .
� ;X� / is given by the following formula; see
again (Asano et al. 2013a):

P .
� D i;X� D j/ D tr
˚
f
�
Ei ˝ Ej

�
E��S

�

tr ff .I ˝ I/ E��Sg ;

where f is a map (superoperator) on the set of bounded operators onHS and
HP, and f is given by

f .�/ D
3X

kD0

ckCk .�/C�
k :

Note that some eigenvalues (ck) are negative, so this superoperator does not
preserve the positivity of operators. This is one of the formal mathematical
distinguishing features of quantum adaptive dynamics. As was pointed out
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in the introduction, this simplifies the construction of dynamical maps. Note
that, for amoment, quantum adaptive dynamics is a phenomenological theory.
In particular, the form of the f -superoperator was found to adjust theory to the
experimental data on recognition of the ambiguous figure. Note also that, in
spite of the violation of positivity of the f -superoperator, the joint probabilities
P .
� D i;X� D j/ are positive.
One can represent the probabilities P .
� ;X� / as follows:

P .
� D L;X� D L/ D
P1

iD0 ai hs;Pisi heL;PieLi
hs;Asi C hs;Bsi ;

P .
� D R;X� D L/ D
P1

iD0 ai hs;Pisi heR;PieRi
hs;Asi C hs;Bsi ;

P .
� D L;X� D R/ D
P1

jD0 bj
˝
s;Qjs

˛ ˝
eL;QjeL

˛

hs;Asi C hs;Bsi ;

P .
� D R;X� D R/ D
P1

jD0 bj
˝
s;Qjs

˛ ˝
eR;QjeR

˛

hs;Asi C hs;Bsi :

We can calculate the value of P(X� D L) with the aid of the following formula:

P .X� D L/ D P .
� D L;X� D L/C P .
� D R;X� D L/

D hs;Asi
hs;Asi C hs;Bsi

D x� .1 � p/C .1 � x� / qC 2� cos�
p

x� .1 � x� /

1C 2 .� C �/ cos�
p

x� .1 � x� /
: (10)

Similarly, we have

P .X� D R/ D P .
� D L;X� D R/C P .
� D R;X� D R/

D hs;Bsi
hs;Asi C hs;Bsi

D x�pC .1 � x� / .1 � q/C 2� cos�
p

x� .1 � x� /

1C 2 .� C �/ cos�
p

x� .1 � x� /
: (11)

As was discussed in the previous section, the combination of a few contexts
is essential to describe the bias effect in unconscious inference. In Eqs. (10)
and (11), � works as a parameter-encoding context. If one takes � D �=2 and
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p D P .X� D Rj
� D L/ ; q D P .X� D Lj
� D R/ ;

then the probability of perception is written as the conventional form of
classical probability theory:

P .X� D L/ D x� .1 � p/C .1 � x� / q

D P .
� D L/P .X� D Lj
� D L/C P .
� D R/ .X� D Lj
� D R/
(12)

for the fixed context of experiment—since we have x� D P .
� D L/ in
Eq. (9).

On the other hand, if � and � are essentially larger than one, then the
probability P .X� D R/ goes to the ratio of � to �:

P .X� D R/ ' �

� C �:

Hence, P .X� / with respect to large � and � is independent of the probability
of sensation P .
�/. That is, � and � characterize the bias effect.

7.2 Method for Data Analysis

Here we show the method for determining the parameters f�; �; �; p; q; x�g
in Eqs. (10) and (11); the result of our tests are shown in Sect. 5.

As written in Sect. 2, we use three different contexts. Generally, 11Š per-
mutations are permitted as the order of showing figures. We consider a
permutation � as a context of our test.
First, we arrange the test so that we randomly select the permutations,

for example, our test for group (A). In this case, it is reasonable that the
perception is not affected by bias. Therefore we can say this experimental
context is an “unbiased context.” (Although, more precisely, it means the biases
are neutralized.) Then, we can calculate the value of x� from data of group (A):

x� D P .
� D L/ D PA .X� D L/ :

Next, we search for an angle � which satisfies P .X� D L/ D 1 or
P .X� D L/ D 0 for any contexts (permutations) � . From the result shown in
Fig. 2, we can find the probability distributions P .X0/ and P .X90/ which are
estimated as follows.
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x0 D PA .X0 D L/ D PB .X0 D L/ D PC .X0 D L/ D 1;

x90 D PA .X90 D L/ D PB .X90 D L/ D PC .X90 D L/ D 0:

Then we can calculate the value of p and q as follows.
For angle � D 0, we obtain x0 D 1 by the experimental facts. Assign this

to x� of Eq. (10), then we obtain p D 0 since the experimental facts show the
probability P .X0 D L/ D 1 for any contexts (permutations) � . Similarly, for
angle � D 90, we obtain x90 D 0. Assign this to x� of Eq. (10), then we obtain
q D 0 since P .X90 D L/ D 0 for any contexts (permutations) � . Finally we
can rewrite Eqs. (10) and (11) as

P� .X� D L/ D PA .X� D L/C 2� cos�
p

PA .X� D L/PA .X� D R/

1C 2 .� C �/ cos�
p

PA .X� D L/PA .X� D R/
; (13)

P� .X� D R/ D PA .X� D R/C 2� cos�
p

PA .X� D L/PA .X� D R/

1C 2 .� C �/ cos�
p

PA .X� D L/PA .X� D R/
: (14)

Here P� (X� ) means the probability of perception in the test with respect to
the permutation � . Note that the parameters � and � depend on the context
of � .
Third, we search the pure context which provides the strongest bias, that is,

the context which induces the most different probability distribution from
the probability distribution for unbiased context. In our tests, we can see that
two contexts corresponding to the clockwise rotation �� and counterclockwise
rotation �� are pure contexts. Then we fix the parameter of the context at � D
0 since the value of cos� of Eqs. (13) and (14) is maximum. This means that
the strongest bias affects the perception process. Thus, the probability P� (X� )
for the pure context � can be characterized by parameters �,�, and PA(X� ).
Therefore, if we have the data of the test for a pure context, we can estimate
the value of � and � for the pure contexts with some statistical methods, for
example, the non-linear least square method. Hereafter, we put the values
.�; �/ is .0; 1:5/ (resp. .1:5; 0/); which correspond to the probabilities for a
pure context �� (resp. pure context ��).

Let us consider the context which is neither �� or ��. For example, “clock-
wise rotation first, counterclockwise rotation second,” that is, the sequence of
angles are given by

0; 10; 20; 30; 40; 90; 80; 70; 60; 50; 45:
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Fig. 3 We calculate the probability for clockwise rotation (B’) and counterclock-
wise rotation (C’) with our model. We also show the experimental result of random
rotations (A) as a reference

We can naturally predict that the probability of X� for the first four figures is
the same as that for the clockwise rotation. However, at the angle � D 90 or
80, the subject does not understand the direction of rotation. Therefore the
bias effect at � D 90 or 80 is not strong; and it is similar with the effect for
random rotation. We can parameterize such intermediate level of bias by the
phase �.

In our test, we can divide all the contexts (permutations) into two groups:
(1) the contexts which induce a bias effect in the direction toward the strongest
bias in the pure context �� (2) the contexts which induce a bias effect in the
direction toward the other strongest bias in the pure context (C).

For a context of group (1), we can calculate P .X� D L/ with the data of (A)
as follows.

P .X� D L/ D PA .X� D L/C 3 cos�
p

PA .X� D L/PA .X� D R/

1C 3 cos�
p

PA .X� D L/PA .X� D R/
: (15)

Here we put .�; �/ D .0; 1:5/. On the other hand, for the context of group
(2), we can calculate this with the following formulae.

P .X� D L/ D PA .X� D L/

1C 3 cos�
p

PA .X� D L/PA .X� D R/
: (16)

Here we put .�; �/ D .1:5; 0/.
With Eqs. (15) and (16), we can calculate the value of P .X� D L/ if we

estimate the probability PA .X� D L/ or PA .X� D R/ from the data of the test
for group (A). In Fig. 3, we show (A) the statistically estimated probability of
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PA .X� D L/ which is the same as that in Fig. 2, (B’) the calculated probability
P .X� D L/ for the pure context of clockwise rotation ��, (C’) the calculated
probability P .X� D L/ for the pure context of counterclockwise rotation ��.
Since the context in (B’) or (C’) is a pure context, we fix � of Eqs. (15) or (16) at
zero. In the plot of (B’) and (C’) in Fig. 3, the probability at the middle range of
angle � is different to the unbiased probability (A) as well as the experimental
facts shown in Fig. 2.
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Strategic Choice in Hilbert Space

Charles E. Smith Jr. and Christopher Zorn

1 Introduction

A small-but-growing number of social scientists have in recent years begun to
explore the purchase of formalisms and a probability theory originally devel-
oped to accommodate nonclassical experimental results in particle physics.
Motivated by the desire to explain empirical outcomes that do not fit com-
fortably with the axioms of rational choice theory—and that are thus related
tenets of classical probability theory—these scholars have begun to examine
and embrace the theory of probability namesaked for Max Born as a general
framework for understanding and modeling choice. Born’s (1926) account of
probability differs from the familiar, classical context of Kolmogorov both

Prepared for the Palgrave Handbook of Quantum Models in Social Science: Applications and Grand
Challenges.

C.E. Smith Jr. (�)
Department of Political Science, University of Mississippi, Oxford, MS, USA
e-mail: c.e.smith.jr@gmail.com

C. Zorn
Department of Political Science, Pennsylvania State University, State College, PA,
USA
e-mail: zorn@psu.edu

© The Editor(s) (if applicable) and The Author(s) 2017
E. Haven, A. Khrennikov (eds.), The Palgrave Handbook of Quantum
Models in Social Science, DOI 10.1057/978-1-137-49276-0_7

121

mailto:c.e.smith.jr@gmail.com
mailto:zorn@psu.edu


122 C.E. Smith Jr. and C. Zorn

in terms of its mathematical exposition/foundation and with respect to its
governing axioms. The Born theory is expressly geometric as opposed to set-
theoretic. Its axioms are formalized in the (usually) complex planes of Hilbert
spaces, where distances are most generally conceptualized as metrics between
(sometimes high-dimensional) spaces as opposed to points. In this framework,
certain of Kolmogorov’s set-theoretic axioms can be relaxed, and empirical
results that do not agree with them can be systematically accommodated.

Perhaps the most prominent publication in this emergent literature
appeared in the Proceedings of the Royal Society more than a half-decade ago
(Pothos and Busemeyer 2009). This paper is exemplary of the genre in its focus
on the poor fit between certain strictures of rational choice theory and well-
established empirical results from behavioral economics.1 Specific attention
is given to Savage’s (1954) foundational “sure-thing principle,” the dominant
axiom that requires a decision-maker with a preference order that is invariant
across categories of a conditioning variable to produce the same order in the
absence of such conditioning. The sure-thing principle is a bedrock of set-
theoretic rational choice and intimately related to Kolmogorov’s law of total
probability, which in turn is a bedrock of classical statistical models of decision-
making. Pothos and Busemeyer illustrate these links and demonstrate that the
classical standard in probabilistic modeling of decision/state transitions (the
Markov model) forecloses on the possibility of accommodating empirical
violations of the sure-thing principle via its compliance by design with
Kolmogorov’s version of the law of total probability.

In contrast, Born’s law of total probability admits an interference term that
accommodates the prospect that a decision-maker is not constrained to a single
preference order at a specific point in time.2 This is a generalization of a more
basic measure-theoretic aspect of decisionmodels formalized inHilbert spaces.
In Hilbert’s geometry, individual preferences are not presumed to be fixed
in advance of measurement. Indeed, if they are, the geometry simplifies to
familiar models such as the Euclidean and weighted Euclidean frameworks of
spatial voting theory, and Kolmogorov’s set-theoretic axioms apply.

Pothos and Busemeyer’s (2009) paper, as well as like-minded work from
these and other authors (e.g., Khrennikov 2009), has not gone without

1The primary example results in the Pothos–Busemeyer paper are organized conceptually around prisoner’s
dilemma experiments and the oft-replicated findings of Tversky and Shafir (1992) that illustrate sure-
thing-principle violations in certain forms of the game.
2In both set-theoretic and Euclidean-geometric formalizations of decision theory, acts of measurement
reveal orders or points distinguished distance-wise along or by straight lines. The Hilbert space is
more general. Euclidean distance in Hilbert space is a special case. Likewise, a geometric equivalent of
Kolmogorov’s set-theoretic law of total probability is a special case of Born’s theory.
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criticism. In their recent book, Busemeyer and Bruza (2012) ably answered
many critiques from what we imagine as a not-really-hypothetical sequence
of challenges from journal and book referees that the authors “might have”
encountered over the course of their research programs. Criticism, however,
continues. Subsequently, Pothos and Busemeyer (2013) headlined a commen-
tary section in an issue of the journal Behavioral and Brain Science with an
article embracing the use of Born’s probability as “providing a new direction
for cognitive modeling (p. 255).” Respondents on the one hand took issue
with the agnosticism of the research program regarding the appearance of non-
classical results in the absence of a physical theory/recognition of nonclassical
operations in the human brain, and on the other hand regarding, more or less,
the very existence of the research program given less complicated alternatives.

It is difficult to sympathize with these critiques. As advanced as it is, the
science of brain activity has only just now begun to contemplate experiments
that can reveal nonclassical physical operations. Agnosticism by Pothos–
Busemeyer (and others) regarding specific structures in neuro-circuitry in
advance of empirical evidence firmly establishing the reality and particulars
of said structures seems quite proper. At the same time, knee-jerk criticism
of complexity is reminiscent of the marginalized perspectives on nearly all
of formal theory, as well as much of quantitative empirical research. Political
science is complicated. A very general formalism—one that with restrictions
produces familiar models and results but also can be extended such that
what have previously been considered “errors” are predictable in the positive
theory—deserves careful attention.

The aim of this note is to convey some of the broad contours of this existing
work, to take some initial steps toward the formalization of a general model
of K-valued choice using nonclassical probabilities that can be represented
in Hilbert spaces, and to offer some preliminary suggestions for how such
tools might be useful in the study of political phenomena. Two reactions
to the existing literature motivate this chapter. One is the current lack of
attention to this emergent research agenda in political science. The other is the
heavily inductive nature of much of the work produced thus far. The modest
agenda here is to ponder some familiar political science problems within the
confines of familiar frameworks, then ponder them again in the more general
framework, with an eye toward motivating new, more-deductive research. We
begin with a discussion of models of survey responses and opinions.
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2 A Single Survey Response

For nearly a century in the field of political science, understanding how
opinions fit together and modeling survey responses have been almost parallel
efforts. The pathbreaking work of the 1930s, 1940s, and 1950s all rested on the
assumption that the way citizens think and behave closely mimicked the way
they answered survey questions about their thoughts and actions.3 Converse’s
landmark (1964) paper upended the discipline’s notions of simple correspon-
dences between measured and actual preferences. Soon after, random utility
models for discrete choice emerged withMcFadden’s (1974) work in economics
and, in short order, in political science: Achen’s important (1975) paper had
political scientists fascinated with instrumentation and measurement error.
Around the same time, social psychologists began to interrogate the Gricean
assumptions and to develop theories of the survey response that addressed
emotional, social, and other influences (Hippler et al. 1987; Schwarz et al.
1991; for a summary, see Strack and Schwarz 2006). Developments along each
of these lines have continued and become increasingly sophisticated. Today,
the best academic surveys in political science do not just acknowledge and
model random measurement error but increasingly seek to seize and control
nonrandom error inside the process of survey design (e.g., King et al. 2004;
King and Wand 2007; Street et al. 2015).

From the earliest work through to today, however, one assumption has
remained so ubiquitous as not to warrant ordinarily a formal statement:
distance relations between response options and respondent preferences are
presumed to be Euclidean, with locations of respondents on latent variables
situated on lines or curves. Indeed, when researchers invoke set theory and
dominance relations to represent a utility-maximizing choice by a respondent
(R) between, say, options A and B, as in:

Pr(A) D Pr(UA � UB)

D Pr(jjR � Ajj � jjR � Bjj)

it is certainly not customary to pause and remind readers that the space
underneath these relations is a Euclidean plane.R1 is ordinarily implicit, and
fixed locations of A, B, and R in classical theoretical models are deterministic

3The linguistic roots of these assumptions are summarized in Grice’s (1975) “cooperative principle” as
applied to the surveyer/respondent conversation.
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up to some degree of stochastic error (also formalized in Euclidean space).
Inconsistencies such as Pr(A) > Pr(B) j jjR � Ajj > jjR � Bjj are foreclosed
prior to measurement as well as after it.

As noted in the introduction, choices in a Hilbert space-based decision
theory are not modeled via sets but instead via subspaces. As a result, instead
of representing the states of a choice set (or evolutions thereof ) in terms of
classical probability functions, states in the Hilbert space are represented by
unit-length vectors. Consider an example wherein l represents a respondent’s
partisan preference for majority control of the US Congress, and assume the
binary response options (r D 1 and d D 0) are exhaustive. In Hilbert space,
these options are represented as a weighted pair of vectors a jdi and a jri in a
composite state j i equal to their simple sum

 D a jdi C b jri : (1)

A respondent’s preference would transition from the composite form when
measured, in advance of which the probability of observing d is the squared
length of the weight vector, Pr(d) D jaj2. Likewise Pr(r) D jbj2 and jaj2 C
jbj2 D 1. The new state j 0i is simply the observed outcome, or perhaps a
state “on the way” toward an observed outcome as the respondent ponders his
or her options.

The Hilbert state mechanics that model the evolution of the transition
from the composite state j i toward an observed state can be visualized as
in Fig. 1. Here, the initial state j i has transitioned from perfect indecision

|r〉

|ψ ′〉
〈d| ψ ′〉

〈r | ψ ′〉

|ψ〉

|d〉

Fig. 1 Transitions in Hilbert space
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over the options r and d to a new state (the dashed line vector) j 0i in clear
favor of d. The projections (the bracket vectors) from the new state vector to
the ket vectors representing the options jri and jdi are the new probability
amplitudes. Represented in the figure as densely dotted lines, the longer
of the two—hd j  0i—is interpreted as the probability amplitude associated
with transitioning from the new state j 0i to the Democratic choice option.
Similarly, the shorter projection hr j  0i maps to the probability of choosing
the Republican option.

Almost to the same extent that this geometry seems exotic, its conceptu-
alization of response measurement is familiar. In their justly famous “Simple
Theory of the Survey Response,” Zaller and Feldman (1992) begin with three
axioms, paraphrased here:

1. Ambivalence: Most people have opposing considerations on any given issue.
2. Accessibility: The accessibility of those considerations at any given time

depends on a “stochastic sampling process” where more recently thought-
about considerations are likely to be oversampled/have higher probabilities
of being accessed.

3. Response: Answers to survey questions are averages across considerations that
can be/are accessed at the time of questioning.

Even after more than two decades, these axioms and their conceptual foot-
ings are still central to the discipline’s understanding of survey responses and
decision-making more generally. It is notable that the Hilbert formalization
makes plain a decision-maker’s reasoning over considerations and options
(plural) in advance of making a decision or announcing a choice on a survey.
Indeed, the ambivalence axiom seems to readily imply that, in advance of an
actual decision and the recording of a response, people are “in effect” best
regarded as being associated with both one option and the other. This is a
fundamental characteristic of the Hilbert space-based models. The composite
form described above that moves a simple, binary choice from one to two
dimensions seems indeed a very natural route to capture the full complexity
of ambivalence.

The response axiom, likewise, fits well in the Hilbert formalism. In Hilbert
space, the response process is formulated from beginning to end as a transition
of probability emerging, essentially, from the recording and summarization of
trial outcomes in the mind of the respondent regarding competing considera-
tions. This process is not unlike repeated flips of a coin to determine how the
coin is weighted. The Hilbert space response then emerges stochastically, and



Strategic Choice in Hilbert Space 127

is in part a function of the time spent by the decision-maker pondering the
considerations. The familiar classical model of transition probabilities arises
from a memoryless, rapid, and near-deterministic Markov process. Pothos
and Busemeyer (2009, p. 4) show that the probability of choosing (say) the
Democratic option in such a binary choice is equal to:

Pr(Democratic) D
�

�

1C �
�
� f1�expŒ�(�C1) � t�gC expŒ�(�C 1) � t�

2
: (2)

In contrast, in the Hilbert space, the model of state transition is owed to
Erwin Schrödinger (1935). Pothos and Busemeyer demonstrate that this can
be written as:

Pr(Democratic) D
�

1

2
C �

1C �2
� sin

	�
2
� t

2
�
: (3)

Figure 2 illustrates the fundamental differences in the two perspectives.
Consider the origin in the figure as the instant just after the survey interviewer
puts the preference question to the respondent favoring (or beginning to
favor) d and time elapsing in seconds (or fractions thereof ) on the X-
axis as the respondent ponders in advance of actually answering. In both
models, the respondent’s answer remains probabilistic until the response is
decided, though these two curves present strikingly different viewpoints—
and potentially, theoretically motivated and competitive perspectives—on the
decision-making process as it unfolds.

Zaller and Feldman do not pose their ambivalence and response axioms
as formal propositions that respondents are actually doing math “in their
minds” with potentially competing considerations, but instead present them
as “as-if ” models of the process. It is notable, however, that Shrödinger’s
equation sketches a process that seems remarkably faithful to these “as-
if ” proposals, whereas the quick collapse to near-certainty of the Markov
transition seems more like an alternative hypothesis for understanding survey
responses, to be judged against the Zaller–Feldman tradition. Perhaps a care-
fully designed experiment that manipulates time-to-response, using subjects
somehow matched beforehand so as to be similarly conflicted on a question,
could reveal whether one account has more empirical purchase than the other.

In discussing their accessibility axiom, Zaller and Feldman (1992) point
to what was then already a large body of empirical evidence in support
of recency effects in cognitive psychology (see their footnote 2). They also
reference supporting evidence for several “deductions” that are consistent with
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Fig. 2 Markovian and Hilbert transition probabilities (� D 5)

the accessibility axiom. Among these are the presence of “response effects” in
surveys, which include as special cases order effects, endorsement effects, race
(and other demographic) effects of the interviewer, priming effects, reference
group effects, and framing effects. They write:

The mechanism responsible for each of these effects appears to be a tendency
for people to answer questions at least partly on the basis of ideas that have been
made momentarily salient to them. (Zaller and Feldman 1992, p. 602)

A growing body of workmakes use of theHilbert space formalisms tomodel
question order effects (e.g., Trueblood and Busemeyer 2011; Wang and Buse-
meyer 2013), with some focusing exclusively on order effects. This work exists
largely in isolation from the theory of the survey response set out by Zaller and
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Feldman.4 Yet many (if not most) of the sort of response effects that Zaller
and Feldman discuss—including framing effects and conditionality—can in
principle be understood in a fashion analogous to Wang and Busemeyer’s
work on order effects. Perhaps the most important point made by Wang and
Busemeyer is an intuitive non-Euclidean probability explanation of what it
means when some individuals demonstrate order effects whereas others do
not (2013, pp. 28–29).

Current efforts to study order effects tend to consider the unions of the
(usually binary) responses. That is, for two response variables Y1 2 f0; 1g and
Y2 similar, they look to see if ı ¤ 0 in a model of the form:

Pr(Y1i D Y2i) D f ŒXi� C ı(question orderi)�: (4)

Some such models also include an interaction between question order and
one or more of the components of X. In contrast, Wang and Busemeyer’s
implication is that the key parameter � can vary across individuals, so that
estimating a model of the form

�i D g(Xi	) (5)

would constitute a direct way of assessing order (and other response) effects.
Here, g(�) is an appropriate link function that maps the linear/additive
component Xi	 onto the range of � .
Wang and Busemeyer define � D R cos(�), which means � 2 Œ�1; 1�. A

natural linear link for a function of that form is a normalized arctangent link
g(z) D arctan(z)

�=2 , which has a domain on R1 and a range of [-1,1]. They note
that everything that is a component of � is observable (see their Eq. (2)). Thus,
assuming we can effectively measure �i for a sample of survey respondents,
estimating (5) is straightforward. In this view, any given individual’s �i for a
particular pair or set of “similar” items would be an increasing function of their
level of political information. Interestingly, Wang and Busemeyer’s analysis
suggests that high-information individuals have high values of � , and that
they correspondingly should also experience high levels of interference/order
effects. This prediction runs counter to much of the conventional wisdom
about order effects (e.g., Moore 2002), which posits that order effects are more

4Wang and Busemeyer’s paper in particular is based almost entirely on the paper by Moore (2002) in
terms of its framing, and relies for the most part on his data as well.
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prominent among relatively uninformed respondents. So here again, we see
potential for deductive research projects that pit formal models as empirical
competitors.

3 Multiple Choices

More comprehensive model development for order effects or others (e.g.,
priming effects, reference group effects, framing effects) that involve response
options over more than one question requires us to generalize the formalisms
described above. Lacy’s (2001a,b) set-theoretic “theory of nonseparable pref-
erences in survey responses” is the disciplinary standard for considering such
effects in the classical context. In set theory, for K D fK; QKg, preferences (x)
are separable on K when, given

(xK; x QK) R (x0
K; x QK);

it is true also that
(xK; x

0
QK) R (x0

K; x
0
QK)

(e.g., Schwartz 1977; Stoetzer and Zittlau 2015). That is, if xK is preferred
over x0

K when each is paired with a commodity not in K and preferences are
separable, then the same relation will hold when they are paired with another
non-K commodity (x0

QK). Nonseparability occurs in the set when the relation
does not hold. For example, suppose there are three commodities fSYWg—
saltines (S), yogurt (Y), and water (W)—all denominated in, say, ounces,
consumed across a fixed time frame. Suppose further that a consumer prefers
solid food (S) to a mixture (Y), and is more hungry than thirsty. The consumer
thus prefers (1; 0; 1) to (0; 1; 1). If the consumer’s preferences are separable
between the fSYg group and W, she must also prefer (1; 0; 0) to (0; 1; 0). Such
would imply, however, that she is not at all thirsty; in fact, she might well prefer
(0; 1; 0) to (1; 0; 0). If so, the commodity group fSYg is not separable from W.

Political scientists have characterized preference separability in various ways.
Lacy (2001a), for example, states that “(A) person has nonseparable preferences
when her preference on an issue depends on the outcome of other issues.”
Empirically, the existence of separable preferences has come under some attack,
with Lacy and Paolino (1998) asserting that “Voter preferences for presidential
and congressional candidates may be nonseparable,” and Smith et al. (1999)
claiming that “Around half of all respondents show some tendency toward
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nonseparable preferences.” More recent work (e.g., Healy et al. 2010) has
indicated that, in the context of voting, irrelevant events can have a small but
detectable effect on voting behavior.

As with the one-question example in the previous section, Hilbert space
models of options over more than one question are geometric. A conceptual
lever into this problem is first to consider the classical (Euclidean) geometric
representation of separability owed to Enelow andHinich (1984). Lacy (2001a)
generalized the Enelow/Hinich spatial model to respondent preferences over
N issues in a survey. A stylized version of that model is defined in Appendix 1.
Here we will consider a corner of it and extend the example of voter preferences
for partisan control of governance (G) as a combination of preferences
across options: G D ŒDEDL;DERL;REDL;RERL�, where D and R identify
the partisan options and E and L index executive and legislative branches.
Separability and nonseparability of preferences over the institutions are defined
in the weighted Euclidean norm:

jjSE � SLjjA D
p
˛11(RE � DE)2 C 2˛(RE � DE)(RL � DL)C ˛22(RL � DL)2

(6)

A D
"
˛11 ˛

˛ ˛22

#

:

Specifically, when A is null and distance is simple Euclidean, preferences
across the institutions are separable. When the off-diagonal elements of A are
nonzero, the respondent/voter will be inclined either to unify or to divide their
partisan support across the institutions.

Recalling that, in the Hilbert space, options d and r receive composite
consideration, consider two vectors and their product:

jei D a0 jdi C a1 jri
jli D b0 jdi C b1 jri

jei ˝ jli D a0b0 jddi C a0b1 jdri C a1b0 jrdi C a1b1 jrri ; (7)

where
ja0b0j2 C ja0b1j2 C ja1b0j2 C ja1b1j2 D 1:

Here, the institutional preferences also get composite consideration, and
preference separability is defined by the existence of the vector product in
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(7)—that is, a vector product with coefficients that can be reduced from a
more aggregated form into this one via factorization.5

The weighted Euclidean version of this problem is restrictive against certain
set-theoretic formulations of nonseparability. Likewise, via the requirement
that the off-diagonal coefficients be equal, the Euclidean formulation fore-
closes on themodeling of all classes of order effects that are not both symmetric
and identically signed. These latter restrictions are also structural features of
set theory. Indeed, both the set-theoretic and the spatial modeling traditions
are mute on the question of whether the order of introduction (or an actual
consideration by the voter) of the institutional options matters across voters
with nonseparable preferences. In the set-theoretic example above, fSYg is “an”
event recorded from the subset K without any regard or reference to the order
in which the commodities were introduced as options to the consumer. In the
spatial example, the off-diagonal elements of the transition matrix must be
equal (if they are not, the space will be non-Euclidean in arbitrary ways). The
classical versions thus foreclose, among other things, on the possibility that a
voter may seek to unify when first given one institutional control outcome and
divide when first given the other.

In stark contrast, the Hilbert-space version—which is four-dimensional—
is extraordinarily general and of potential use to researchers in simultaneously
pondering a wide array of the sorts of effects well-known to structure choices
on surveys. Of keen interest to us is a current formulation of the two-question
problem by Yukalov and Sornette (2011). These authors refine a version (there
are many) of nonseparable preferences in Hilbert space that, but for one
important difference, mimics the classical formulation of the problem of
strategic choice. The important difference is that, once the target event over
which a voter/respondent would reason in making an antecedent choice is
known with certainty, interference effects in the model responsible for the
structure of strategic considerations disappear, and the antecedent considera-
tion reduces to a naïve/sincere choice. The classical, probabilistic formulation
of this problem instead posits certainty regarding a future outcome as the
most powerful inducement to decide the antecedent question. Here again, we
see an opportunity for theoretically motivated empirical research. The party
balancing phenomenon we have used as a toy example in this chapter is a
candidate, as the structure of the problem is similar to strategic choice. We

5A very preliminary—but more general—K-dimensional model of survey responses is presented in
Appendix 2.
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thus can imagine manipulations on a survey designed to compare empirical
outcomes across the different theoretical accounts/predictions.

Last, we note that the Hilbert formalisms may help inform empirical
research outside the confines of surveys (e.g., Smith and Zorn 2011). To
take but one example, numerous scholars are interested in voting behavior
in small groups, and note that the dynamics described above also have
potentially important implications for collective choice situations where voters
proceed sequentially and decision rules are non-unanimous. Such contexts are
widespread, from Congressional committees to corporate board rooms to fac-
ulty meetings. The key aspect of them that renders the non-Euclidean account
especially promising is that, at times, individuals are tasked with casting
votes in circumstances where the outcome—either proximate or ultimate—is
already determined and known to the voter. Consider, for example, voting on
certiorari in the U.S./ Supreme Court. That Court has an almost completely
discretionary agenda; certiorari is the process by which the justices decide
which cases will be heard and decided on the merits. Cases denied certiorari
are not reviewed, and the decision of the lower court is allowed to stand.
Once a petition for certiorari has been placed on the Court’s “discuss list,” it
is discussed in conference; following that discussion, the justices vote to grant
or deny certiorari in order of seniority (most senior to least), with the Chief
Justice voting first. At least four votes (out of nine justices) are required to
grant certiorari.

Researchers have shown that justices vote in ways broadly consistent with a
“strategic” theory of certiorari (e.g., Schubert 1958; Caldeira et al. 1999). That
is, in circumstances where a given outcome on the merits is likely, the justices’
certiorari votes are often cast in ways that are consistent with their preferences
over the (known or likely) final disposition of the case on the merits, rather
than on the basis of their “sincere” preferences about whether or not they wish
the Court to revisit the lower court’s decision. An example would be a relatively
liberal justice deciding how to vote on a case decided conservatively in the
court below. If a significant majority of the Supreme Court is conservative,
then sophisticated voting would take the form of the justice in question voting
against certiorari, in order to avoid a likely affirmation of the lower court
decision—and the corresponding extension of the (undesirable) precedent it
set—rather than voting in favor of certiorari.

There is evidence, however, that from time to time the justices make
plain and public “errors” vis-á-vis this model. For example, Justices Brennan
and Marshall famously published dissents from denials of certiorari in death
penalty cases after voting to grant those petitions, despite knowing beyond
all doubt that their preferred outcomes on the merits—that capital punish-
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ment be proscribed by the Eighth and Fourteenth Amendments to the U.S.
Constitution—would receive no more than two (and not the requisite five)
votes on the merits. Similarly, Justice Stewart joined Justices Marshall and
Brennan in dissents from denial after voting to grant a petition in a case that
would revisit a precedent in First Amendment law set just three years earlier
in Miller v. California (1973) in what again was almost certainly a case that
would have gone against their preferences if the case had been heard.

These are anecdotes, to be sure. Moreover they have easy explanations
outside the context of classical accounts of strategic voting precisely because
we know about them via the rare decision to dissent publicly from denial
of certiorari. However, the sequential voting process means that justices who
are of lesser seniority very often already know the outcome of the certiorari
decision when their time to cast a vote arrives, and in certain cases may already
sense the purpose of the more senior justices who have voted to grant the
petition.6 Might there be instances where the outcomes on the merits are known
with certainty to the junior justices, and might this certainty free them to cast
a sincere vote when they might otherwise behave strategically? These questions
merit further study.

3.1 Concluding Comments

This chapter has been a largely speculative contribution. Its aim has been
to introduce some basic features of an emergent literature derivative of
formalisms unfamiliar to most political scientists, and to ponder some research
ideas that might bring new texture to established and important problems in
the discipline. In concluding, we note that, while the discussion above focuses
on decision-making, we believe that a host of contemporary paradigms in
political science (and the social sciences more generally) are not only consistent
with nonclassical approaches, but in fact often directly imply them, and could
benefit significantly from integrating such insights.

To take but one example, consider the widely used (and ascendant)
Neyman–Rubin paradigm for causal inferences (e.g., Keele 2015). That
tradition has its roots in the notion of counterfactuals; that is, of asking
“what would happen if: : :?” Such a view of causality seems fully emergent

6In the most extreme case, when the Chief Justice and the three most senior associate justices all vote in
favor of certiorari, a majority of the Court knows that the case will be granted irrespective of how they
vote. Note that a similar dynamic also holds when the justices vote on the merits, though in that instance
it requires five votes to decide the outcome.
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in Hilbert space problems, and in fact our description of the Hilbert space
formulation of such questions has a certain Rubinesque, potential outcomes
feel to it. In the classic representation of the so-called “fundamental problem
of causal inference,” the root of the problem lies in the fact that no single
experimental subject is able both to receive and not receive the treatment at
the same time. In one sense, Rubin and his acolytes solve the problem with
time itself, in theory administering the treatment to each subject multiple
times (times chosen at random). By contrast, because we view such questions
through a lens where a subject can “be one thing and another at the same
time,” we might consider the alternative of using a cross-section of (say) the
treated to model responses, followed by out-of-cross-section predictions of
what “would have been” in the other condition.

Appendix 1: Lacy’s Model of Survey Responses
in an N-Dimensional Euclidean Space7

Euclidean Assumption Set 1. Each respondent i has a fixed ideal point ‚i D
(�1; : : : ; �n) 2 En, where n indexes the issues to be probed in a survey and En is
Euclidean space.

Euclidean Assumption Set 2. A respondent’s preferences are representable by a
weighted Euclidean norm, such that for two vectors of survey responses, r D
(r1; : : : ; rn) and r’ D (r0

1; : : : ; r
0
n), r � r0 if and only if:

k‚i � rk2
A < k‚i � r0k2

A

A D

0

B
BB
B
@

a11 a12 � � � a1n

a21 a22 � � � a2n
:::

:::
: : :

:::

an1 an2 � � � ann

1

C
CC
C
A
:

Euclidean Assumption Set 3. Each survey question j presents a respondent with
a set of responses that approximate the jth element of respondent i’s ideal point, �ij,
with some error, �ij. The unconstrained response to question j is pij D �ij C �ij.

7The first three assumption sets are exact replicas of Lacy (2001a). The fourth is a stylized combination
of his assumptions labeled 4 and 5 in the same paper (pp. 8–12).
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Euclidean Assumption Set 4. When respondent i answers question j, he or she
may offer a constrained response, r(jj(r�

1 ; : : : ; r
�
j�1; r

o
jC1; : : : ; r

o
m)), given his or

her beliefs about the status quo, ro, on other issues probed in the survey.

Appendix 2: Toward a Model of Survey
Responses in a K-Dimensional Hilbert Space

Hilbert Assumption Set 1. Assume that survey responses can be represented as
considerations over issues and potential actions mapped by basis vectors in a real
or complex Hilbert space (H � ˝iHi). For one action or issue question (say,
A), there can be multiple considerations (indexed by i) Ai. Between any pair of
considerations over a pair of issues or actions, A and B, the sum A C B means
that either A or B will be considered, and the product AB implies that they will be
considered together. A decision onC may or may not imply composite considerations
(e.g. ABC).

Hilbert Assumption Set 2. Options exist over issues or action questions. For
instance, over the action question “How will you vote in the congressional election?”
may be the simple options “Democratic” or “Republican.” Likewise, over the issue
question “Do you support or oppose implementation of the ACA?” may be the simple
options “Support” or “Oppose.” Multiple options over one consideration are also
admitted, for example: “Bush,” “Walker,” or “Rubio” over the question of “How
will you vote in a Republican primary?” Index the options of the ith consideration
� D 1; 2; 3; : : : ;M, and note that the options may include both positive (e.g., “to
be for” Walker) and negative (e.g., “to be against” Walker) variants.

Hilbert Assumption Set 3. Option Vectors. The �th option of the ith consider-
ation of an issue, say A, is denoted as the ket vector

ˇ
ˇAi�

˛
, and the (time-invariant)

space containing all possible issue options on the considerations isHi � NLf
ˇ
ˇAi�

˛g.

Hilbert Assumption Set 4. The prepared state of the ith issue response at time t
is

j i(t)i D
X

�

ci�(t)
ˇ
ˇAi�

˛
;

where the expansion weights (ci�) may be individualized to fit the actions of a
single decision-maker. This state is a member ofHi, which, by definition, because
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it is a Hilbert space, has a well-defined scalar product and norm. The associated
scalar product is

h i(t1) j  i(t2)i D
X

�

c�
i�(t1)ci�(t2)

and the norm is
k j i(t)i k �

p
h i(t j  i(t)i:
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Voters’ Preferences in a Quantum Framework

Polina Khrennikova and Emmanuel Haven

1 Introduction

The domain of quantum-like models that aim to accommodate the irrational
behavior of decision-makers in various cognitive and social contexts are by now
widely applied in interdisciplinary areas of cognitive science, economics, and
finance. During recent years, quantum probability and quantum dynamical
models have been successfully applied to describe a variety of problems such as
paradoxes and probability judgment fallacies (e.g. conjunction and disjunction
effects, order effects, the Allais paradox (where humans violate von Neumann–
Morgenstern expected utility axioms), the Ellsberg paradox (where humans
violate Aumann–Savage subjective utility axioms)). In the work contained
in references (Aerts et al. 2014, 2010; Asano et al. 2011; Bagarello 2015;
Bagarello and Haven 2015; Busemeyer et al. 2014; Busemeyer and Bruza
2012; Busemeyer et al. 2011, 2006; Conte et al. 2009; Danilov and Lambert-
Mogiliansky 2010; De Barros and Suppes 2009; Franco 2009; Dzhafarov
and Kujala 2012; Haven and Khrennikov 2013; Khrennikov et al. 2014;

P. Khrennikova (�)
School of Business and IQSCS, University of Leicester, University Road, Leicester
LE1 7RH, UK
e-mail: pk228@le.ac.uk

E. Haven
School of Business and IQSCS, University of Leicester, Leicester, UK
e-mail: eh76@leicester.ac.uk

© The Editor(s) (if applicable) and The Author(s) 2017
E. Haven, A. Khrennikov (eds.), The Palgrave Handbook of Quantum
Models in Social Science, DOI 10.1057/978-1-137-49276-0_8

141

mailto:pk228@le.ac.uk
mailto:eh76@leicester.ac.uk


142 P. Khrennikova and E. Haven

Khrennikov and Haven 2009; Khrennikova 2014a; Khrennikova and Haven
2015; Khrennikova et al. 2014; Khrennikova 2014b; Plotnitsky 2009; Pothos
and Busemeyer 2009; Trueblood and Busemeyer 2011; Wang and Busemeyer
2013; Zorn and Smith 2011), a quantum representation of data that exhibits
‘nonclassicality’ is considered.

Recently, the field has been enriched by applications to politics, in particular
the contexts of voting in the process of elections have been actively considered.
The pioneering work by Zorn and Smith (2011) was the first proposal for the
accommodation of observables and voters decision-making states in a Hilbert
space, instead of the classical Euclidean space that was actively pursued in
models of the classical politics literature, starting with the well known spatial
theory by Enelow and Melvin (1984), followed by Fiorina (1992), Smith
et al. (1999), Finke and Fleig (2013), and Lacy (2001). The limitations of the
static representation of the choice outcomes in a one-dimensional Euclidean
space, such as a lack of dynamical representation of the decision-maker’s state
evolution as well as the non-influence of contextual factors (such as the mental
state of the voter, memory, uncertainty, and the impact of new information),
were first pointed out by Zorn and Smith (2011).

Politics is regarded as a vital area of social science and strongly relies on the
assumptions of voters rationality, implying a stability of preferences. People
would naturally follow the same principles, that is, the axioms of rationality, in
their political decisions as in other situations, like investment decisions. Zorn
and Smith highlight the fact that voters, who strive to maximize their returns
in terms of for example support for their ideological position on some policy,
would retain a consistency of preferences. If the outcomes of the elections are
uncertain the voters are supposed to analyze the information following the
axioms of classical probability theory (Kolmogorov 1950).

This is, however, not the case in reality. The most illuminating example
is the situation in the US political arena. The phenomenon of ‘divided
government’ that emerged during many election periods over the last decennia
is not consistent with the notion of ‘stable preferences of voters’ that follows
the axioms of expected utility (Von Neumann and Morgenstern 1953) and
which has a well defined ranking of their preferences on their utility function
of “political choices.” Moreover, Alvarez and Schousen (1993) discusses that
the ticket splitting behavior is often perceived in the traditional literature on
politics as something uncommon and even undesirable.1
At the same time, Fiorina (1992) has explored this phenomenon from a

strategic perspective. She attributed such preference reversal to a so-called ‘non-

1We omit in this review a discussion on the social implications of the emergence of divided government.
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separability’ of preferences. This phenomenon has been proved empirically in
various opinion polling studies and surveys, see Brams et al. (1997), Finke and
Fleig (2013), Lacy (2001), Lacy and Niou (1998, 2000), Smith et al. (1999).
Nonseparability is defined in the literature on politics as the conditioning of
decisions on each other (Smith et al. 1999; Lacy and Niou 2000; Lacy 2001).
However, the roots of this phenomenon are more complex than just a simple
conditioning of the probabilities of events in a Bayesian way. This problem
was first discussed in Zorn and Smith (2011). They proposed a quantum
representation of voters’ belief states, where the strong interrelation of their
decisions for different political issues could be captured through a quantum
feature called entanglement.

The ideas of Zorn and Smith (2011) were supported and developed fur-
ther in Khrennikova et al. (2014), where a dynamical representation of the
evolution of voters’ belief states with the aid of a quantum master equation
was presented. Also, a numerical simulation of such a state dynamics was
performed. Building upon these first successful models, the studies performed
in Khrennikova (2014a); Khrennikova and Haven (2015) sought to analyze
some concrete statistics on voters’ preferences, in order to motivate further
applications of the quantum representation. The data obtained from the
opinion poll study made by Smith et al. (1999) showed:

(a) The existence of an order effect in voters’ responses.
(b) The violation of the Bayesian updating of voters’ preferences that could

be accommodated in a classical Kolmogorovian probability space. See the
analysis in Khrennikova and Haven (2015).

To add more robustness to these empirical findings, an additional dataset
on the 2008–2014 US election outcomes was collected; see Khrennikova and
Haven (2015). The analysis of the voting frequencies displayed the same
phenomena: (a) the nonseparability of preferences; (b) nonclassicality, that is,
the violation of the core law of classical probability, the law of total probability
(Kolmogorov 1950).

We explain such a strong interrelation of voter preferences through the
notions of superposition and entanglement. Note that irrationality, biases,
and nonseparability lead to a deeper uncertainty than a classical probabilistic
uncertainty. In fact, the aforementioned features (a) and (b) of the statistical
data on the US election outcomes reflect this deep nonclassical uncertainty
that is present in voters’ preferences.
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The time dynamics are an additional source of such nonseparability, that
is, the new information that constantly reaches the voters and resolves their
uncertainty changes their beliefs. We have encoded the external environ-
ment surrounding the voters in the process of an election campaign in
the quantum master equation. This equation is highly complex. Therefore,
its Markovian approximation is typically applied (Ohya and Volovich 2011;
Ingarden et al. 1997). This equation is known as the Gorini–Kossakowski–
Sudarshan–Lindblad (GKSL) equation. In physics the process of the resolution
of the superposition type uncertainty leading to the equilibrium state is called
decoherence. Thus, one can say that we model decoherence of voters’ beliefs
about political parties. This is the political science application of a general
theory of decision using decoherence as developed in a series of papers. For an
extended list of references see Ohya and Tanaka (2016), Khrennikov (2016).
This approach, based on the theory of open quantum systems, forms part
of the general quantum theory of decision-making. For a comprehensive
introduction see the monographs by Busemeyer and Bruza (2012), Haven and
Khrennikov (2013).

One of the main environmental factors is the informational impact of
the mass media on voters’ belief states. The mass media is the main source
of political information. In quantum terms, it is the main source of the
decoherence of voters’ beliefs. This assertion is based on numerous studies
of opinion formation, see for example, Zaller (1992), Graber (1989), Arterton
(1984).

2 The Nonseparability Phenomenon in the US
Political System

The nonseparability phenomenon that is characterized by a special interre-
lation of choices has been the main cause of the emergence of the so-called
divided government in the US governmental structure (Fiorina 1992). This
means that some voters (in fact Smith et al. (1999) showed in an opinion poll
interview on 937 respondents that more than 30% of the US electorate exhib-
ited this feature) do not vote consistently in the Presidential and Congressional
elections. They split their ballots. As a result, the legislative and executive
powers are formed from opposite parties. Since the US political system is a
two-party system, the situation of a “gridlock” emerges, where for instance
a Democratic President is set off by a Republican Congress. The American
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governmental structure is experiencing this situation currently (following the
2014 midterm Congress elections).

An example of how to distinguish between the separability (isolation of pref-
erences) and the nonseparability (preferences are evaluated simultaneously) of
preferences is illustrated in Lacy (2001). If a voter is asked to rank his or her
preferences in terms of the least desirable outcomes, given a set of two issues,
for example Presidential and Congressional elections2:

• Completely separable preferences of a partisanDemocrat would be: (DD) �
(DR) or (RD) � (RD) or (DR) � (RR) (reverse order of preferences for a
Republican partisan).

• Completely nonseparable preferences of a voter who:

(i) prefers divided government, no matter which party wins the
House/Presidential elections: (RD) � (DR) � (DD) � (RR);

(ii) who prefers that the same party controls both powers no matter which
party it is: (DD) � (RR) � (RD) � (DR)3

Note that the midterm elections even further amplify the preference reversal
of voters. This effect is mainly a cause of the time that passes by where new
information reaches the voters and changes their belief states. As noted in
the ‘paradox of multiple elections’ (Brams et al. 1997) the more information
that is known to the decision-maker on the outcome of the other issues in
question (e.g. the outcome of the Congress elections) the more ability he or
she has to interrelate the choices in a strategic way. Lacy (2001) corroborates
the undeniable role of the time dynamics as a key factor leading to the change
of voters’ preferences. In other words, as time passes, the belief state of the
electorate changes as a result of the impact of new information. However,
nonseparability exists even in simultaneous election contests. This effect can
be vindicated by the notion of entanglement of preferences.

2For simplicity of illustration, Lacy considered only the House elections, as a part of the Congressional
elections.
3Case (ii) is more difficult to detect in the context of real elections. Voters that do not exhibit a violation
of the transitivity axiom would be considered as voters with stable (separable) preferences.
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2.1 The Impact of New Information: Order Effect and
the Mass Media

If we generalize the findings of each single survey on opinion polling, we
can say that the mass media is a constant source of new information that
changes the state of the decision-maker (the electorate). The probabilities for
the decision change under the impact of the external environment can be called
the mass-media bath. According to Zaller (1992) the following impact factors
can be distinguished:

(1) the loading of the news: when the news is loaded equally with positive
and negative messages about e.g. a candidate’s policy, the belief state of the
decision-maker remains unchanged;

(2) the level of political awareness of the voter that is contained in his or her
memory plays an important role in his or her resistance to any new pieces
of information.

In other words, the voters have accumulated more evidence to support their
‘base rate’ belief. As a consequence, the swing voters can become the easiest
target for mass-media campaigns.

2.2 Violation of Classical Probabilistic Framework in
Different Contexts

The law of total probability (henceforth LTP) that is derived with the aid
of Bayesian conditional probabilities (Kolmogorov 1950), denotes the total
probability of an outcome, given its realization through some distinct events.
According to the normative rules of modern decision theory, the Bayesian
conditioning of the probability of events aids the decision-maker to process
new information and arrive from some prior probability (base rate) to a
posterior probability (of a belief, preference, decision). The disjunctions of
the conditional realizations of some events (i.e., given mutually exclusive
scenarios of their realization) sum up to unity, if the outcome of the baseline
event is certain. LTP is derived from the conditional probability defined by
Kolmogorov (1950, p. 6) as:

P(BjA) D P(B \ A)=P(A): (1)
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given that P(A) > 0. Here A; B are some events. This formula is also known
as Bayes formula and defines the conditional probability of an event.
If we assume that the eventB can only occur jointly with one of themutually

exclusive events A1; A2; A3 : : :, and so on, where An, n W 1; 2; 3 : : :, we obtain
by the addition rule of probabilities that the total probability of an event B
can be expressed by the formula:

P(B) D
X

n

P(B \ An): (2)

The events B \ A1, B \ A2, B \ A3, B \ Aj are mutually exclusive, that is,
disjoint. By using the multiplication rule from Bayes’ formula for conditional
probability, see (1), we can rewrite the formula as:

P(B) D
X

n

P(BjAn)P(An): (3)

In the case of the US Presidential and Congressional elections, we can
represent themmathematically with the aid of dichotomous random variables.
Due to the feature of the two-party system, the Congressional elections are
characterized by two outcomes: Cd and Cr W P(Cd) C P(Cr) D 1 and the
Presidential elections by Pd and Pr, where P(Pd)CP(Pr) D 1. Democrats are
denoted by an index d and Republicans by r. As such, the total probability for
the outcome of voters’ preferences can be written as:

P(Cd) D P(Pd)P(CdjPd)C P(Pr)P(CdjPr): (4)

In a similar way the total probability for P(Cr) can be derived.
If LTP does not hold, we experience a violation of ‘classicality’, as a result

of super/sub-additivity of the disjunctions or the violation of Bayes’ formula
for the conditional probability. We repeat that the derivation of (2) is model
dependent. It is based on the following features of the classical Kolmogorovian
probability model: additivity of the probability measure and Bayes’ formula of
conditional probability. Consequently, the violation of Bayes’ formula is one
of the sources of violation of LTP. For psychological data exhibiting a violation
of the Bayes’ updating scheme, see Khrennikova (2014b). In psychology and
behavioral economics the super and sub-additivity of agents’ beliefs are coined
the ‘disjunction effect.’ Its psychological origins have been widely explored, for
example, in the fundamental work by Tversky and Kahneman (1983).
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In brief, the main cause for the disjunction effect to occur is the emergence
of special belief states of the decision-maker when he or she is in the condition
of uncertainty. The disjunction effect is deeply rooted in the contextuality of
human beliefs and decisions.

The nonclassicality of voters’ beliefs deeply resonates with the quantum
features of superposition and entanglement. These quantum notions can
provide a better understanding of the uncertainty of beliefs that the voters
hold, as well as of the complexity of their interrelation. Another type of
nonseparability coined by Zorn and Smith (2011) and known as ‘pseudo-
classical’ emerges that is much more like the way the cognitive states of the
voters are related in the process of casting ballots.

2.2.1 Interference of Statistical Data

From a quantum standpoint, the violation of LTP has its origins in the interfer-
ence of probabilities, when they are not measured. The social interpretation for
the political context is that the cognitive state of the voter is in a superposition
of different beliefs.

After observing a violation of LTP in our analysis, we accommodated
the statistical data in the formula of quantum probability, which can be
regarded as a generalization of the classical probabilistic scheme. For a detailed
discussion see Haven and Khrennikov (2013). A quantum-like4 formula of
total probability that is an extension of Eq. (4) with the so-called interference
term can be denoted as:

Pr(Cd) D Pr(Pd)Pr(CdjPd)C Pr(Pr)Pr(CdjPr)C
2
d

p
Pr(Pd)Pr(CdjPd)Pr(Pr)Pr(CdjPr): (5)

The 
d can be represented either as cos �d, a trigonometric interference,
or cosh �d, a hyperbolic interference. The formula with the trigonometric
interference can be derived by using the complex Hilbert space formalism
of quantum mechanics (QM). The quantum formula of total probability
allows for a representation of random variables by noncommuting operators
for the observables, Congressional and Presidential elections. The hyperbolic
interference cannot be derived in this way. To obtain interference terms of
such high magnitudes (
d > 1 is a cosh � interference), one has to use

4The term ‘quantum-like’ is an umbrella word to denote both the traditional quantum formalism and
its generalizations, including the usage of the mathematical apparatus only. The quantum-like models do
not strictly obey the formalism of quantum mechanics.



Voters’ Preferences in a Quantum Framework 149

a generalization of QM, the so-called ‘hyperbolic quantum mechanics,’ see
Haven and Khrennikov (2013). To sum up, the interference term provides an
indication of the amplitude of the probabilistic interference. Below we present
some interference amplitudes for the probabilities of voters’ beliefs.

For the data from Smith et al. (1999) that was analyzed in Khrennikova
(2014a, 2016), we found that the probabilities of voters’ beliefs and preferences
for the for example Democratic President and the Republican Congress
experienced an interference of the following magnitudes:

• For the observable outcomes ‘Democratic Congress’ the interference of
probabilities was negative, i.e. destructive:

cos � D �0:257:

• For the observable outcomes ‘Republican Congress’ the interference of
probabilities was destructive as well:

cos � D �0:216:

These interference effects could be represented as the cosinus of some angle
(phase) of the mental state wave function of the respondents.

• We also analyzed the interference for the observable outcome ‘Don’t know’
which we believe can be considered as a firm preference. In fact the voters
with such preferences were found to be mostly influenced by the new
information on the outcomes of the presidential elections in the (Smith
et al. 1999) study:

cosh � D 3:84:

This interference of a high magnitude was due to a very strong contextuality
effect. We accommodated such an interference of states in a hyperbolic
Hilbert space. Furthermore, we were able to perform a state reconstruction
with a generalized Born Rule that enabled us to motivate the possibility of
modeling the voters’ belief state  and its transition to an eigenvector with
the mathematics and concepts from QM.

In order to support the claim that voters’ belief states can exhibit quantum
features we also found an interference in the data of 2008–2014 US elections
(the total statistics on Presidential and Congressional elections). For details
see, Khrennikova and Haven (2015). We performed the calculation for the
observable outcome C D D (Democratic Congress) and of course a similar
procedure can be performed for C D R: For the data of 2008–2010 (i.e.,
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the voters’ 2010 Congress preferences conditioned on the 2008 Presidential
election outcomes) the cos � D 0:16 and for the 2012–2014 data the
cos � D 0:121. This is a quantum type of constructive interference that can
be accommodated in a Hilbert space and a state reconstruction with the Born
rule can be performed in a similar way as in Khrennikova and Haven (2015).

In the next section we will present a dynamical model based on the theory
of open quantum systems and survey the methods, notations, and terminology
of quantum theory. We will consider notions such as entanglement of states,
the Hilbert state space, a pure state, a mixed state (density operator), and the
Schrödinger equation. The reader can find a more detailed elaboration of these
concepts in Chap. 1 of this handbook (Haven and Khrennikov 2016).

3 A Quantum Model of the Decision-Making
of Voters

We introduce briefly the modeling of the voters’ belief states in the process of
decision evolution in the complex Hilbert state space. Denote by H the state
space of voters. In the simplest model this can be represented as the two qubit
space, that is, as the four-dimensional complex Hilbert space. For instance,
in the context of US elections, one qubit corresponds to the Congressional
elections and another to the Presidential elections. Each qubit represents the
superposition of two states jDi; democrats, and jRi; republicans, where we
have used kets. These qubits are entangled; see Khrennikova et al. (2014) for
details. Hence, H is isomorphic to C

4. Thus, in reality we work just with
four complex variables: in particular, pure states are complex vectors with four
coordinates and mixed states are 4 by 4 matrices with complex elements.

In the quantum formalism, the dynamics of the state of an isolated quantum
system is described by Schrödinger’s equation and the dynamics of the state
of a quantum system interacting with an environment is described by the
quantum master equation (Ohya and Volovich 2011). In general the latter
equation is too complicated mathematically to be treated directly, that is,
without using some approximations. Therefore, various approximations are
used. The most popular is the quantum Markovian approximation leading to
the GKSL equation (Ingarden et al. 1997; Ohya and Volovich 2011).
By applying the mathematical formalism of QM to modeling the behavior

of voters, one has to specify the notion of ‘environment.’ Note that our model
is concerned with the information dynamics. For this specific purpose, it is
natural to identify the environment, ‘bath,’ as a ‘bath’ of information related
to all the components of the elections: the political parties, their candidates,
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their programs, the private life of the candidates, their economic situation, and
so on…. As we have mentioned in Sect. 2.1, the information that reaches the
voters’ cognitive states primarily floods in from the mass media. Thus we coin
it the ‘mass-media bath’.

‘Isolated dynamics’ correspond to the ignorance of the impact of such a
bath and considers voters as ignoring the aforementioned information flow
from outside. It is clear that even in physics the notion of an isolated quantum
system is merely an abstraction. In reality there are no completely isolated
systems, neither in physics nor in social science. However, in some contexts one
can ignore the impact of the environment with some degree of approximation.
This provides for the possibility of splitting the generator of dynamics into
two parts: the first one corresponding to the ignorance of the environment
(that generates Schrödinger’s dynamics); and the second one representing
the impact of the ‘election environment’ (generated through the mass-media
bath). Note that, although the notion of an isolated system matches well a
variety of physical contexts, it is not so useful in social science in general and,
in particular, in politics.

One of the main distinguishing features of the solutions of the Markovian
quantum master equation, the GKSL equation, is that for a wide class of
equations a nonstationary solution �(t) stabilizes to a stationary solution
�decision representing the prognosis about the distribution of the final beliefs
of the electorate.

As has already been emphasized, in comparison to the Schrödinger equa-
tion, the quantummaster equation can transform pure states into mixed states.
Such a process is called decoherence. This is a dynamical equation in the space
of density operators. Therefore the limiting prognosis state �decision can be
a mixed state, even if the initial belief state was a pure state. Such a steady
state is (under natural conditions) diagonal in the density matrix basis. This
represents the resolution of quantum-like uncertainties of superposition and
entanglement types, which are typically present in the initial state �0, to the
classical state-firm beliefs and decisions. In general �decision determines only
the probabilities of voters’ decisions. In this regard, one proceeds by assigning
the voters a decision that is associated with the highest probability.

We now write the Markovian approximation of the quantum master
equation, the GKSL equation (Ohya and Volovich 2011):

d�

dt
(t) D � i

	
ŒH; �(t)�C L(�(t)); (6)

where H is a Hermitian operator acting in H and L is a linear operator
acting in the space of linear operators B(H) in H (such maps are often called
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super-operators). Typically the operator H represents the state dynamics in
the absence of the environment. However, in general H can also contain
contributions from the impact of the environment. The superoperator L has
to map density operators onto density operators, that is, it has to preserve
for instance Hermiticity and positive definiteness. These conditions constrain
essentially the class of possible generators L: By adding some additional
condition, which role we are not able to discuss in this chapter, that is, the
so called complete positive definiteness, we describe the class of such generators
precisely. They have the form:

L� D
X

k

˛kŒCk�C�
k � (C�

k Ck�C �C�
k Ck)=2� D

X

k

˛k

�
Ck�C�

k �
1

2

˚
C�

k Ck; �
��
:

(7)

Operators Ck encode the special features of the social environment. To provide
an overview of how such a model could work, a numerical simulation was
performed in Khrennikova et al. (2014). The results show the powerful role
of the election environment in shaping the final preferences of voters. This
model works for voters that are potentially able to change their preferences:
the preferences are not firm, and new information can affect and reveal them.

4 Discussion: What Next?

Some substantial results in exploring the origins of the phenomenon of
nonseparability have been achieved. A more complex aim to represent the
dynamical decision processes of the voters has been realized as well, with
the aid of the mathematical and conceptual framework of QM. The research
that we have discussed in this chapter pertains to empirical and theoretical
contributions to the field of human decision-making. Undeniably, the field of
application of quantum models to voters’ political choices is still in its infancy
and would benefit from further empirical studies and simulations, so an
accurate match can be developed between the psychological and mathematical
variables that we have introduced in a ‘social analogue’ of the GKSL model.

We believe that further studies on voters preferences (political issues as well
as the contextual factors, including the political environment) would allow the
GKSL model and the strand of related QL models to progress further. The
models could become explanatory rather than merely being of a descriptive
character. Hence, they could potentially provide for a viable alternative to
accommodate human cognitive states and their resolution from uncertainty.
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Quantum Structure in Cognition Origins,
Developments, Successes, and Expectations

Diederik Aerts and Sandro Sozzo

1 The Combination Problem in Concept Theory

That concepts exhibit aspects of ‘contextuality,’ ‘vagueness,’ and ‘graded
typicality’ was already known in the 1970s since the investigations of Rosch
(1973). These studies questioned explicitly the traditional view that ‘concepts
are containers of instantiations’ and, additionally, although not explicitly
stated, there was already the suspicion that ‘the human mind combines
concepts not following the algebraic rules of classical logic even if the
combinations are conjunctions or disjunctions.’ In particular, conceptual
gradedness led scholars to introduce elements of probability theory in
structuring and representing concepts. A possible way to at least preserve
a set-theoretical basis was the fuzzy set approach (Zadeh 1989). According to
this proposal, concepts would combine in such a way that the conjunction
of two concepts satisfies the ‘minimum rule of fuzzy set conjunction’ and
the disjunction of two concepts satisfies the ‘maximum rule of fuzzy set
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disjunction.’ In this way, one could still maintain that ‘concepts can be
represented as (fuzzy) sets and combine according to set-theoretic rules.’
However, a whole set of experimental findings in the last 30 years has
revealed that the latter does not hold, thus raising the so-called ‘combination
problem.’

(i) ‘Guppy effect.’ Osherson and Smith measured the ‘typicality’ of specific
exemplars with respect to the concepts Pet and Fish and their conjunction
Pet-Fish (Osherson and Smith 1981), and they found that people rate an
exemplar such as Guppy as a very typical example of Pet-Fish, without
ratingGuppy as a very typical example either of Pet or of Fish (the ‘Pet-Fish
problem’).1 Interestingly enough, this guppy effect violates the minimum
rule of fuzzy set conjunction.

(ii) ‘Overextension and underextension effects.’ Hampton measured the
‘membership weight’ of several exemplars with respect to specific pairs
of concepts and their conjunction (Hampton 1988a) and disjunction
(Hampton 1988b), finding systematic deviations from fuzzy set modeling.
Adopting his terminology, if the membership weight of an exemplar x
with respect to the conjunction ‘A and B’ of two concepts A and B is
higher than the membership weight of x with respect to one concept
(both concepts), we say that the membership weight of x is ‘overextended’
(‘double overextended’) with respect to the conjunction (briefly, x is
overextended with respect to the conjunction). If the membership weight
of an exemplar x with respect to the disjunction ‘A or B’ of two concepts
A and B is less than the membership weight of x with respect to one
concept (both concepts), we say that the membership weight of x is
‘underextended’ (‘double underextended’) with respect to the disjunction
(briefly, x is underextended with respect to the disjunction). We have
recently performed a similar cognitive test on conceptual conjunctions of
the form ‘A and B’ (Sozzo 2015; Aerts et al. 2015a), detecting systematic
overextension and also double overextension.2

(iii) ‘Deviations from classicality in conceptual negation.’ More recently,
Hampton measured the membership weights of many exemplars with
respect to specific pairs of concepts and their conjunction, e.g., Tools

1In a typicality measurement, subjects are asked to choose the exemplar they consider as the most typical
example of a given concept, hence they have to pick the best example in a list of items.
2In a membership measurement, subjects are asked to decide whether a given exemplar x is a member of a
given concept A. When many subjects are involved in the measurement, a membership weight �(A) can
be defined for x as a large number limit of the relative frequency of positive answers.
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which Are also Weapons, and also conjunction when the second concept is
negated, e.g., Tools which Are not Weapons (Hampton 1997). He detected
overextension in both types of conjunctions, as well as deviations from
classical logical behaviour in conceptual negation. We have recently
performed a more general cognitive test (Sozzo 2015; Aerts et al. 2015a),
detecting systematic overextension, double overextension, and violation
of classical logic negation rules in conceptual conjunctions of the form ‘A
and not B,’ ‘not A and B,’ and ‘not A and not B.’

(iv) ‘Borderline contradictions.’ Alxatib and Pelletier asked human subjects
to estimate the truth value of a sentence such as “x is tall and not tall”
for a given person x who was shown to subjects (Alxatib and Pelletier
2011). They found that a significant number of subjects estimated such a
sentence as true, in particular, for borderline cases.3

Difficulties (i)–(iv) entail, in particular, that the formation and combination
rules of human concepts do not generally follow the laws of classical (fuzzy
set) logic (Osherson and Smith 1981; Hampton 1988a,b, 1997). Moreover,
the corresponding experimental data cannot generally be modeled in a single
classical probability space satisfying the axioms of Kolmogorov, which we have
proved in various articles (Sozzo 2015; Aerts 2009a; Aerts et al. 2013a; Sozzo
2014).

Our investigation of the above ‘deviations from classicality’4 in conceptual
combinations can be traced back to our studies on the axiomatic and opera-
tional foundations of quantum physics and the origins of quantum probability
(see, e.g., Aerts 1986). We recognized that any decision process, for example,
a typicality measurement, or a membership estimation, involves a ‘transition
from potential to actual,’ in which an outcome is actualized from a set of
possible outcomes as a consequence of a contextual interaction (of a cognitive
nature) of the subject with the conceptual situation that is the object of
the decision. Hence, human decision processes exhibit deep analogies with
what occurs in a quantum measurement process, where the measurement
context (of a physical nature) influences the measured quantum particle in a
non-deterministic way. Quantum probability—which is able to formalize this
‘contextually driven actualization of potential,’ and not classical probability,

3A borderline contradiction can be formalized as a sentence of the formP(x)^:P(x), for a vague predicate
P and a borderline case x, e.g., the sentence “Mark is rich and Mark is not rich.”
4By the locution ‘deviation from classicality’ we actually mean that classical logical and probabilistic
structures, i.e. the most traditional models of cognition, cannot account for the experimentally observed
patterns.
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which only formalizes a lack of knowledge about actuality—can conceptually
and mathematically cope with this situation that underlies both the quantum
and conceptual realms (Aerts and Aerts 1995).
The second step of our research was the elaboration of a ‘state context

property’ (SCoP) formalism to represent abstractly any type of entity, for
example, a conceptual entity, in terms of its states, contexts, and properties.
In a SCoP, a concept is represented as an ‘entity being in a specific state and
changing under the influence of a cognitive context,’ rather than as a ‘container
of instantiations,’ and we were able to provide a quantum-theoretic model in
Hilbert space that successfully describes the guppy effect (Aerts and Gabora
2005a,b) (Sect. 2).

The successive development of our research was the employment of the
mathematical formalism of quantum theory in Fock space to model the
overextension and underextension ofmembership weightsmeasured inHamp-
ton (1988a,b). These effects can be described in terms of genuine quantum
aspects, like ‘interference,’ ‘superposition,’ and ‘emergence’ (Aerts 2009a,b;
Aerts et al. 2013a,b). This quantum-mechanical model was successfully applied
to describe borderline contradictions (Sozzo 2014).More recently, we extended
the model to incorporate conceptual negation, thus faithfully representing
the above mentioned experiments by ourselves on concept conjunctions and
negations (Sozzo 2015; Aerts et al. 2015a) (Sect. 3).
Our results allowed us to put forward a unifying explanatory hypothesis

for this whole set of experimental findings in human cognition, namely, that
human thought is guided by two simultaneous processes—‘quantum concep-
tual thought,’ whose nature is ‘emergence,’ and ‘quantum logical thought,’
whose nature is ‘logic’ (Aerts et al. 2015b). Our investigations indicate that
the former generally prevails over the latter, and that the effects, paradoxes,
contradictions, and fallacies that are experimentally detected in human cogni-
tion can be considered as expressions of this dominance, rather than ‘biases’
of the human mind. More recently, we received further crucial confirmation
of this two-layered structure in human thought, namely the stability of the
deviation from classical probabilistic rules that we detected in Aerts et al.
(2015a) (Sect. 4).

Our quantum-theoretic perspective also accounts for two recent experimen-
tal results we obtained, namely, the identification of ‘quantum entanglement’
in the conceptual combination The Animal Acts (Aerts and Sozzo 2011, 2014a)
(Sect. 5) and the detection of ‘quantum indistinguishability of the Bose–
Einstein type’ in specific combinations of identical concepts, such as Eleven
Animals (Aerts et al. 2015c) (Sect. 6). These discoveries are also important, in
our opinion, from the point of view of the foundations of quantum physics,
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since they can shed new light on two mysterious aspects of the microscopic
world—entanglement and indistinguishability.

In this review chapter, we present the above results by basically following
a historical reconstruction, though justified and restructured in a unitary
and more general rational framework. We conclude the chapter with some
epistemological remarks on the role and interpretation of our quantum-
theoretic perspective within the domain of cognitive modeling, and with some
hints for future developments (Sect. 7).

2 The First Steps: Potentiality and
Contextuality in Decision Processes

The first move towards the development of a quantum-theoretic perspective in
cognition came from our former research on the mathematical and conceptual
foundations of quantum physics. In particular, we were guided by our studies
on:

1. the identification of quantum structures outside the microscopic world,
e.g., in the cognitive situation of the liar paradox (Aerts et al. 1999, 2000);

2. the recognition of the existence of deep analogies between quantum
particles and conceptual entities with respect to ‘potentiality’ and ‘con-
textuality’;

3. the role played by quantum probability in formalizing experimental
situations where these aspects of potentiality and contextuality occur.

It is well known from quantum physics that, in a quantum measurement
process, the measurement context influences the quantum entity that is
measured in a nondeterministic way, actualizing one outcome in a set of
possible measurement outcomes, as a consequence of the interaction between
the quantum entity and the measurement context. Suppose now that a
statistics of measurement outcomes is collected after a sequence of many
repeated measurement processes on an arbitrary entity, and such that (1) the
measurement actualizes properties of the entity that were not actual before the
measurement started, (2) different outcomes and actualizations are obtained
probabilistically. What type of probability can formalize such an experimental
situation? It cannot be classical probability, because this formalizes a lack of
knowledge about actual properties of the entity that were already actual before
the measurement started. We proved many years ago that a situation where
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context actualizes potential properties can instead be represented in a suitable
quantum probabilistic framework (Aerts 1986).

What about a human decision process? Well, we realized that a decision
process is generally made in a state of genuine potentiality, which is not of
the type of a lack of knowledge of an actuality. The following example may
help to illustrate this point. In Aerts and Aerts (1995), we considered a survey
including the question “Are you a smoker or not?” Suppose that 21 participants
over a whole sample of 100 answered ‘yes’ to this question. We can then
consider 0.21 as the probability of finding a smoker in this sample. However,
this probability is obviously of the type of a ‘lack of knowledge about an
actuality,’ because each participant ‘is’ a smoker or ‘is not’ a smoker before the
property has been tested, hence before the experiment to test it—the survey—
starts. Suppose that we now consider the question “Are you for or against the
use of nuclear energy?” and that 31 participants answer they are in favor. In this
case, the resulting probability 0:31 is ‘not’ of the type of ‘lack of knowledge
about an actuality.’ Indeed, it is very plausible for this type of question that
some of the participants had no opinion about it before the survey, and hence
for them the outcome was influenced by the context at the time the question
was asked, including the specific conceptual structure of how the question was
formulated. This is how context plays an essential role whenever the human
mind is concerned with outcomes of experiments of a cognitive nature. We
have shown that the first type of probability, for example, the type that models
a ‘lack of knowledge about an actuality,’ is classical, and that the second type
is nonclassical and, possibly, quantum (Aerts 1986).

The effect due to the role that context plays on a conceptual entity is
equally fundamental to the effect due to the actualizing of potentialities during
a decision process. Exactly as in a quantum measurement the measurement
context changes the state of the quantum entity that is measured, so in a
decision process the cognitive context changes the state of the concept (Aerts
and Gabora 2005a,b). For example, in our modeling of the concept Pet,
we considered the context e expressed by Did you see the type of pet he has?
This explains that he is a weird person, and found that when participants in
an experiment were asked to rate different exemplars of Pet, the scores for
Snake and Spider were very high in this context. From our perspective, this is
explained by the existence of different states for the concept Set, where we use
the notion of ‘state’ in the same way as it is used in quantum theory, but also
as it is used in ordinary language, for example, ‘the state of affairs,’ meaning
‘how the affairs will react on different measurement contexts.’ We call ‘the
state of Pet when no specific context is present’ its ground state Op. The context
e then changes the ground state Op into a new state pweird person pet. Typicality,
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from our perspective, is an observable semantic quantity, which means that
it takes different values in different states. Hence, from our perspective the
typicality variations as encountered in the guppy effect are due to changes of
state of the concept Pet under the influence of a context. More specifically, the
conjunction Pet-Fish is Pet under the context Fish, in which case the ground
state p of Pet is changed into a new state pFish. The typicality of Guppy, being
an observable semantic quantity, will be different depending on the state, and
this explains the high typicality ofGuppy in the state pFish of Pet, and its normal
typicality in the ground state p of Pet (Aerts and Gabora 2005a).

We have developed this approach in a formal way, and called the underlying
mathematical structure a SCoP system (Aerts and Gabora 2005a). To build a
SCoP for an arbitrary concept S we introduce three sets, namely: the set † of
states, denoting states by p; q; : : :; the set M of contexts, denoting contexts
by e; f ; : : :; and the set L of properties, denoting properties by a; b; : : :.
The ‘ground state’ Op of the concept S is the state where S is not under the
influence of any particular context. Whenever S is under the influence of
a specific context e, a change of the state of S occurs. In case S was in its
ground state Op, the ground state changes to a state p. The difference between
states Op and p is manifested, for example, by the typicality values of different
exemplars of the concept and the applicability values of different properties
being different in the two states Op and p. Hence, to complete the mathematical
construction of a SCoP, two functions � and � are also introduced. The
function � W † �M � † �! Œ0; 1� is defined such that �(q; e; p) is the
probability that state p of concept S under the influence of context e changes
to state q of concept S. The function � W † � L �! Œ0; 1� is defined such
that �(p; a) is the weight, or normalization of applicability, of property a in
state p of concept S. With these mathematical structures and tools the SCoP
formalism copes with both ‘contextual typicality’ and ‘contextual applicability.’

We likewise built an explicit quantum-mechanical representation in a
complex Hilbert space of the data of the experiment on Pet and Fish and
different states of Pet and Fish in different contexts explored in Aerts and
Gabora (2005a), as well as of the concept Pet-Fish (Aerts and Gabora 2005b).
In this way, we were able to cope with the pet-fish problem illustrated in
Sect. 1, (i).

The analysis above already contained the seeds of our quantum modeling
perspective for concept combinations—in particular, the notion of the state of
a concept marked the departure from the traditional idea of a concept as a set,
eventually fuzzy, that contains instantiations. However, this analysis was still
preliminary, and a general quantum-mechanical modeling required further
experimental and theoretic steps, as will become clear in the following section.
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3 Modeling Concept Combinations in Fock
Space

We present here our quantum modeling perspective in Fock space for the
combination of two concepts. This is successful in describing the classically
problematical results illustrated in Sect. 1, (ii) (concept conjunction and dis-
junction), (iii) (concept negation), and (iv) (borderline contradictions).

Let us firstly consider the membership weights of exemplars of concepts and
their conjunctions/disjunctions measured by Hampton (1988a,b). He identi-
fied systematic deviations from classical (fuzzy) set conjunctions/disjunctions,
an effect known as ‘overextension’ or ‘underextension’ (see Sect. 1). We showed
in Aerts (2009a) that a large part of Hampton’s data cannot be modeled in
a classical probability space satisfying the axioms of Kolmogorov (1950) and
Pitowsky (1989). For example, the exemplarMint scored in Hampton (1988a)
the membership weight �(A) D 0:87 with respect to the concept Food,
�(B) D 0:81 with respect to the concept Plant, and �(A and B) D 0:9 with
respect to their conjunction Food And Plant. Thus, the exemplarMint exhibits
overextension with respect to the conjunction Food And Plant of the concepts
Food and Plant, and no classical probability representation exists for these data.
More generally, the membership weights �(A); �(B), and �(A and B) of the
exemplar x with respect to concepts A, B, and their conjunction ‘A and B,’
respectively, can be represented in a classical Kolmogorovian probability model
if and only if they satisfy the following inequalities (Sozzo 2015; Aerts 2009a)

�(A and B) �min(�(A); �(B)) � 0 (1)

�(A)C �(B) � �(A and B) � 1 (2)

A violation of (1) entails, in particular, that the minimum rule of fuzzy set con-
junction does not hold, as in the case ofMint. A similar situation occurs in the
case of disjunctions.We showed in Aerts (2009a) that a large part ofHampton’s
data cannot be modeled in a classical Kolmogorovian probability space. For
example, the exemplar Sunglasses scored in Hampton (1988b) the membership
weight �(A) D 0:4 with respect to the concept Sportswear, �(B) D 0:2 with
respect to the concept Sports Equipment, and �(A or B) D 0:1 with respect
to their disjunction Sportswear Or Sports Equipment. Thus, the exemplar
Sunglasses exhibits underextension with respect to the disjunction Sportswear
Or Sports Equipment of the concepts Sportswear and Sports Equipment, and
no classical probability representation exists for these data. More generally, the
membership weights�(A); �(B), and�(A or B) of the exemplar xwith respect
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to conceptsA,B, and their disjunction ‘A orB,’ respectively, can be represented
in a classical Kolmogorovian probability model if and only if they satisfy the
following inequalities (Aerts 2009a)

max(�(A); �(B)) � �(A or B) � 0 (3)

0 � �(A)C �(B) � �(A or B) (4)

A violation of (3) entails, in particular, that the maximum rule of fuzzy set
disjunction does not hold, as in the case of Sunglasses.

In a first attempt to elaborate a quantummathematics model for the data in
Hampton (1988a,b) we were inspired by the quantum two-slit experiment.5
Consider, for example, the disjunction of two concepts. This led us to suggest
the following Hilbert space model. One could represent the concepts A and B
by the unit vectors jAi and jBi, respectively, of a Hilbert spaceH, and describe
the decision measurement of a subject estimating whether the exemplar x
is a member of A by means of a dichotomic observable represented by the
orthogonal projection operator M. The probabilities �(A) and �(B) that x is
chosen as a member of A and B, that is, its membership weights, are given
by the scalar products �(A) D hAjMjAi and �(B) D hBjMjBi, respectively.
The concept ‘A or B’ is instead represented by the normalized superposition

1p
2
(jAi C jBi) in H. If jAi and jBi are chosen to be orthogonal, that is,

hAjBi D 0, the membership weights �(A); �(B), and �(A or B) of an
exemplar x for the concepts A, B, and ‘A or B’ are given by

�(A) D hAjMjAi (5)

�(B) D hBjMjBi (6)

�(A or B) D 1

2
(�(A)C �(B))C<hAjMjBi (7)

respectively, where<hAjMjBi is the real part of the complex number hAjMjBi.
The term <hAjMjBi is called the ‘interference term’ in the quantum jargon,
since it produces a deviation from the average 1

2 (�(A)C �(B)) which would
have been observed in the quantum two-slit experiment in the absence of
interference. In this way, the deviation from classicality in Hampton (1988a,b)
would be due to quantum interference, superposition, and emergence, exactly

5In the present chapter we use for our modeling purposes the standard quantum-mechanical formalism
that is presented in modern manuals of quantum physics (see, e.g., Dirac 1958). A basic summary of this
formalism is contained in the volume including this article (Haven and Khrennikov 2015).
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as quantum interference, superposition, and emergence are responsible for the
deviation from the classically expected pattern in the two-slit experiment.

This ‘emergence-based’ model in Hilbert space succeeded in describing
many nonclassical situations in Hampton (1988a,b). However, it did not work
for some cases, and these were exactly the cases where logic seemed to play a
role in the mechanism of conceptual combination. This led us to work out
a more general model in Fock space. We present the model in the following.
We omit proofs and technical details here, for the sake of brevity, inviting the
interested reader to refer to the bibliography quoted in this section. We only
remind readers of some basic mathematical definitions.

A Fock space is a specific type of Hilbert space, originally introduced in
quantum field theory. For most states of a quantum field the number of
identical quantum entities is not conserved but is a variable quantity. The Fock
space copes with this situation by allowing its vectors to be superpositions of
vectors pertaining to different sectors for fixed numbers of identical quantum
entities. More explicitly, the k-th sector of a Fock space describes a fixed
number of k identical quantum entities and is of the form H ˝ : : : ˝ H
of the tensor product of k isomorphic versions of a Hilbert spaceH. The Fock
space F itself is the direct sum of all these sectors, hence

F D ˚j
kD1 ˝k

lD1 H (8)

(where j can be 1). In our modeling we only used Fock space for the ‘two’
and ‘one quantum entity’ case, hence F D H ˚ (H ˝ H). This is due
to considering only combinations of two concepts. The sector H is called
‘sector 1,’ while the sectorH˝H is called ‘sector 2.’ A unit vector j‰i 2 F is
then written as j‰i D nei�j i C mei
jˆi, where j i 2 H, jˆi 2 H˝H,
and n2 C m2 D 1. For combinations of j concepts, the general form of Fock
space expressed in (8) will have to be used.

In the case of two combining entities, a Fock spaceF consists of two sectors:
‘sector 1’ is a Hilbert space H, while ‘sector 2’ is a tensor product H ˝H of
two isomorphic versions ofH.

It can be proved that a quantum probability model in Fock space exists
for Hampton’s data on conjunction and disjunction (Aerts 2009a; Aerts et al.
2013a).
Let us start with the conjunction of two concepts. Let x be an exemplar and

let �(A), �(B), and �(A and B) be the membership weights of x with respect
to the concepts A, B, and ‘A and B’, respectively. Let F D H˚ (H˝H) be
the Fock space where we represent the conceptual entities. The states of the
concepts A, B, and ‘A and B0 are represented by the unit vectors jAi; jBi 2 H
and jA and Bi 2 F , respectively, where
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jA and Bi D mei
jAi ˝ jBi C nei� 1p
2

(jAi C jBi) (9)

The superposition vector 1p
2
(jAiCjBi) describes ‘A and B’ as a new emergent

concept, while the product vector jAi ˝ jBi describes ‘A and B’ in terms of
concepts A and B. The positive numbers m and n are such that m2 C n2 D
1. The decision measurement of a subject who estimates the membership of
the exemplar x with respect to the concept ‘A and B’ is represented by the
orthogonal projection operator M˚(M˝M) onF , where M is an orthogonal
projection operator onH. Hence, the membership weight of x with respect to
‘A and B’ is given by

�(A and B) D hA and BjM ˚ (M ˝M)jA and Bi

D m2�(A)�(B)C n2

�
�(A)C �(B)

2
C<hAjMjBi

�
(10)

where�(A) D hAjMjAi and�(B) D hBjMjBi, as above. The term<hAjMjBi
is again the interference term of quantum theory. A solution of (10) exists in
the Fock space C3 ˚ (C3 ˝ C

3) where this interference term is given by

<hAjMjBi D
( p

1 � �(A)
p

1 � �(B) cos � if �(A)C �(B) > 1p
�(A)
p
�(B) cos � if �(A)C �(B) � 1

(11)

(� is the ‘interference angle.’) Coming to the example above, namely, the
exemplarMint with respect to Food, Plant, and Food And Plant, (10) is satisfied
with m2 D 0:3, n2 D 0:7, and � D 50:21ı.
The previous mathematical representation admits the following interpre-

tation. Whenever a subject is asked to estimate whether a given exemplar x
belongs to the concepts A, B, ‘A and B’, two mechanisms act simultaneously
and in superposition in the subject’s thought. A ‘quantum logical thought’,
i.e. a probabilistic version of classical logical reasoning, acts where the subject
considers two copies of exemplar x and estimates whether the first copy
belongs to A and the second copy of x belongs to B, and further the subject
applies the probabilistic version of the conjunction to both estimates. But a
‘quantum conceptual thought’ also acts, where the subject estimates whether
the exemplar x belongs to the newly emergent concept ‘A and B’. The place
where these superposed processes can be suitably structured is in Fock space.
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Sector 1 hosts the latter process, while sector 2 hosts the former, while the
weights m2 and n2 measure the ‘degree of participation’ of sectors 2 and 1,
respectively, in the case of conjunction. In the case of Mint, subjects consider
Mint to be more strongly a member of the concept Food And Plant than they
consider it to be a member of Food or of Plant. This is an effect due to the
strong presence of quantum conceptual thought, the newly formed concept
Food And Plant being found to be a better fitting category for Mint than the
original concepts Food or Plant. And indeed, in the case ofMint, considering
the values of n2 and m2, the combination process mainly occurs in sector 1 of
Fock space, which means that emergence prevails over logic.

Let us now come to the disjunction of two concepts. Let x be an exemplar
and let�(A),�(B), and�(A or B) be themembership weights of xwith respect
to the concepts A, B, and ‘A or B’, respectively. LetF D H˚ (H˝H) be the
Fock space where we represent the conceptual entities. The concepts A, B, and
‘A or B’ are represented by the unit vectors jAi; jBi 2 H and jA or Bi 2 F ,
respectively, where

jA or Bi D mei
jAi ˝ jBi C nei� 1p
2

(jAi C jBi) (12)

The superposition vector 1p
2
(jAi C jBi) describes ‘A or B’ as a new emergent

concept, while the product vector jAi ˝ jBi describes ‘A or B’ in terms of
concepts A and B. The positive numbers m and n are such that m2C n2 D 1,
and they estimate the ‘degree of participation’ of sectors 2 and 1, respectively,
in the disjunction case. The decision measurement of a subject who estimates
the membership of the exemplar x with respect to the concept ‘A or B’ is
represented by the orthogonal projection operator M ˚ (M ˝ 1C 1˝M �
M ˝M) on F , where M has been introduced above. We notice that

M ˝ 1C 1˝M �M ˝M D 1 � (1 �M)˝ (1 �M) (13)

that is, we have applied de Morgan’s laws of logic in sector 2 of Fock space in
the transition from conjunction to disjunction. The membership weight of x
with respect to ‘A or B’ is given by

�(A or B) D hA or BjM ˚ (M ˝ 1C 1˝M �M ˝M)jA or Bi

m2 .�(A)C �(B) � �(A)�(B)/C n2

�
�(A)C �(B)

2
C<hAjMjBi

�
(14)
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where �(A) D hAjMjAi and �(B) D hBjMjBi. The term <hAjMjBi is the
interference term. A solution of (14) exists in C

3 ˚ (C3 ˝ C
3) where the

interference term is given by

<hAjMjBi D
( p

1 � �(A)
p

1 � �(B) cos � if �(A)C �(B) > 1p
�(A)
p
�(B) cos � if �(A)C �(B) � 1

(15)

Coming to the example above, namely, the exemplar Sunglasses with respect
to Sportswear, Sports Equipment, and Sportswear Or Sports Equipment, (14) is
satisfied by m2 D 0:03, n2 D 0:97, and � D 155:00ı.

The previous mathematical representation admits the following interpre-
tation. Whenever a subject is asked to estimate whether a given exemplar x
belongs to the concepts A, B, ‘A or B’, two mechanisms act simultaneously
and in superposition in the subject’s thought. A ‘quantum logical thought’,
i.e. a probabilistic version of classical logical reasoning, acts where the subject
considers two copies of exemplar x and estimates whether the first copy
belongs to A or the second copy of x belongs to B, and further the subject
applies the probabilistic version of the disjunction to both estimates. But a
‘quantum conceptual thought’ also acts, where the subject estimates whether
the exemplar x belongs to the newly emergent concept ‘A or B’. The place
where these superposed processes are structured is again in Fock space. Sector
1 hosts the latter process, while sector 2 hosts the former, while the weights m2

and n2 measure the ‘degree of participation’ of sectors 2 and 1, respectively, in
the case of disjunction. In the case of Sunglasses, subjects consider Sunglasses
to be less strongly a member of the concept Sportswear Or Sports Equipment
than they consider it to be a member of Sportswear or of Sports Equipment.
This is an effect due to the strong presence of quantum conceptual thought,
the newly formed concept Sportswear Or Sports Equipment being found to be
a less well fitting category for Sunglasses than the original concepts Sportswear
or Sports Equipment. And indeed, in the case of Sunglasses, considering the
values of n2 and m2, the combination process mainly occurs in sector 1 of
Fock space, which means that emergence aspects prevail over logical aspects in
the reasoning process.

Let us then analyze the experiment of Alxatib and Pelletier on borderline
contradictions (Alxatib and Pelletier 2011). We proved in Sozzo (2014) that
our quantum-theoretic model for the conjunction correctly represents the
collected data. Suppose that a large sample of human subjects is asked to
estimate the truth values of the sentences “John is tall,” “John is not tall,”
and “John is tall and not tall,” for a given subject John shown to the
subjects. And suppose that the fractions of positive answers are 0:01, 0:95, and
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0:15, respectively (Alxatib and Pelletier 2011). This ‘borderline case’ is clearly
problematical from a classical logical perspective and can be modeled in terms
of overextension. Indeed, let us denote by �(A), �(A0), and �(A and A0) the
probabilities that the sentences “John is tall,” “John is not tall,” and “John is
tall and not tall” are true, and interpret them as membership weights of the
exemplar John with respect to the concepts Tall, Not Tall, and Tall And Not
Tall, respectively. Then (10) is solved for m2 D 0:77, n2 D 0:23, and � D 0ı
(Sozzo 2014). The explanation for this behavior is that the reasoning process
of the subject mainly occurs in sector 2 of Fock space, hence logical reasoning
is dominant, although emergent reasoning is also present, which evokes the
name ‘contradiction’ for this situation.

Let us finally come to the experiments on conceptual negation. The first
studies on the negation of natural concepts were also performed by Hampton
(1997). He tested membership weights on conceptual conjunctions of the
form Tools Which Are Not Weapons, finding overextension and deviations from
Boolean behavior in the negation. We recently performed a more general
cognitive test inquiring into themembership weights of exemplars with respect
to conjunctions of the form Fruits And Vegetables, Fruits And Not Vegetables,
Not Fruits And Vegetables, and Not Fruits And Not Vegetables (Sozzo 2015;
Aerts et al. 2015a). Our data confirmed significant deviations from classicality
and evidenced a very stable pattern of such deviations from the classicality
conditions. The data could very faithfully be represented in two-sector Fock
space, thus providing support to our quantum-theoretic modeling. Moreover,
they allowed us to attain new fundamental results in concept research and
to sustain and corroborate our explanatory hypothesis in Sect. 4. Hence, it
is worth briefly reviewing our recent results starting from the conditions for
classicality of conceptual datasets, that is, the representability of empirical
membership weights in a Kolmogorovian probability space.

Let �(A); �(B); �(A0); �(B0), �(A and B), �(A and B0), �(A0 and B), and
�(A0 and B0) be the membership weights of an exemplar x with respect to the
concepts A, B, their negations ‘not A,’ ‘not B,’ and the conjunctions ‘A and B,’
‘A and not B,’ ‘not A and B,’ and ‘not A and not B,’ respectively, and suppose
that all these membership weights are contained in the interval Œ0; 1� (which
they will be in case they are experimentally determined as limits of relative
frequencies of respective memberships). They are then ‘classical conjunction
data’ if and only if they satisfy the following conditions.

�(A) D �(A and B)C �(A and B0) (16)

�(B) D �(A and B)C �(A0 and B) (17)
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�(A0) D �(A0 and B0)C �(A0 and B) (18)

�(B0) D �(A0 and B0)C �(A and B0) (19)

�(A and B)C �(A and B0)C �(A0 and B)C �(A0 and B0) D 1 (20)

(see Aerts et al. 2015a for the proof ).
A large amount of data collected in Aerts et al. (2015a) violates very

strongly and also very systematically (16)–(20), hence these data cannot be
generally reproduced in a classical Kolmogorovian probability framework. It
can instead be shown that almost all these data can be represented by using
our quantum-theoretic modeling in two-sector Fock space, as above. For the
sake of simplicity, let us work out separate representations for the two sectors.

Let us start with sector 1 of Fock space, which models genuine emergence.
We represent the concepts A, B and their negations ‘not A,’ ‘not B’ by the
mutually orthogonal unit vectors jAi, jBi and jA0i, jB0i, respectively, in the
individual Hilbert space H. The corresponding membership weights for a
given exemplar x are then given by the quantum probabilistic Born rule

�(A) D hAjMjAi �(B) D hBjMjBi (21)

�(A0) D hA0jMjA0i �(B0) D hB0jMjB0i (22)

in sector 1. The conjunctions ‘A and B,’ ‘A and not B,’ ‘not A and B,’ and
‘not A and not B’ are represented by the superposition vectors 1p

2
(jAiC jBi),

1p
2
(jAiC jB0i), 1p

2
(jA0iC jBi), and 1p

2
(jA0iC jB0i), respectively, inH, that

is, sector 1 of Fock space, which expresses the fact ‘A and B,’ ‘A and not B,’ ‘not
A and B,’ and ‘not A and not B’ are considered as newly emergent concepts in
sector 1.

Let us come to sector 2 of Fock space, which models logical reasoning.
Here we introduce a new element, an insight which we had not expressed
in our earlier application of Fock space (Sozzo 2015; Aerts 2009a; Aerts et al.
2013a; Sozzo 2014), and which we explain in detail in Aerts et al. (2015a).
In short it comes to ‘taking into account that possibly A and B are meaning-
connected and hence their probability weights are mutually dependent.’ If this
is the case, we cannot represent, for example, the conjunction ‘A and B’ by
the tensor product vector jAi ˝ jBi of H ˝ H. This would indeed entail
that the membership weight for the conjunction is �(A and B) D �(A)�(B)
in sector 2, that is, would imply probabilistic independence between the
membership estimations of A and B. We instead, following this new insight,
represent the conjunction ‘A and B’ by an arbitrary vector jCi 2 H ˝ H,
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in sector 2, which in general will be entangled if A and B are meaning-
dependent. If we represent the decision measurements of a subject estimating
the membership of the exemplar x with respect to the concepts A and B by the
orthogonal projection operators M ˝ 1 and 1˝M, respectively, we have

�(A) D hCjM ˝ 1jCi �(B) D hCj1˝MjCi (23)

in sector 2. We have now to formalize the fact that this sector 2 has to
express logical relationships between the concepts.More explicitly, the decision
measurements of a subject estimating the membership of the exemplar x with
respect to the negations ‘not A’ and ‘not B’ should be represented by the
orthogonal projection operators (1�M)˝ 1 and 1˝ (1�M), respectively,
in sector 2, in such a way that

�(A0) D 1��(A) D hCj(1�M)˝1jCi �(B0) D 1��(B) D hCj1˝(1�MjCi)
(24)

in this sector.
Interestingly enough, there is a striking connection between logic and

classical probability when conjunction and negation of concepts are at stake,
namely, the logical probabilistic structure of sector 2 of Fock space sets the
limits of classical probabilistic models, and vice versa. In other words, if
the experimentally collected membership weights �(A), �(B), �(A0), �(B0),
�(A and B), �(A and B0), �(A0 and B), and �(A0 and B0) can be represented
in sector 2 of Fock space for a given choice of the state vector jCi and the
decision measurement projection operator M, then the membership weights
satisfy (16)–(20), hence they are classical data. Conversely, if �(A), �(B),
�(A0), �(B0), �(A and B), �(A and B0), �(A0 and B), and �(A0 and B0)
satisfy (16)–(20), hence are classical data, then an entangled state vector jCi
and a decision measurement projection operator M can always be found such
that �(A), �(B), �(A0), �(B0), �(A and B), �(A and B0), �(A0 and B), and
�(A0 and B0) can be represented in sector 2 of Fock space (see Aerts et al. 2015a
for the proof ).

Let us finally come to general representation in two-sector Fock space. We
can now introduce the general form of the vector representing the state of the
conjunction of the concepts A;B and their respective negations.

j‰ABi D mABei
AB jCi C nABei�AB

p
2

(jAi C jBi) (25)
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j‰AB0i D mAB0ei
AB0 jCi C nAB0ei�AB0

p
2

(jAi C jB0i) (26)

j‰A0Bi D mA0Bei
A0B jCi C nA0Bei�A0Bp
2

(jA0i C jBi) (27)

j‰A0B0i D mA0B0ei
A0B0 jCi C nA0B0ei�A0B0

p
2

(jA0i C jB0i) (28)

wherem2
XYCn2

XY D 1,X D A;A0;Y D B;B0. The correspondingmembership
weights �(A and B), �(A and B0), �(A0 and B), and �(A0 and B0) can be
written as in (10). We proved in Aerts et al. (2015a) that they can be expressed
in the Fock space C8 ˚ (C8 ˝ C

8) as

�(A and B) D m2
AB˛AB C n2

AB(
�(A)C �(B)

2
C ˇAB cos�AB) (29)

�(A and B0) D m2
AB0

˛AB0 C n2
AB0

(
�(A)C �(B0)

2
C ˇAB0 cos�AB0) (30)

�(A0 and B) D m2
A0B˛A0B C n2

A0B(
�(A0)C �(B)

2
C ˇA0B cos�A0B) (31)

�(A0 and B0) D m2
A0B0

˛A0B0 C n2
A0B0

(
�(A0)C �(B0)

2
C ˇA0B0 cos�A0B0) (32)

where 0 � ˛XY � 1, �1 � ˇXY � 1, X D A;A0; Y D B;B0.
Let us consider a relevant example, Goldfish, with respect to the concepts

Pets, Farmyard Animals and their combinations. In this case, big overextension
was observed in all experiments, and also double overextension was identified
with respect to the combination Not Pets And Farmyard Animals. Goldfish
scored �(A) D 0:93 with respect to Pets, �(B) D 0:17 with respect to
Farmyard Animals, �(A0) D 0:12 with respect to Not Pets, �(B0) D 0:81
with respect to Not Farmyard Animals, �(A and B) D 0:43 with respect to
Pets And Farmyard Animals, �(A and B0) D 0:91 with respect to Pets And Not
Farmyard Animals,�(A0 and B) D 0:18 with respect toNot Pets And Farmyard
Animals, and �(A0 and B0) D 0:43 with respect to Not Pets And Not Farmyard
Animals. A complete modeling in the Fock space satisfying Eqs. (29), (30), (31)
and (32) is characterized by the coefficients:

1. interference angles �AB D 78:9ı, �AB0 D 43:15ı, �A0B D 54:74ı, and
�A0B0 D 77:94ı;

2. coefficients ˛AB D 0:12, ˛AB0 D 0:8, ˛A0B D 0:05, and ˛A0B0 D 0:03;
3. coefficients ˇAB D �0:24, ˇAB0 D 0:10, ˇA0B D 0:12, and ˇA0B0 D 0:30;
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4. convex weights mAB D 0:45, nAB D 0:89, mAB0 D 0:45, nAB0 D 0:9,
mA0B D 0:48, nA0B D 0:88, mA0B0 D 0:45, and nA0B0 D 0:89.

Following our interpretation in the case of conjunction and disjunction,
we can say that, whenever a subject is asked to estimate whether a given
exemplar x belongs to the concepts A, B, ‘A and not B’, both quantum logical
and quantum conceptual thought simultaneously act in the subject’s thought.
According to the former, the subject considers two copies of x and estimates
whether the first copy belongs to A and the second copy of x does not belong
to B. According to the latter, the subject estimates whether the exemplar x
belongs to the newly emergent concept ‘A and not B’. Fock space naturally
captures this two-layered structure.

4 A Unifying Explanatory Hypothesis

The Fock space modeling presented in the previous section suggested to
us to formulate a general hypothesis which justifies and explains a whole
set of empirical results on cognitive psychology under a unifying theoretic
scheme (Aerts et al. 2015b). According to our explanatory hypothesis, human
reasoning is a specifically structured superposition of two processes, a ‘logical
reasoning’ and an ‘emergent reasoning’. Logical reasoning combines cognitive
entities—concepts, combinations of concepts, or propositions—by applying
the rules of logic, though generally in a probabilistic way. Emergent reasoning
enables instead the formation of combined cognitive entities as newly emerg-
ing entities—in the case of concepts, new concepts, in the case of propositions,
new propositions—carrying newmeaning, connected with the meaning of the
component cognitive entities, but with a connection not defined by the algebra
of logic. These two mechanisms act simultaneously in human thought during
a reasoning process, the first one is guided by an algebra of ‘logic’, the second
one follows a mechanism of ‘emergence.’

Human reasoning can be mathematically formalized in the two-sector Fock
space presented in Sect. 3. The states of conceptual entities are represented by
unit vectors of this Fock space as we have seen in the specific case of concept
combinations. More specifically, ‘sector 1 of Fock space’ models ‘conceptual
emergence,’ hence the combination of two concepts is represented by a super-
position vector of the vectors representing the component concepts in this
Hilbert space, allowing ‘quantum interference’ between conceptual entities to
play a role in the process of emergence. ‘Sector 2 of Fock space’ models a
conceptual combination from the combining concepts by requiring the rules
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of logic for the logical connective used for the combining, that is, conjunction
or disjunction, to be satisfied in a probabilistic setting. This quantum-theoretic
modeling suggested to us to call ‘quantum conceptual thought,’ the process
occurring in sector 1 of Fock space, ‘quantum logical thought,’ the process
occurring in sector 2. The relative importance of emergence or logic in a
specific cognitive process is measured by the ‘degree of participation’ of sectors
1 and 2.

The abundance of evidence of deviations from classical logical reasoning
in concrete human decisions (paradoxes, fallacies, effects, contradictions),
together with our results in these two sections, led us to draw the conclusion
that emergence constitutes the dominant dynamics of human reasoning, while
logic is only a secondary structure. Therefore, we put forward the view that the
aforementioned deviations from classicality are a consequence of the dominant
dynamics whose nature is emergence, while classical logical reasoning is not a
default to deviate from but, rather, a consequence of a secondary structure
whose nature is logic.

There is further empirical evidence revealing that what primarily guides
human subjects in concrete human decisions is emergent reasoning, though
logical aspects are likewise present.

We identified a first element of evidence by comparing the behavior of
the experimental data of different experiments. Consider, for example, the
exemplarOlive and its membership weights with respect to the concepts Fruits,
Vegetables and their conjunction Fruits And Vegetables, measured by ourselves
(Aerts et al. 2015a; Sozzo 2015); and consider also its membership weights with
respect to the concepts Fruits, Vegetables and their disjunction Fruits Or Vegeta-
bles, measured byHampton (1988b).Olive scored�(A) D 0:56with respect to
Fruits, �(B) D 0:63 with respect to Vegetables, and �(A and B) D 0:65 with
respect to Fruits And Vegetables, that is, Olive was double overextended with
respect to the conjunction. However,Olive was also double overextended with
respect to the disjunction, since it scored �(A) D 0:5 with respect to Fruits,
�(B) D 0:1 with respect to Vegetables, and �(A or B) D 0:8 with respect to
Fruits Or Vegetables. Our interpretation of these Olive cases is the following.
People see Olive as an exemplar which could be considered to be a fruit, but
also a vegetable. Hence it could also, and even more so, be considered to be
both, a fruit ‘and’ a vegetable. This explains the double overextension of Olive
with respect to the conjunction. This way of looking at Olive gives indeed
the necessary weight to the conjunction to produce a double overextension.
Equally so, people see Olive as an exemplar which induces doubt about
whether it is a vegetable or whether it is a fruit. Hence it could also, and
even more so, be considered a ‘fruit or a vegetable.’ This explains the double
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overextension of Olive with respect to the disjunction. This way of looking
at Olive gives indeed the necessary weight to the disjunction to produce a
very big double overextension. Note that a double overextension with respect
to the disjunction does not necessarily violate the classicality conditions; on
the contrary, for a classical probability, the disjunction should be double
overextended. For Olive the overextension is so big that another one of the
classicality conditions, namely the one linked to the Kolmogorovian factor, is
violated. For a classical probability model we have�(A)C�(B)��(A or B) D
�(A and B), which means 0 � �(A)C�(B)��(A or B). However, for Olive
we have �(A) C �(B) � �(A or B) D 0:5 C 0:1 � 0:8 D �0:2 < 0,
which shows that the double overextension for the disjunction in the case of
Olive is of a non-classical nature. How is it that Olive can give such weight to
both conjunction and disjunction, even though conjunction and disjunction
are considered in classical probability to be distinctly different? It is because
the meaning of Olive is dominant in sector 1, where quantum conceptual
structures exist, and both connectives, ‘and’ and ‘or,’ resemble each other well
in this realm of conceptuality.

The second set of empirical evidence became manifest when we calculated
the deviations from (16)–(20) across all exemplars in our experiment in
Sozzo (2015) and Aerts et al. (2015a), where we noticed that these deviations
had approximately constant numerical values. Indeed, let us introduce the
following quantities.

IABA0B0 D 1 � �(A and B) � �(A and B0) � �(A0 and B) � �(A0 and B0) (33)

IA D �(A) � �(A and B) � �(A and B0) (34)

IB D �(B) � �(A and B) � �(A0 and B) (35)

IA0 D �(A0) � �(A0 and B0) � �(A0 and B) (36)

IB0 D �(B0) � �(A0 and B0) � �(A and B0) (37)

We were very excited ourselves to find that for every X D A;A0;Y D B;B0,
IX, IY , and IABA0B0 are constant functions across all exemplars, because this
constitutes very strong experimental evidence for the nonclassical nature of
what happens during concept combinations. More concretely, the last four
equations give rise to values between 0, which would be the classical value, and
�0:5, though substantially closer to �0:5 than to 0; and the fifth equation
gives rise to a value between 0, which again would be the classical value,
and �1, though closer to �1 than to 0. This is very strong evidence for the
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presence of nonclassicality, indeed, if the classicality conditions are violated
in such a strong and systematic way: the underlying structure cannot in any
way be classical. To test the regularity of this violation we firstly performed a
‘linear regression analysis’ of the data to check whether these quantities can be
represented by a line of the form y D mx C q, with m D 0. This was the
case. For IA, we obtained m D 3:0 � 10�3 with R2 D 0:94; for IB, we obtained
m D 2:9 � 10�3 with R2 D 0:93; for IA0 , we obtained m D 2:6 � 10�3 with
R2 D 0:96; for IB0 , we obtained m D 3:1 � 10�3 with R2 D 0:98; for IABA0B0 ,
we obtained m D 4 � 10�3 with R2 D 0:92. Secondly, we computed the 95 %
confidence interval for these parameters and obtained interval (�0:51;�0:33)
for IA, interval (�0:42;�0:28) for IA0 , interval (�0:52;�0:34) for IB, interval
(�0:40;�0:26) for IB0 , and interval (�0:97;�0:64) for IABA0B0 . This means
that the measured parameters systematically fall within a narrow band centered
at very similar values. Next to the very strong experimental evidence for the
nonclassical nature of the underlying structure, the finding of this very stable
pattern of violation also constitutes strong evidence for the validity of our Fock
space model, and for the dominance of emergent reasoning with respect to
logical reasoning when concepts are combined. Indeed, suppose for a moment
that we substitute, in place of the experimental values in our equations to test
classicality, the values that would be obtained theoretically in case we apply
the first sector of the Fock space equation of our Fock space model. Since
interference in this equation can be negative as well as positive, and there
is a priori no reason to suppose that there would be more of the one than
the other, we can neglect the interference parts of the equation, since it is
reasonable to suppose that they will cancel out when summing all the terms
of the equations of our classicality conditions. This means that we get, for
every X D A;A0; Y D B;B0, �(X and Y) D 1

2 (�(X)C �(Y)) (see (29)–
(32)). A simple calculation shows that, for every X D A;A0; Y D B;B0,
IX D IY D �0:5 and IABA0B0 D �1, in this case. These are exactly the values to
which our experimental violations are close, which means that our Fock space
model captures the underlying structures in a systematic and deep way. The
experimental values are in between these values and 0, which is the classical
value, which means that logical reasoning is also present, but the emergent
reasoning is dominant.

We think that these two results confirm, on one side, the general validity of
our quantum-theoretic perspective in cognition and, on the other side, they
constitute a very strong experimental support to the explanatory hypothesis
presented in this section.

The next two sections complete our overview of the identification of
quantum structures in concept combination, which also sheds new light on
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the mysteries that surround quantum entanglement and indistinguishability
at a microscopic level.

5 Identification of Entanglement

The presence of entanglement is typically revealed in quantum physics by a
violation of Bell-type inequalities (Bell 1964; Clauser et al. 1969), indicating
that the corresponding coincidence measurements exhibit correlations that
cannot be modeled in a classical Kolmogorovian probability framework (Aerts
1986; Pitowsky 1989).
We recently measured in a cognitive test statistical correlations in the

conceptual combination The Animal Acts. We experimentally found that this
combination violates Bell’s inequalities (Aerts et al. 2013a; Aerts and Sozzo
2011) and elaborated a model that faithfully represents the collected data in
complex Hilbert space (Aerts and Sozzo 2014a). The Animal Acts unexpectedly
revealed the presence of a ‘conceptual entanglement’ which is only partly
due to the component concepts, or ‘state entanglement,’ because it is also
caused by ‘entangled measurements’ and ‘entangled dynamical evolutions
between measurements’ (Aerts and Sozzo 2014a). Our analysis shed new light
on the mathematical and conceptual foundations of quantum entanglement,
revealing that situations are possible where only states are entangled and
measurements are products (‘customary state entanglement’), but also sit-
uations where entanglement appears on the level of the measurements, in
the form of the presence of both entangled measurements and entangled
evolutions (‘nonlocal box situation’, ‘nonlocal non-marginal box situation’),
due to the violation of the marginal distribution law, as in The Animal Acts.
More specifically, The Animal Acts is a paradigmatic example of a ‘nonlocal
nonmarginal box situation’, that is, an experimental situation where (1) joint
probabilities do not factorize, (2) Bell’s inequalities are violated, and (3) the
marginal distribution law does not hold.Whenever these conditions are simul-
taneously satisfied, a form of entanglement appears which is stronger than
the ‘customarily identified quantum entanglement in the states of microscopic
entities.’ In these cases, it is not possible to work out a quantum-mechanical
representation in a fixed C

2 ˝ C
2 space which satisfies empirical data and

where only the initial state is entangled while the measurements are products.
It follows that entanglement is a more complex property than usually thought.
Briefly, if a single measurement is at play, one can distribute the entanglement
between state andmeasurement but, if more measurements are considered, the
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marginal distribution law imposes limits on the ways to model the presence of
the entanglement.

Let us now come to our coincidence measurements eAB, eAB0 , eA0B, and eA0B0

for the conceptual combination The Animal Acts. In all these measurements,
subjects were asked to pick the combination that they judged to be ‘a good
example of ’ the concept The Animal Acts. In measurement eAB, participants
choose among four possibilities: (1)TheHorse Growls; (2)The BearWhinnies—
and if one of these is chosen, the outcome is C1; (3) The Horse Whinnies;
(4) The Bear Growls—and if one of these is chosen, the outcome is �1. In
measurement eAB0 , they choose among: (1) The Horse Snorts; (2) The Bear
Meows—and in case one of these is chosen, the outcome isC1; (3) The Horse
Meows; (4) The Bear Snorts—and in case one of these is chosen, the outcome
is �1. In measurement eA0B, they choose among: (1) The Tiger Growls; (2)
The Cat Whinnies—and in case one of these is chosen, the outcome is C1;
(3) The Tiger Whinnies; (4) The Cat Growls—and in case one of these is
chosen, the outcome is �1. Finally, in measurement eA0B0 , participants choose
among: (1) The Tiger Snorts; (2) The Cat Meows—and in case one of these
is chosen, the outcome is C1; (3) The Tiger Meows; (4) The Cat Snorts—
and in case one of these is chosen, the outcome is �1. We evaluate now the
expectation values E(A;B), E(A;B0), E(A0;B), and E(A0;B0) associated with
the measurements eAB, eAB0 , eA0B, and eA0B0 respectively, and insert the values
into the Clauser-Horne-Shimony–Holt (CHSH) version of Bell’s inequality
(Clauser et al. 1969)

� 2 � E(A0;B0)C E(A0;B)C E(A;B0) � E(A;B) � 2 (38)

We performed a test on 81 participants who were presented with a question-
naire to be filled out in which they were asked to choose among the above
alternatives in eAB, eAB0 , eA0B, and eA0B0 . Table 1 contains the results of our
experiment (Aerts and Sozzo 2011).

If we denote by P(H;G), P(B;W), P(H;W), and P(B;G) the probability
that The Horse Growls, The Bear Whinnies, The Horse Whinnies, and The Bear
Growls, respectively, is chosen in eAB, and so for the other measurements, the
expectation values are, in the large number limits,

E(A;B) D p(H;G)C p(B;W) � p(B;G) � p(H;W) D �0:7778

E(A0;B) D p(T;G)C p(C;W) � p(C;G) � p(T;W) D 0:6543

E(A;B0) D p(H; S)C p(B;M) � p(B; S) � p(H;M) D 0:3580

E(A0;B0) D p(T; S)C p(C;M) � p(C; S) � p(T;M) D 0:6296
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Table 1 The data collected in coincidence measurements on entanglement in concepts
(Aerts and Sozzo 2011)

Horse growls Horse whinnies Bear growls Bear whinnies
p(H;G) D 0:049 p(H;W) D 0:630 p(B;G) D 0:259 p(B;W) D 0:062
Horse snorts Horse meows Bear snorts Bear meows
p(H; S) D 0:593 p(H;M) D 0:025 p(B; S) D 0:296 p(B;M) D 0:086
Tiger growls Tiger whinnies Cat growls Cat whinnies
p(T;G) D 0:778 p(T;W) D 0:086 p(C;G) D 0:086 p(C;W) D 0:049
Tiger snorts Tiger meows Cat snorts Cat meows
p(T; S) D 0:148 p(T;M) D 0:086 p(C; S) D 0:099 p(C;M) D 0:667

Hence, (38) gives

E(A0;B0)C E(A0;B)C E(A;B0) � E(A;B) D 2:4197 (39)

which is significantly greater than 2. This implies that (1) it violates Bell’s
inequalities, and (2) the violation is close to the maximal possible violation
in quantum theory, that is, 2 � p2  2:8284.

Let us now construct a quantum representation in complex Hilbert space
for the collected data by starting from an operational description of the
conceptual entity The Animal Acts. The entity The Animal Acts is abstractly
described by an initial state p. Measurement eAB has four outcomes 
HG, 
HW ,

BG, and 
BW , and four final states pHG, pHW , pBG, and pBW . Measurement
AB0 has four outcomes 
HS, 
HM, 
BS, and 
BM, and four final states pHS,
pHM, pBS, and pBM. Measurement A0B has four outcomes 
TG, 
CG, 
TW ,
and 
CW , and four final states pTG, pTW , pCG, and pCW . Measurement A0B0
has four outcomes 
TS, 
CS, 
TM, and 
CM, and four final states pTS, pTM,
pCS, and pCM. Then, we consider the Hilbert space C

4 as the state space
of The Animal Acts and represent the state p by the unit vector jpi 2 C

4.
We assume that fjpHGi; jpHWi; jpBGi; jpBWig, fjpHSi; jpHMi; jpBSi; jpBMig,
fjpTGi, jpTWi, jpCGi, jpCWig, fjpTSi; jpTMi; jpCSi; jpCMig are orthonormal
(ON) bases of C

4. Therefore, jhpHGj ij2 D p(H;G), jhpHW j ij2 D
p(H;W), jhpBGj ij2 D p(B;G), jhpBW j ij2 D p(B;W), in the measurement
eAB. We proceed analogously for the other probabilities. Hence, the self-
adjoint operators

EAB D
X

iDH;B

X

jDG;W


ijjpijihpijj (40)

EAB0 D
X

iDH;B

X

jDS;M


ijjpijihpijj (41)
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EA0B D
X

iDT;C

X

jDG;W


ijjpijihpijj (42)

EA0B0 D
X

iDT;C

X

jDS;M


ijjpijihpijj (43)

represent the measurements eAB, eAB0 , eA0B, and eA0B0 in C
4, respectively.

Let now the state p of The Animal Acts be the entangled state represented by
the unit vector jpi D j0:23ei13:93 ı

; 0:62ei16:72 ı

; 0:75ei9:69 ı

; 0ei194:15 ıi in the
canonical basis of C4. This choice is not arbitrary, but deliberately ‘as close as
possible to a situation of only product measurements,’ as we explained in Aerts
and Sozzo (2014a). Moreover, we choose the outcomes 
HG D 
BW D C1,

HW D 
BG D �1, and so on, as in our concrete experiment. We proved that

EABD

0

B
BB
@

0:952 �0:207 � 0:030i 0:224C 0:007i 0:003 � 0:006i

�0:207C 0:030i �0:930 0:028 � 0:001i �0:163C 0:251i

0:224 � 0:007i 0:028C 0:001i �0:916 �0:193C 0:266i

0:003C 0:006i �0:163 � 0:251i �0:193 � 0:266i 0:895

1

C
CC
A

(44)

EAB0D

0

BB
B
@

�0:001 0:587C 0:397i 0:555C 0:434i 0:035C 0:0259i

0:587 � 0:397i �0:489 0:497C 0:0341i �0:106 � 0:005i

0:555 � 0:434i 0:497 � 0:0341i �0:503 0:045 � 0:001i

0:035 � 0:0259i �0:106C 0:005i 0:045C 0:001i 0:992

1

CC
C
A

(45)

EA0BD

0

BBB
@

�0:587 0:568C 0:353i 0:274C 0:365i 0:002C 0:004i

0:568 � 0:353i 0:090 0:681C 0:263i �0; 110 � 0:007i

0:274 � 0:365i 0:681 � 0:263i �0:484 0:150 � 0:050i

0; 002 � 0:004i �0; 110C 0:007i 0:150C 0:050i 0:981

1

CCC
A

(46)

EA0B0D

0

BB
B
@

0:854 0:385C 0:243i �0:035 � 0:164i �0:115 � 0:146i

0:385 � 0:243i �0:700 0:483C 0:132i �0:086C 0:212i

�0:035C 0:164i 0:483 � 0:132i 0:542 0:093C 0:647i

�0:115C 0:146i �0:086 � 0:212i 0:093 � 0:647i �0:697

1

CC
C
A

(47)

in this case (Aerts and Sozzo 2014a).
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This completes the quantum-theoretic modeling in C
4 for our cognitive

test. One can then resort to the definitions of entangled states and entangled
measurements and to the canonical isomorphisms, C4 Š C

2 ˝ C
2 and

L(C4) Š L(C2) ˝ L(C2) (L(H) denotes the vector space of linear operators
on the Hilbert space H), and one can prove that all measurements eAB, eAB0 ,
eA0B, and eA0B0 are entangled with this choice of the entangled state p (Aerts
and Sozzo 2014a). Moreover, the marginal distribution law is violated by all
measurements, for example, p(H;G)C p(H;W) ¤ p(H; S)C p(H;M). Since
we are below Tsirelson’s bound (Tsirelson 1980), this modeling is an example
of a ‘nonlocal non-marginal box modeling 1,’ following the classification we
proposed in Aerts and Sozzo (2014b).

To conclude the section we remind readers that we have used the term
‘entanglement’ by explicitly referring to the structure within the theory of
quantum physics that a modeling of experimental data requires: (1) these data
are represented, following carefully the rules of standard quantum theory, in
a complex Hilbert space, and hence states, measurements, and evolutions are
presented respectively by vectors (or density operators), self-adjoint operators,
and unitary operators in this Hilbert space; (2) a situation of coincidence joint
measurement on a compound entity is considered, and the subentities are
identified following the tensor product rule of ‘compound entity description in
quantum theory’; (3) within this tensor product description of the compound
entity entanglement is identified as ‘not being a product,’ whether it is for states
(nonproduct vectors), measurements (nonproduct self-adjoint operators), or
evolutions (nonproduct unitary transformations).

6 The Quantum Nature of Conceptual Identity

One of the most mysterious and less understood aspects of quantum entities
is the way they behave with respect to ‘identity,’ and more specifically their
statistical behavior due to indistinguishability. Indeed, the statistical behavior
of quantum entities is very different from the statistical behavior of classical
objects, which are instead, in principle, not identical, hence distinguishable,
whenever there is more than one. The latter is governed by the Maxwell–
Boltzmann (MB) distribution, while the former is described by the Bose–
Einstein (BE) distribution for quantum particles with integer spin, and by the
Fermi–Dirac distribution for quantum particles with semi-integer spin (we
omit considering fractional statistical particles here, for the sake of brevity)
(Dieks and Versteegh 2008; French and Krause 2006).
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What about concepts? Consider, for example, the linguistic expression
“eleven animals.” This expression, when both “eleven” and “animals” are
looked upon with respect to their conceptual structure, represents the com-
bination of concepts Eleven and Animals into Eleven Animals, which is again
a concept. Each of the Eleven Animals is then completely identical on this
conceptual level, and hence indistinguishable. The same linguistic expression
can however also elicit the thought about 11 objects, present in space and time,
each of them being an instantiation of Animal, and thus distinguishable from
each other. We recently inquired into experiments on such combinations of
concepts, surprisingly finding that BE statistics appears at an empirical level
for specific types of concepts, hence finding strong evidence for the hypothesis
that indeed there is a profound connection between the behavior of concepts
with respect to identity and indistinguishability and the behavior of quantum
entities with respect to these notions (Aerts et al. 2015c). What is interesting
in this respect is that we can intuitively understand the behavior of concepts
with respect to identity and indistinguishability, which means that it might
well be that an understanding of the behavior of quantum entities with respect
to identity and indistinguishability should be searched for by making use of
this analogy. In this sense, that identical concepts can be modeled exactly as
identical quantum entities, that is, by using quantum theory, is not only a
strong achievement for quantum cognition, but it might also incorporate a
new way to reflect on this mysterious behavior of identical quantum entities.

Let us discuss these aspects both at a theoretic and an empirical level.
Let us firstly consider the SCoP structure in Sect. 2 and two states ofAnimal,

namely Cat and Dog, hence the situation where Eleven Animals can be either
Cats or Dogs. Then, the conceptual meaning of Eleven Animals, which can be
Cats or Dogs, gives rise in a unique way to 12 possible states. Let us denote
them by p11;0, p10;1, …, p1;10, and p0;11, which stand respectively for Eleven
Cats (and no dogs), Ten Cats And One Dog, …, One Cat And Ten Dogs and
Eleven Dogs (and no cats). We investigated the ‘probabilities of change of the
ground state Op of the combined concept Eleven Animals into one of the 12
states p11;0, p10;1, …, p1;10, and p0;11’ in a cognitive experiment on human
subjects. The subjects were presented with the 12 states and asked to choose
their preferred one. The relative frequency arising from their answers was
interpreted as the probability of change of the ground state Op to the chosen
state, that is, one of the set fp11;0, p10;1,…, p1;10, p0;11g. The context e involved
in this experiment is mainly determined by the ‘combination procedure of
the concepts Eleven and Animals’ and the ‘meaning contained in the new
combination’ for participants in the experiment (Aerts and Gabora 2005a).
Hence, our psychological experiment tested whether participants follow the
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‘conceptual meaning’ of Eleven Animals treating Dogs (Cats) as identical, or
participants follow the ‘instantiations into objects meaning’ of Eleven Animals
treating Dogs (Cats) as distinguishable.
We mathematically represent the conceptual entity Eleven Animals by

the SCoP model (†;M; �), where † D fOp; p11;0; p10;1; : : : ; p1;10; p0;11g,
M D feg, and our transition probabilities are f�(q; e; Op) jq 2
fp11;0; p10;1; : : : ; p1;10; p0;11gg. We recognize in the structure of �(q; e; Op)
that the situation is analogous to the one in which one has N D 11 particles
that can be distributed in M D 2 possible states. It is thus possible, by looking
at the relative frequencies obtained in the experiment, to find out whether
a classical MB statistics or a quantum-type, that is, BE statistics, applies
to this situation. In case that MB would apply, it would mean that things
happen as if there are underlying the 12 states hidden possibilities, namely
T(n;CI 11 � n;D) D 11Š=nŠ(11 � n)Š in number, for the specific state of
n Cats and 11 � n Dogs, n D 0; : : : ; 11. Of course, this “is” true in case
the cats and dogs are real cats and dogs, hence are ‘objects existing in space
and time,’ which is why for objects in the classical world MB statistics do
indeed apply. Let us calculate the probabilities involved then. For the sake of
simplicity, we assume that two probability values PCat and PDog exist such that
PCat C PDog D 1, and that the events of making actual such an underlying
state for Cat and Dog are independent. Hence the probability for n exemplars
of Cat and 11 � n exemplars of Dog is then

�
PCat;PDog

MB (pn;11�n; e; Op) D T(n;CI 11 � n;D)Pn
CatP

11�n
Dog D

11Š

nŠ(11 � n)Š
Pn

CatP
11�n
Dog

(48)

Note that, under the assumption of MB statistics, �PCat;PDog

MB (p; e; Op) becomes
the binomial probability distribution. For example, if PDog D PCat D
0:5, the number of possible arrangements for the state Eleven Cats And
Zero Dogs and for the state Zero Cats And Eleven Dogs is 1, hence the
corresponding probability for these configurations is �PCat;PDog

MB (p0;11; e; Op) D
�

PCat;PDog

MB (p11;0; e; Op) D 0:0005. Analogously, the number of possible arrange-
ments for the state Ten Cats And One Dog and for the state One Cat And
Ten Dogs is 11, hence the corresponding probability for these configurations
is �PCat;PDog

MB (p10;1; e; Op) D �
PCat;PDog

MB (p1;10; e; Op) D 0:0054, and so on. When
PCat and PDog are equal, MB distribution entails a maximum value for such
a probability. In this example, this corresponds to the situation of Six Cats
And Five Dogs and Five Cats And Six Dogs with �PCat;PDog

MB (p6;5; e; Op) D
�

PCat;PDog

MB (p6;5; e; Op) D 0:2256.
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Let us now make the calculation for BE statistics, where we keep making
the exercise of only reasoning on the level of concepts, and not on the level of
instantiations. This means that the 12 different states do not admit underlying
hidden states, because the existence of such states would mean that we reason
onmore concrete forms in the direction of instantiations. As above, we suppose
that Cat and Dog have an independent elicitation probability PCat and PDog

such that PCat C PDog D 1. Hence, the probability that there are n exemplars
of Cat and (11 � n) exemplars of Dog is

�
PCat;PDog

BE (pn;11�n; e; Op) D (nPcat C (11 � n)Pdog)

( 12�11
2 )

(49)

Note that as PCat D 1�PDog, then�
PCat;PDog

BE (pn;11�n; e; Op) is a linear function.
Moreover, when PCat D PDog D 0:5, we have �BE(pn;11�n; e; Op) D 1=12 for
all values of n, thus recovering BE distribution (Aerts et al. 2015c).
Starting from the above theoretic analysis, if one performs experiments

on a collection of concepts like Eleven Animals to estimate the probability
of elicitation for each state, then one can establish whether a distribution
of MB type �PCat;PDog

MB (pn;11�n; e; Op), or of BE type �PCat;PDog

BE (pn;11�n; e; Op),
or a different one, holds. However, in case there are strong deviations from
MB statistics, while a quasi-linear distribution is obtained, then this would
indicate that, in context e, where only Cat and Dog are allowed to be states of
the concept Animal, the statistical distribution of the collection of concepts
Eleven Animals is of a BE type and that concepts present a quantum-type
indistinguishability.

We performed a cognitive experiment with 88 participants. We considered
a list of concepts Ai of different (physical and nonphysical) nature, i D
1; : : : ; 14, and two possible exemplars (states) pi

1 and pi
2 for each concept. Next

we requested participants to choose one exemplar of a combination NiAi of
concepts, where Ni is a natural number. The exemplars of these combinations
of concepts Ai are the states pi

k;Ni�k describing the conceptual combination
‘k exemplars in state pi

1 and (Ni � k) exemplars in state pi
2’, where k is an

integer such that k D 0; : : : ;Ni. For example, the first collection of concepts
we considered is N1A1 corresponding to the compound conceptual entity
Eleven Animals, with pi

1 and pi
2 describing the exemplars Cat and Dog of

the individual concept Animal, respectively, and N1 D 11. The exemplars
(states) we considered are thus p1

11;0, p1
10;1, …, p1

1;10, and p1
0;11, describing

the combination Eleven Cats And Zero Dogs, Ten Cats And One Dog, …, One
Cat And Ten Dogs, and Zero Cats And Eleven Dogs. The other collections of
concepts we considered in our cognitive experiment are reported in Table 2.
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Table 2 List of concepts and their respective states for the psychological concept on
identity and indistinguishability

i Ni Ai pi
1 pi

2

1 11 Animals Cat Dog
2 9 Humans Man Woman
3 8 Expressions of emotion Laugh Cry
4 7 Expressions of affection Kiss Hug
5 11 Moods Happy Sad
6 8 Parts of face Nose Chin
7 9 Movements Step Run
8 11 Animals Whale Condor
9 9 Humans Child Elder
10 8 Expressions of emotion Sigh Moan
11 7 Expressions of affection Caress Present
12 11 Moods Thoughtful Bored
13 8 Parts of face Eye Cheek
14 9 Movements Jump Crawl

We computed the parameters PMB
pi

1
and PBE

pi
1
that minimize the R-squared

value of the fit using the distributions �
Ppi

1
;Ppi

2
MB and �

Ppi
1
;Ppi

2
BE for each i D

1; : : : ; 14. Hence, we fitted the distributions obtained in the psychological
experiments using MB and BE statistics (note that only one parameter is
needed as PMB

pi
2
D 1 � PMB

pi
1

and PBE
pi

2
D 1 � PBE

pi
1
). Next, we used the

‘Bayesian information criterion (BIC)’ (Kass and Raftery 1995) to estimate
which model provides the best fit and to contrast this criterion with the R-
squared value. Table 3 summarizes the statistical analysis. The first column of
the table identifies the concept in question (see Table 2), the second and third
columns show PMB

pi
1

and the R2 value of the MB statistical fit, the fourth and
fifth columns show PBE

pi
1
and the R2 value of the BE statistical fit. The sixth

column shows the �BIC criterion to discern between the �
Ppi

1
Ppi

2
MB and �

Ppi
1
Ppi

2
BE ,

and the seventh column identifies the distribution which best fits the data for
concept Ai, i D 1; : : : ; 14.

Note that, according to the BIC, negative �BIC values imply that the
category is best fitted by an MB distribution, whereas positive�BIC values on
row i imply the concept Ai is best fitted with a BE distribution. Moreover,
when j�BICj < 2 there is no clear difference between the models, when
2 < j�BICj < 6 we can establish a positive but not strong difference towards
the model with the smallest value, whereas when 6 < j�BICj we are in the
presence of strong evidence that one of the models provides a better fit than
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Table 3 Results of statistical fit for the psychological experiment

i PMB
pi

1
R2

MB PBE
pi

1
R2

BE �BIC Best model

1 0.55 �0.05 0.16 0.78 19.31 BE strong
2 0.57 0.78 0.42 0.44 �9.54 MB strong
3 0.82 0.29 0.96 0.79 10.81 BE strong
4 0.71 0.81 0.53 0.77 �1.69 MB weak
5 0.25 0.79 0.39 0.93 14.27 BE strong
6 0.62 0.59 0.61 0.57 �0.37 MB weak
7 0.72 0.41 0.64 0.83 12.66 BE strong
8 0.63 0.58 0.47 0.73 5.53 BE positive
9 0.45 0.87 0.26 0.67 �9.69 MB strong
10 0.59 0.50 0.63 0.77 7.17 BE positive
11 0.86 0.46 1.00 0.87 11.4 BE strong
12 0.21 0.77 0.00 0.87 6.68 BE positive
13 0.62 0.54 0.71 0.67 2.97 BE weak
14 0.81 0.20 0.91 0.90 20.68 BE strong

Each column refers to the 14 collections of concepts introduced in Table 2

the other model (Kass and Raftery 1995). We see that categories 2 and 9 show
a strong �BIC value towards the MB type of statistics, and that categories
1; 3; 5; 7; 11; 12 and 14 show a strong �BIC value towards the BE type of
statistics. Complementary to the BIC, the R2 fit indicator helps us to see
whether or not the indications of �BIC can be confirmed with a good fit of
the data. Interestingly, the concepts we have identified with strong indication
towards one type of statistics have R2 values larger than 0:78 (such R2 values
are marked in bold text), which indicates a fairly good approximation for the
data. Moreover, note that in all the cases with a strong tendency towards one
type of statistics, the R2 of the other type is poor. This confirms the fact that
we can discern between the two types of statistics depending on the concept
in question.

The interpretation of our results is thus clear. Conceptual combinations
exist, like Nine Humans, whose distribution follows MB statistics. However,
conceptual combinations, like Eleven Animals, Eight Expressions of Emotion,
or Eleven Moods, whose distribution follows BE statistics, also exist. The
conclusion is that the nature of identity in these concept combinations is of a
quantum type and in these combinations the humanmind treats the two states
we consider as identical and indistinguishable. Also the hypothesis that ‘the
more easy the human mind imagines spontaneously instantiations, e.g., Nine
Humans, the more MB, and the less easy such instantiations are activated in
imagination, e.g., Eight Expressions of Emotion, the more BE statistics appears’
is confirmed by our experiment.
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We have an intuitive explanation for this empirical difference. Whenever
the human mind ‘imagines’ two different combinations of Eleven Animals, say
two cats and nine dogs, and five cats and six dogs, the human mind does not
really take into account that this situation can be about real cats and dogs,
in which case there are many more ways to put five cats and six dogs into
a cage, than to put two cats and nine dogs. This is the reason why BE, not
MB, appears in this case. Suppose instead that the human mind considers two
different combinations ofNineHumans, say two elders and seven children, and
four elders and five children. Then the human mind is likely to be influenced
by real known families with nine sons and, in the real world, there are much
more situations of families with four elders and five children, than two elders
and seven children.

This pattern was confirmed by a second experiment we performed on the
World Wide Web about the nature of conceptual indistinguishability (Aerts
et al. 2015c).

7 Concluding Remarks and Perspectives

In the previous sections we have provided an overview of our quantum-
theoretic perspective on concepts and their combinations.We have expounded
the reasons that led us to develop this perspective, namely our former research
on operational and axiomatic approaches to quantum physics, the origins of
quantum probability, and various experimental results in cognition pointing
to a deviation of human reasoning from the structures of classical (fuzzy set)
and classical probability theory. We have proved that these deviations can be
described in terms of genuine quantum effects, such as contextuality, emer-
gence, interference, and superposition. We have identified further quantum
aspects in the mechanisms of conceptual combination, namely entanglement
and quantum-type indistinguishability. And we have proposed an explanation
that allows the unification of these different empirical results under a common
underlying principle on the structure of human thought.

Our quantum-theoretic perspective fits the global research domain that
applies the mathematical formalisms of quantum theory in cognitive science
and which has been called ‘quantum cognition’ (we quote here some books
on this flourishing domain Khrennikov 2010; Busemeyer and Bruza 2012;
Haven and Khrennikov 2013). Further, we believe that our findings in
cognition may also have, as a feedback, a deep impact on the foundations of
microscopic quantum physics. Indeed, let us consider entanglement. We have
identified in concepts an entanglement situation where Bell’s inequalities are
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violated within Tsirelson’s bound (Tsirelson 1980), the marginal distribution
law is violated, and there is ‘no signaling’, which implies that entangled
measurements, in addition to entangled states, are needed to model this
experimental situation. And this completely occurs within a Hilbert space
quantum framework, which is at variance with general opinion. This theoretic
scheme with entangled measurements could explain some ‘anomalies,’ that is,
deviations from the marginal distribution law, that were recently observed in
the typical Bell-type nonlocality tests with entangled photons (Adenier and
Khrennikov 2006, 2007). So let us consider the quantum nature of conceptual
indistinguishability. From our perspective, this is due to the human mind
being able to consider specific conceptual entities without the need to imagine
also their instantiations as objects existing in space and time. Hence, it could
well be that quantum indistinguishability at a microscopic level is provoked by
the fact that quantum entities are not localized as objects in space and time, and
that nonlocality would mean nonspatiality, a view that has been put forward
by one of us in earlier work for different reasons (Aerts 1990). These insights
could for example have implications on quantum statistics and the so-called
‘spin-statistics theorem’ (French and Krause 2006; Dieks and Versteegh 2008).
We conclude this chapter with an epistemological consideration. We think

that our quantum-theoretic perspective in concept theory constitutes a step
towards the construction of a general theory for the modeling of conceptual
entities. In this sense, we distinguish it from what is typically considered as an
ad hoc cognitive model. To understand what we mean by this distinction let
us consider an example taken from everyday life. As an example of a theory,
we could introduce the theory of ‘how to make good clothes.’ A tailor needs
to learn how to make good clothes for different types of people, for example,
women, children, and old people. Each item of clothing is a model in itself.
Then, one can also consider intermediate situations where one has models of a
series of clothes. A specific body will not fit in any item of clothing: you need
to adjust the parameters (length, size, etc.) to reach the desired fit. We think
that a theory should be able to reproduce different experimental results by
suitably adjusting the involved parameters, exactly as in a theory of clothing.
This is different from a set of ad hoc models, even if the set can cope with
a wide range of experimental data. There is a tendency in psychology to be
critical of a theory that can cope with all possible situations it applies to.
One then often believes that the theory contains too many parameters, and
that it is only by allowing all these parameters to attain different values that
all the data can be modeled. In case we have to do with an ad hoc model,
that is a model specially made for the circumstance of the situation it models,
this suspicion is grounded. Adding parameters to such an ad hoc model, or
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stretching the already contained parameters to other values, does not give
rise to what we call a theory. A theory needs to be well defined—its rules;
the permitted procedures; its theoretical, mathematical, and internal logical
structure—‘independent’ of the structure of the models describing specific
situations that can be coped with by it. Hence also the theory needs to contain
a well defined description of ‘how to produce models for specific situations.’
Think again of the theory of clothing. If a tailor knows the theory of clothing,
obviously he or she can make a garment for every human body, because the
theory of clothing, although its structure is defined independently of a specific
garment, contains a prescription of how to apply it to any possible specific
garment. Other subtle aspects are involved with the differences between ad hoc
models and models finding their origin in a theory (Aerts and Rohrlich 1998).
We have raised this issue because we think it does lead to misunderstandings if
attention is not paid to the difference between an ad hoc model and a model
which is derived from a theory. Intuitive thoughts about the nature of a model
differ, often depending on whether the model is inspired by a psychology
approach—where it will then rather automatically be looked upon as an ad hoc
model, in which all the data appear to be suspicious—or whether it is inspired
by a physics approach—where it will rather be looked upon as resulting from
a theory, and that all data that can be modeled by it have a positive aspect,
validating the theory.

What is the status of the Fock space model for concept combinations?
Hilbert space, hence also Fock space when appropriate, for the description of
quantum entities provides models that definitely come from a theory, namely
quantum theory, and hence are not ad hoc models. Is quantum theory also a
theory for concepts and their combinations, and hence, if so, can we consider
our models, for example, the Fock space model, as models coming from this
theory? Or is quantum cognition rather still a discipline where ad hoc models
are built, making use, also in a rather ad hoc way, of mathematics arising from
quantum theory? An answer to this question cannot yet be given definitely,
though some hypothesis can be formulated with plausibility in respect of it.
We believe that, notwithstanding their deep analogies, concept entities are less
crystallized and symmetric structures than quantum entities. As a matter of
fact some data in Hampton (1988a,b), Sozzo (2015), and Aerts et al. (2015a)
cannot be modeled in Fock space, and further experimental findings could in
the future confirm such impossibility. Notwithstanding this, we believe that
emergence is also the actual driver for these data that cannot be modeled in
Fock space. However, this type of emergence cannot be represented in a linear
Hilbert (Fock) space, and more general structures are needed. The search
for more general mathematical structures capturing conceptual emergence
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will, by the way, constitute an important aspect of our future investigation
in concept theory. On the other hand, we do believe that we have arrived
at the stage of building models that come from a theory and which are not
ad hoc. Indeed, although we believe that this theory will turn out to be
a generalization of the actual quantum theory, its basic principles—except
linearity most probably—will be present in the generalized quantum theory
too. We have recently worked out an analysis where the view of the status of
actual quantum cognition, as describing a quantum-like domain of reality,
less crystallized than the microworld, but containing deep analogies in its
foundations, is put forward (Aerts and Sozzo 2014c).
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Quantum Cognition, Neural Oscillators,
and Negative Probabilities

J. Acacio de Barros and Gary Oas

1 Introduction

One common view is that humans are rational decision-makers. What
constitutes rational is in itself a matter of debate, but perhaps a common idea
of rationality is the notion that, when making decisions, humans follow the
prescriptions of classical logic. Where logical true or false values are replaced
with uncertainty, we have to deal with beliefs, and not with certainty. One
can argue that the rules of inference over beliefs, for a rational being, should
be replaced by measures consistent with an underlying Boolean algebra of
propositions. If this is the case, and under some reasonable assumptions, the
rules of probability theory are derived (Cox 1961; Jeffrey 1992). In other words,
if one wishes to assign measures of belief in such a way that a decision-maker,
when faced with new evidence, acts in a way consistent with the rules of logic,
one needs to use classical probability (CP).

In the 1980s, Tversky and Kahneman examined the heuristics of decision-
making with cleverly designed experiments where inferences required by
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CP were tested against actual human beliefs. In a series of results, they
showed that in many situations humans did not follow CP, and later on
they developed a theory to described human decisions, prospect theory, which
fitted the experimental data better than the standard expected utility theory in
economics (Kahneman and Tversky 1979).1 Such was the importance of those
results that Kahneman was awarded the Nobel Memorial Prize in Economics
in 2002 (Tversky passed away in 1996).

In 2007, in a special session during the Association for the Advancement
of Artificial Intelligence’s Spring Symposium at Stanford University, a group
of researchers, among them Andrei Khrennikov, Emmanuel Haven, Jerome
Busemeyer, Peter Bruza, and Patrick Suppes, met to discuss applications of
the quantum mechanical formalism to the social sciences. The main idea put
forth was that, in relation to the social sciences, quantum mechanics could
go beyond an analogy of how to deal with complementary variables (in the
sense of Bohr): the quantum mechanical formalism itself could better rep-
resent situations in which CP was violated (such as Tversky and Kahneman’s
examples). The area of research spawned from this became known asQuantum
Interactions, and the application of the quantum-mathematical formalism to
psychology as Quantum Cognition (QC).

In this chapter we put forth the following three theses. First, QC is
about contextuality. By this we mean that we can think of decisions as
experimental outcomes, and such outcomes depend on the experimental
conditions (contexts). Second, that contextuality in QC may come from the
inconsistency of (perhaps learned, for cognition) conditions. To support this,
we provide two examples: a neural oscillator model that shows contextuality
when incompatible events are activated, and a decision-making scenario where
information based on subjective beliefs are inconsistent. Our third and final
thesis is that such contextual effects may be better modeled by allowing
non-observable probabilities to take negative values, and not by quantum
probabilities that violate CP theory. We support this by first showing that
there are certain neural oscillator set-ups that result in responses that cannot
be modeled in a natural way by the Hilbert space formalism of quantum
mechanics (QM). Then, in another example, we not only show that the
QC approach is inferior to negative probabilities (NPs),2 as we call our
generalization of CP, but also argue that, because of its inherent advantage

1Expected utility theory relies heavily on CP (Savage 1972; Anand et al. 2009).
2Some readers may object to the use of negative probabilities, since probabilities come from the ratio of two
non-negative numbers. We ask them to hold their concerns until Sect. 5, where we discuss NPs in detail.
However, at this point we emphasize that in our approach no experimentally observable event has NPs.
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with respect to Bayesian approaches, NPs may be the mechanism of choice for
actual biological systems dealing with contextual information.

In Sect. 2 we introduce the idea of QC, and discuss the importance of
interference for most of the discussions of violations of CP. In Sect. 3 we
discuss QM and the reason why contextuality is the characteristic that makes
its formalism the most relevant to QC. Keeping this in mind, we describe in
Sect. 4 a neurophysiologically inspired neural oscillator model that presents
the same contextuality observed in experiments used to support QC. We then
show that neural oscillators canmodel certain decisions that are not compatible
with the quantum formalism. Inspired by such a model, we then present in
Sect. 5 a theory of extended probabilities that describes the cases found in
QC and which provides some insight into contextual decision-making. Our
model seems to be computationally better than the quantum one and seems
to offer better advice than the Bayesian approach. We end the chapter with
some remarks and suggestions for future research.

2 Elements of Quantum Cognition

In this section we describe some of the main characteristics of QC. Here
we focus on QC models that rely on state interference.3 We believe that
the main features exhibited by these models are sufficient to make our main
point. However, we should remark that our arguments and accounts do not
immediately generalize to the use of quantum dynamics, but only to the
description of the relationship between states and observables.

To understand how QM violates CP, and how this can be applied to
cognition, let us look at an example. First, following Kolmogorov (1956), we
have the following definition.

Definition 1. Let � be a finite set, F an algebra over �, and p a real-valued
function, p W F ! R. Then .�;F ; p/ is a probability space, and p a
probability measure, iff:

K1. 0 � p .f!ig/ ; 8!i 2 �
K2. p .�/ D 1;

3It is not our intent to give an exhaustive account of the field of QC. Readers interested in it should consult
the excellent books available (e.g. Khrennikov 2010; Busemeyer and Bruza 2012; Haven and Khrennikov
2013).



198 J.A. de Barros and G. Oas

K3. p
�˚
!i; !j

�� D p .f!ig/C p
�˚
!j
��
; i ¤ j:

The elements !i of � are called elementary probability events or simply
elementary events.4

Definition 1 implies that from elementary events and F we can create
complex events. In a subjective interpretation the function p could be thought
as a measure of rational belief (Cox 1961; Jaynes 2003). For example, a
consequence of axioms K1–K2 is that, for two sets containing elementary
events, A and B, if A 	 B, then p .A/ � p .B/ follows. This property of CP is
called monotonicity, and it is possible to show that if we relax the requirement
of F being an algebra of events and instead allow it to be a quantum lattice,
monotonicity is violated (Holik et al. 2014). In other words, QC violates CP.

An important concept is that of a random variable, defined below.

Definition 2. Let .�;F ; p/ be a probability space, and let ‚ be a finite set,
with T an algebra over this set. A random variable X is a measurable function
X W �! ‚, that is, for every T 2 T we have X�1 .T/ 2 F .5

Intuitively, we can understand a random variable in the following way. To
each value of � we assign a value in ‚, such that the function X determines
a partition of the space � in different regions (consistent with F , since
X�1 .T/ 2 F ). Such a partition attributes to each region of � a value in
‚. So, random variables can be seen as a way to represent possible outcomes
of measurements that depend functionally on a probability event.

A simple example to illustrate random variables is the following. Let � D
fhh; ht; th; ttg be the space of outcomes of tossing a coin twice in a row (h
representing heads). If the coin is not biased, we have p .hh/ D p .ht/ D
p .th/ D p .tt/ D 1=4. Let us say we now want to represent an experiment
where whenever we get two values in a row (either heads or tails) the result is 1
(we could think of a one dollar payoff in a game), and�1 otherwise (one dollar
lost). The ˙1-valued random variable X is the function X W � ! f�1; 1g
with outcomes X .hh/ D X .tt/ D 1 and X .ht/ D X .th/ D �1. From those
functions we have the expected value of X, given by

4It follows that any probability of an element of F is a real number in Œ0; 1�.
5Usually there are extra constraints for defining a random variable, but we avoid such technicalities by
working with discrete � and ‚. The above definition is sufficient for our purposes.
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E .X/ D
X

�2‚
�p .X D �/ ;

which in our example is

E .X/ D .C1/ � p .X D C1/C .�1/ � p .X D �1/

D .C1/ �
�

1

2

�
C .�1/ �

�
1

2

�
D 0:

The second moment is6

E .XY/ D
X

�;�2‚
��p .X D �&Y D �/ :

A useful notation for ˙1-valued random variables is the following. Instead
of writing p .X D C1/, we write p .x/, and, instead of p .X D �1/, we write
p .x/.
A typical example of nonmonotonicity in QM is the two-slit experiment,

whose main features can be seen in the Mach–Zehnder interferometer (MZI)
of Fig. 1.7 For this interferometer, imagine two different situations: situation 1,

Fig. 1 Mach–Zehnder interferometer. A single photon state is emitted from a
source (S) and impinges on the first beam splitter (BS), where it has equal
probability of being in arm A or B. Upon reflection at mirrors MA, MB, the two
paths are recombined at the second beam splitter. The probabilities for detection
at detectors D1 and D2 are dependent upon the phase relation between the
two alternatives at the second beam splitter. In the ideal case, the probability
for detection at D1 is unity. The dashed box in path B represents the choice of
inserting a barrier, thereby changing the phase relationship and thus the detection
probabilities

6For ˙1-value random variables with zero expectation, it is easy to show that the moment E .XY/ has
the same value as the correlation � D E .XY/ = .�X�Y/.
7A more detailed discussion of the MZI in the context presented here can be found in de Barros and Oas
(2014), de Barros et al. (2015).
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in which the arms of the interferometer are unobstructed and a detection is
made on D1 or D2, and situation 2, in which a barrier is placed in arm B
(represented by the dashed box in the figure). Following Feynman et al. (2011),
a particle able to go through either arm of the interferometer has probability of
detection 1 in D1 (for an appropriate choice of lengths for the interferometer
arms). However, if the particle is constrained to go through only one of the
arms (because of a barrier in the other interferometer arm), the probability of
detection in D1 is 1=2. If we consider D1 D 1 as the value of D1 when there is
a detection and �1 when not (similarly for D2), and if we have the˙1-valued
random variable A D 1 (or B D 1) as corresponding to going through A (or
B), and �1 otherwise, we have

p .d1/ D p .d1ja/ p .a/C p .d1jb/ p .b/ ; (1)

where
p .xjy/ � p .x; y/ =p .y/ (2)

is the conditional probability of x given y (for p .y/ ¤ 0). The expression (2) is
known as Bayes’ formula, and gives the definition of conditional probability
in Kolmogorov’s axiomatic framework.8 From

p .d1ja/ D p .d1jb/ D p .a/ D p .b/ D 1

2
(3)

the observed value of p .d1/ D 1 of situation 1 is incompatible with Eq. (1)
of situation 2. Notice that Eq. (1) requires the existence of a joint distribution
p .x; y/, and the derivation of (3) depends not only on such a definition, but
also on the additivity of probabilities from Kolmogorov’s axioms.

The incompatibility between the observed probabilities for situation 1 and
2 comes from the assumption that the random variable D1 is the same for both
situations, as this is a requirement of a joint probability distribution. However,
the experimental conditions are different, and this assumption is somewhat
silly: we have no reason to believe they should be the same, and indeed the
data does not support this view. We call this impossibility to reconcile the
probability distributions of a random variable under different experimental

8In Kolmogorov’s theory of probability, joint probabilities are primitives, whereas conditional probabilities
are defined from the joints (Khrennikov 2009). But other interpretations of probability, notably some
subjective interpretations, consider conditional probabilities as more fundamental, and joint probabilities
are derived from them. For some of these interpretations, probabilities are always conditional, and it may
not even make sense to talk about joint probabilities (Galavotti 2005).
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conditions contextuality, since each experiment provides an alternative context
for the observation.9
We now return to QC. As mentioned, experiments show that human

decision-making may not follow CP. For instance, in his classic work, Savage
introduced a rational decision-making concept called the sure-thing principle
(STP) (Savage 1972). The idea of the STP is simple:

A businessman contemplates buying a certain piece of property. He considers
the outcome of the next presidential election relevant to the attractiveness of
the purchase. So, to clarify the matter for himself, he asks whether he should
buy if he knew that the Republican candidate were going to win, and decides
that he would do so. Similarly, he considers whether he would buy if he knew
that the Democratic candidate were going to win, and again finds that he would
do so. Seeing that he would buy in either event, he decides that he should buy,
even though he does not know which event obtains, or will obtain, as we would
ordinarily say. It is all too seldom that a decision can be arrived at on the basis of
the principle used by this businessman, but, except possibly for the assumption
of simple ordering, I know of no other extralogical principle governing decisions
that finds such ready acceptance. (Savage 1972, p. 21)

Formally, let us imagine that the ˙1-valued random variable X corresponds
to buy if X D 1 (not buy if X D �1), and let another ˙1-valued variable A
be such that A D 1 is a Democrat win and A D �1 is a Republican win. If
X D 1 is preferred over X D �1 when A D 1 and also when A D �1, then
X D 1 is always preferred, since A D 1 and A D �1 exhaust all possibilities
for A.
If we deal with propositions that are not certain, what a “rational” being

should base his or her decisions on for preferences of propositions (say, the
proposition “buy a certain piece of property” or “X D 1”) is represented in
terms of probabilities. For example, given a set of propositions, say fP1;P2g,
we can form more complex propositions by compounding them via the usual
operators in propositional calculus, for example, “P1&P2,” “P1 or P2,” or
“not P1”. If we require that the rules of inference are such that the measures of
belief assigned to propositions are consistent with this composition of propo-
sitions (e.g., if you assign a high belief for P1, then “not P1” should be assigned
a low value), then the measures of belief follow the axioms of probability above
(Jaynes 2003; Galavotti 2005). Such axioms imply Savage’s STP.

9Physicists usually refer to contextuality as a particular concept related to hidden-variables in a Kochen–
Specker-like situation, and would not call the MZI contextual. Here we take a comprehensive approach
to contextuality, which we define mathematically below.
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To prove STP from CP, assume that

p(X D 1jA D 1) > p(X D �1jA D 1):

This is interpreted as “X D 1 is preferred over X D �1” if A D 1. If we also
assume

p(X D 1jA D �1) > p(X D �1jA D �1);

then, multiplying each inequality by p .A D 1/ and p .A D �1/, and using
the above notation,

p(xja)p .a/C p(xja)p .a/ > p(xja)p .a/C p(aja)p .a/ :

From p(A D 1&A D �1) D p .a&a/ D 1 and the definition of conditional
probabilities we have

p(X D 1) > p(X D �1):

This, is clearly Savage’s STP.
Savage’s view of probabilities is normative, and not descriptive. A descriptive

theory of decision under uncertainty tells us how actual human beings make
decisions, whereas a normative theory tells us how they ought to make
decisions (see Briggs 2015). In the words of Boole, “probability I conceive as
to be not so much expectation, as a rational ground for expectation” (Boole
1854). Therefore, we should think of probability theory not as a description
of what humans actually think (or do), but instead as what humans should do
when faced with uncertain information.

According to such views, the STP should hold if agents are making rational
decisions. However, as mentioned, actual human decision-makers do not
follow the STP (Tversky and Shafir 1992; Shafir and Tversky 1992). For
example, in Tversky and Shafir (1992) students were told about a game of
chance, to be played in two steps. In the first step, not voluntary, players had a
50% probability of winning $200 and 50% of losing $100. The second step
allowed a choice of whether or not to gamble a second time, with the same
odds and payoffs. When told that they had won the first bet, 69% of subjects
accepted the second gamble, and when told they lost, 59% also accepted. If
we think of the random variables A and X as

A D C1$ “Won first bet,”

A D �1$ “Lost first bet,”
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X D C1$ “Accept second gamble,”

X D �1$ “Reject second gamble,”

and

P(xja) D 0:69 > P(xja) D 0:31;

P(xja) D 0:59 > P(xja) D 0:41;

then “Accept second gamble” is preferred over “Reject second gamble” regard-
less of A. However, the decision X was asked later on in the semester, but
participants were not told whether they had won in the first step (they did
not know A). Under the unknown condition, 64% of students rejected the
second gamble, and

P(x) D 1 � 0:64 D 0:36 < P(x) D 0:64;

a clear violation of the STP.
Violations of CP by human decision-makers are one of the main driving

forces behind QC. For instance, the nonmonotonicity of probabilities in the
MZI yield results that are very similar to violations of the STP. In the MZI,
let us say that the statement “detector D1 is preferred over D2” corresponds
to a higher probability of detecting a particle in D1 instead of D2, and let us
represent such a statement in terms of the random variable X, where

p .x/ > p .x/ (4)

corresponds to the previous statement. We can also represent the which-path
information by a ˙1-valued random variable A, where A D 1 corresponds
to the particle going through A and A D �1 to the particle going through B.
Clearly, in this case, we have10

p .xja/ D p .xja/ D p .xja/ D p .xja/ D 1

2
: (5)

10Equal probabilities in (5) are not necessary, as biases in the interferometer could modify the conditional
probabilities.
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Similarly to violations of the STP, when a or a, we have no reason to prefer x
over x or vice versa, but CP implies, from (5), that p .x/ D p .x/, in dissonance
with (4).

Thus, nonmonotonic violations of CP, such as the STP, can be reproduced
by quantum interference, as in theMZI. Thus, it should not come as a surprise
that the typical QCmodel relies on interference. For example, Busemeyer et al.
(2006) used quantum interference to model the disjunction effect observed
by Tversky and Shafir (1992) (Shafir and Tversky 1992). In their model,
they showed that a quantum process with interference yielded a better fit to
experimental observations than a classical Markov model. There are several
other uses of the quantum formalism to cognitive sciences, such as modeling
the conjunction effect (Pothos and Busemeyer 2009; Busemeyer et al. 2011),
order effects (Trueblood and Busemeyer 2011; Atmanspacher and Römer 2012;
Wang and Busemeyer 2013; Busemeyer et al. 2014) (see also Khrennikov et al.
2014), and the “guppy” effect (Aerts 2009; Aerts et al. 2012; Aerts and Sozzo
2014). We refer the interested reader to the excellent available reviews, such
as Khrennikov (2010), Busemeyer and Bruza (2012), Haven and Khrennikov
(2013), and Ashtiani and Azgomi (2015).

To summarize, CP fails to describe properly actual human cognition, and
we need to generalize it to account for such cases. A generalization of CP was
revealed with the creation of a mathematical formalism to deal with order
and context effects in physics: the quantum formalism. QC tries to use the
mathematics of QM to describe systems that may have similar contextual
effects to the physical ones.

3 Contextuality in Classical and Quantum
Systems

We saw that contextual effects, such as the ones present in the MZI, may give
rise to outcomes of experiments that are not consistent with CP. In this section,
we explore the idea of contextuality as the connection to violations of CP in
QC.

Let us start with the role of contextuality in QC.11 QM was laid out about
100 years ago. However, it comes as a surprise to many that there is no
consensus as to what this theory actually represents. Of course, researchers
agree with the theory’s predictions, but there is substantial disagreement as to

11For a quick review of quantum mechanics, see reference Haven and Khrennikov (2015) in this issue.
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what the theory has to say about the physical systems it models. For example,
is the theory about what the system actually is (ontological) or about what we
can say about the system (epistemological)?

The sources of such disagreements are in the many consequences of QM
that are irreconcilable with the classical views of nature. Following de Barros
and Suppes (2009), we stress three main characteristics of QM that are not
part of classical mechanics: nondeterminism, contextuality, and nonlocality.
To single out contextuality as the relevant aspect to QC, let us analyze each
separately.

Determinism, in its simplest form, comes from the idea that a past state of a
system determines its future state. This is certainly true in classical mechanics,
where given the state of a particle at time t0 and the forces acting on it, the
state of such particle at times t > t0 are determined by

d2r .t/
dt2

D F .t; r; Pr/
m

;

where r .t/ is the position of the particle at time t, m its mass, and F .t; r; Pr/
the force acting on the force. From this, it follows that the state of the system
at t � t0 is completely determined by the particle’s position r .t0/ and
velocity Pr .t0/. Determinism is also true for classical electromagnetic theory,
and seems even to be consistent with thermodynamics, via the kinetic theory
of gases. However, already in the late 1800s, with the discovery of radioactive
decay, some physicists started to realize that some nuclear processes seemed
inconsistent with the idea of determinism (Pais 1986). As knowledge about
microscopic systems increased, and QM developed, physicists realized that
quantum systems seemed to be different from classical ones, as they did not
always allow for predictable outcomes from the state of the system: not only
was the state based on less information (as position and velocity could not
be simultaneously measured), but it also had an intrinsically probabilistic
connection to measurement outcomes (Born’s rule). Thus, QM seems to
violate determinism.

However, we can argue that quantum nondeterminism is not necessary to
QC for two reasons. First, as we have argued extensively elsewhere (Suppes and
de Barros 1996), the discrimination between determinism and predictability
is difficult, and all we can say is that certain cognitive processes may not be
predictable. So, positing a nondeterministic underlying process is unnecessary.
Second, cognitive models already make extensive use of stochastic processes
without resorting to QM (Busemeyer and Diederich 2010). So, the use of QM
in cognitive modeling seems unnecessary.



206 J.A. de Barros and G. Oas

The second feature of QM we analyze is nonlocality. In 1932, Einstein,
Podoslky, and Rosen (EPR) published a seminal paper (Einstein et al. 1935)
where they examined the effects of a measurement on an entangled quantum
system, for example, a system comprised of two particles, 1 and 2. In this paper,
EPR argued that if an interaction happens with particle 1, such an interaction
cannot in any way instantaneously affect particle 2, if the particles have a large
spatial separation. In Bohm’s version for spin one-half particles, the EPR state
is given by

j i D 1p
2
.jCi1 ˝ j�i2 � j�i1 ˝ jCi2/ ; (6)

where jCii (j�ii ) corresponds to an eigenvector of spin in direction Oz with
eigenvalue C1 (�1) for particle i (we use here units where „=2 D 1). As we
see from (6), if we measure the spin in the direction Oz for particle 1 and obtain
C1 (or �1), then we “know” for sure the result of a spin-z measurement for
particle 2. Thus, according to EPR, since we cannot have any instantaneous
influence of 1 in 2, a measurement in 1 yields information about 2 without
disturbing it. EPR then went on and argued that such a result would imply
that the description of nature given by QM was incomplete, as clearly we
could know something about 2 without directly measuring it. In a surprising
result, John Bell (1964, 1966) showed that EPR’s view that a measurement
in 1 did not disturb 2 was inconsistent with the experimental predictions of
QM. Therefore, QM seems to allow for some superluminal influence.12 This
characteristic of QM is known as nonlocality.

Aspect and collaborators provided evidence for quantum nonlocality in the
1980s (Aspect et al. 1981, 1982), when they showed that a set of inequalities
(known as Clauser-Horne-Shimony-Holt (CHSH) inequalities, after reference
Clauser et al. (1969)) were violated. For nonsignaling systems,13 the CHSH
inequalities are necessary and sufficient conditions for the existence of a joint
probability distribution (Fine 1982), which are also equivalent to the existence
of a local (realistic) theory, meaning that their violation implies nonlocality.

12Bell’s results and the actual claims about superluminal influences are conceptually very subtle, and it
would go beyond the scope of this chapter to explain them carefully. We refer the interested reader to
Bell’s excellent papers in Bell (2004).
13In physics, the nonsignaling condition is the statement that nomatter, energy, or information (i.e. signal)
can be sent between two spacelike separated events. It is a restriction imposed by relativity theory. In
practice, this condition simply states that marginal probabilities for one observer cannot change when a
second, far away, observer changes the choice of measurement, such that the choices andmeasurements are
spacelike separated. Other terms for this property of marginal probabilities have been used (e.g. “parameter
independence,” “marginal selectivity”).
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We point out that to show nonlocality, Aspect’s experiment had to show
correlations between spacelike separated measurements.

With Aspect’s experiment in mind, we ask ourselves whether nonlocality
is relevant to cognition. Given the brain’s radius is of the order of 10�1 m,
any events within the brain would have to be correlated within a time
window of 10�10 s for them to be separated by a spacelike interval. Since
there are no cognitive processes that can be measured within such intervals
of time, no empirical evidence of nonlocality in the brain should be expected.
Furthermore, since cognitive processes are several orders of magnitude slower
than 10�10 s, one could never reject classical mechanisms that explain such
influences. Therefore nonlocality should not be pertinent for QC.

We are then left with the idea of contextuality. Contextuality in QM was
discussed explicitly by Kochen and Specker (1967), but its roots appeared early
on in the realization that experiments did not actually reveal the outcomes of a
pre-existing quantity, but instead create them. In Peres’s example (Peres 1995),
three measurement directions, Oe1, Oe2, and Oe3, for spin 1=2 present problems
if assumed that measurements reveal the component of the spin in a given
direction, that is, if we imagine that the particle has some unknown spin� and
that measuring it in direction Oe1 reveals the component of � in this direction
(i.e., Oe1 � �). Since each spin measurement only yields either C1 or �1, if we
choose our directions such that Oe1 C Oe2 C Oe3 D 0, we have

� � .Oe1 C Oe2 C Oe3/ D � � Oe1 C � � Oe2 C � � Oe3;

which would yield a contradiction, since the left-hand side is zero (by our
choice of directions) and the right-hand side is either ˙3, or ˙1, but never
zero. This problem is resolved when we realize that an experiment to measure
Oe1 is incompatible with an experiment to measure Oe2 or Oe3 (spin operators
do not commute), and that the contradiction comes from assuming that the
values of the spin components do not change when we change the experiment.

We say a set of experimental outcomes are contextual if their values change
under different conditions (see Dzhafarov and Kujala 2015, 2014,b; de Barros
et al. 2015). To illustrate this, imagine three ˙1-valued random variables X,
Y, and Z recorded under such conditions that we never observe all three
simultaneously, but only in pairs (e.g. X and Y but not Z, or Y and Z but
not X). For simplicity assume that their expectations are all zero, E .X/ D
E .Y/ D E .Z/ D 0, and that they are perfectly anti-correlated, E .XY/ D
E .XZ/ D E .YZ/ D �1. Now, the assumption that a variable is the same
under different experimental conditions leads to a contradiction. To see this,
start with a hypotheticalX D 1 andY D �1 on a trial. The second correlation
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gives Z D �1, but the third correlation gives Z D 1. Clearly, Z when
measured with X is different from Z measured with Y, and this system is
contextual.

We formalize contextuality following Dzhafarav and Kujala. Let us assume
that variables are a priori contextual, and instead of calling them X, Y,
and Z, we include a label to describe the context. For the three correlation
experimental conditions, we have the following six variables: XY, YX, XZ, ZX,
YZ, and ZY. For these variables, the observed correlations are E .XYYX/ D
E .XZZX/ D E .YZZY/ D �1, and it is straightforward to confirm that
no contradiction arises from this expanded set of random variables. So, we
now have a clear definition of contextuality: our system of three random
variables is noncontextual if and only if it is possible to find a probability
distribution consistent with the observed correlations and expectations such
that P .XY D XZ/ D P .YX D YZ/ D P .ZY D ZX/ D 1. In other
words, a system is noncontextual if the values of the random variables do not
depend on the experimental contexts, and contextual otherwise. The notion of
noncontextuality (and contextuality) can be easily extended to more variables,
and we refer the reader to reference Dzhafarov et al. (2015).

The most famous case of a contextual quantum system was presented in
Kochen and Specker’s seminal paper (Kochen and Specker 1967), where they
provided a set of yes–no questions that, if answered in accord with quantum
mechanical predictions, lead to inconsistencies, similar to our example above
(though with 118 questions, instead of only three). As mentioned above,
the CHSH inequalities are equivalent to the existence of a joint probability
distribution. Its violation by QM means that Bell-type quantum systems are
contextual. However, they present a special type of contextuality, where the
contexts for the variables are set by the choice the experimenters make in a
spacelike separated interval (thus the nonlocal character of QM). Furthermore,
because they are probabilistic, unlike Kochen–Specker, they are not often
discussed as examples of contextuality,14 though they clearly are, if we think
of contextuality as above. As such, QM provides other types of contextuality
which do not require nonlocality, such as is the case with the MZI or with
order effects.

Can contextuality be a feature of cognitive systems? Absolutely. As we saw in
the examples fromQC above, the cases where CP fails to describe all situations
where different contexts were used to probe an answer (say, a known versus

14There are exceptions, such as the works of Cabello (Cabello 2013, 2011, 2014; Gühne et al. 2014).
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unknown context, in the violation of the STP). Furthermore, as we show in the
next section, such contextual outcomes can be modeled in a very classical way.

To summarize, in this section we discussed reasons for using QM in
cognitive models. Among those reasons, we argued that only stochasticity and
contextuality are relevant. To support this, in the next section we provide a
neural model that fits the same outcomes as quantum cognitive models, but
also provides cases where outcomes are contextual but yet not describable
by QM.15

4 A Neural Model of Quantum Cognition

In the previous sections, we discussed the features of QM relevant to QC.
We argued that contextuality is the most probable feature relevant to social
systems. In this section we present, in a hopefully intuitive way, a classic neural
oscillator model that replicates some of the characteristics of QC (Suppes et al.
2012). Our goal is that such a model might shed some light on the limitations
of using QM to model cognition.

Our model relies on neurophysiological evidence that suggests cognitive
processes as an activity involving large collections of synchronizing neurons.
This is corroborated by EEG experiments showing the EEG data as a good
representation of language or visual imagery. In this section we follow de Barros
and Oas (2014), and readers interested in more technical details are referred to
Suppes et al. (2012).

In our model, the mathematical behavioral stimulus–response theory (SR
theory) is described by synchronized neural oscillators.16 SR theory is one of
the most successful behavioral theories, mainly because it can be mathemati-
cally formalized as a simple set of axioms. In terms of random variablesZ, S,R,
and E, with Z W �! EjSj, S W �! S, R W �! R, and E W �! E, where
S is the set of stimuli, R the set of responses, and E the set of reinforcements,
a trial in SR theory has the following structure:

Zn ! Sn ! Rn ! En ! ZnC1: (7)

15Here we mean not describable in the sense discussed in Kochen and Specker (1975); see also de Barros
(2012, 2015).
16It is beyond the scope of this chapter to give a fully fledged account of SR theory, and here we only
attempt to describe it in an intuitive way. Readers interested in a mathematical treatment of this theory
are referred to Suppes and Atkinson (1960) and Suppes (2002).
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Intuitively, a trial n starts with the subject having a given state of conditioning
Zn. Then, a stimulus s 2 S is sampled (Sn), and a response Rn is given
according to the sate of conditioning (or randomly, if no conditioning is asso-
ciated with s). After a response, a reinforcement En event occurs, informing
the subject of the correct answer, and this may result (with probability c)
to a change in conditioning to this reinforced event, thus leading to a new
state of conditioning ZnC1. In other words, learning happens with repeated
reinforcement in a probabilistic way by changes in the state of conditioning.

To obtain SR theory in terms of neurons, a distal stimulus is represented
in the brain by a set of synchronized neurons, and similarly for responses.
Collections of neurons synchronize in phase because of their excitatory con-
nections, and synchronize out of phase because of inhibitory connections
(de Barros and Oas 2014). Because we are talking about ensembles of neurons
(perhaps thousands), each set stimulus/responses can be described in a first
approximation by a periodic function, which for simplicity we assume to be a
cosine function. Thus, the basic unit in our model is an oscillator

O .t/ D A .t/ cos!t; (8)

where ! D ! .t/ is its time-dependent frequency. Since ! is a function of
time, O .t/ is determined by the argument of the cosine, that is, by ' .t/ D
! .t/ � t. Thus, we rewrite this simple oscillator as O .t/ D A .t/ cos' .t/, and
call ' .t/ the phase of O .t/. Firing neurons spike with the same amplitude
but varying frequencies. Therefore, a collection of firing neurons can be
approximately described by A .t/ D A0 and ' .t/, and in our model we assume
interactions that affect only the phase.

So, let Os .t/ be a stimulus oscillator given by

Os(t) D A cos .!0t/ D A cos .'s(t)/ ; (9)

and let

Or1 (t) D A cos .!0tC ı�1/ D A cos .'r1 (t)/ ; (10)

Or2 (t) D A cos .!0tC ı�2/ D A cos .'r2 (t)/ ; (11)

be the two response oscillators (Fig. 2).
To describe synchronization, we start with Os .t/ and Or1 .t/. When uncou-

pled their natural frequencies !s and !r1 are constant. From Eq. (8) their
uncoupled dynamics satisfy
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OS

Or1

Or2

Fig. 2 Schematic representation of the SR oscillator model for two possible
responses, 1 or 2, represented by the synchronization of the stimulus oscillator
Os with the response oscillators Or1 or Or2 . Each circle corresponds to groups of
neurons synchronized among themselves, and the lines to connections between
each group of neurons

d's

dt
D !s; (12)

d'r1

dt
D !r1 : (13)

If weakly coupled, their interaction does not affect the sinusoidal character of
Os .t/ and Or1 .t/, but affects their relative phases, and (12) and (13) need to
include an interaction term. Such a term reflects the tendency of phases either
to move closer to each other for excitatory synapses or to move apart from each
other for inhibitory synapses. Then, in a first approximation, we have

d's

dt
D !s � ks;r1 sin .'s � 'r1/ ; (14)

d'r1

dt
D !r1 � kr1;s sin .'r1 � 's/ ; (15)

where kij are the couplings. To understand where synchronization comes from,
let us define
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'0
s D 's � !st;

'0
r1
D 'r1 � !r1 t:

Substituting in (14) and (15), we have

d'0
s

dt
D �ks;r1 sin

��
'0

s � '0
r1

�C .!s � !r1/ t
�
; (16)

d'0
r1

dt
D �kr1;s sin

��
'0

r1
� '0

s

� � .!s � !r1/ t
�
: (17)

Equations (16) and (17) have fixed points17 when

'0
r1
� '0

s D ı! t;

or,
'r1 D 's:

In other words, (14) and (15) are stationary when synchronized.
The system (14) and (15) can be extended to N oscillators, and become

d'i

dt
D !i �

X

j¤i

kij sin
�
'i � 'j

�
: (18)

Equations (18) are known as Kuramoto equations (Kuramoto 1984), and they
are often used to describe synchronizing systems. Their advantage come from
two main points. They can be exactly solved under symmetry assumptions in
the limit of large N, providing insight into the nature of emerging synchro-
nization. Second, sets of weakly coupled oscillating systems can be roughly
described by Kuramoto-like equations (Izhikevich 2007). In our model, we
assume Kuramoto’s equations are a good approximation for the dynamics of
coupled sets of neural oscillators.

From the oscillators’ mathematical description, we can describe how SR
theory is modeled by them. The main idea is straightforward. Once a distal
stimulus is presented, an associated ensemble of neurons is activated in the
brain. Neurons in this ensemble synchronize, and we describe this highly

17A fixed point is a point where all derivatives are zero. They are important points because they represent
stationary solutions for the dynamical system. Fixed points can have stationary solutions that are either
stable or unstable.
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complex system by its average phase. We think of this synchronization as an
activation of the stimulus representation in the brain.

Once the stimulus is activated, it may elicit a response by activating synapti-
cally coupled oscillators (in a mechanism that may lead to spreading activation
(Collins and Loftus 1975)). Similarly to stimuli, responses are represented by
ensembles of synchronized neurons. Among the active responses, the selection
of a particular one is done by the relative phase synchronization between the
stimulus oscillator and the selected response. This phase synchronization is
determined by the couplings between the stimulus and response oscillators,
and the couplings are related to the state of conditioning in SR theory.

The simplest model utilizes three oscillators as introduced above. Once
activated, the rate of firings within each response oscillator is due to their own
dynamics and also the firings of Os. Thus, it is reasonable to assume that they
interfere, with interferencemeaning higher coherence when in phase and lower
coherence when out of phase. Mathematically, we have, for equal amplitude
oscillators, Eqs. (9)–(11). As with physical oscillators, the mean intensity is a
measure of the excitation carried by the oscillations, and at response 1 it is

I1 D
D
.Os(t)C Or1 (t)/2

E

t

D ˝Os(t)
2
˛
t C

˝
Or1 (t)2

˛
t C h2Os(t)Or1 (t)it ;

where hf .t/it0 is the time average of f .t/ defined by hf .t/it0 D
1
�T

R t0C�T
t0

f .t/ dt (�T � 1=!0). We have at once

I1 D A2 .1C cos .ı�1// ;

and similarly
I2 D A2 .1C cos .ı�2// :

Therefore, the intensity for r1 or r2 depends on the phase difference between
the SR oscillators.

Since I1 and I2 are competing responses, the maximum contrast between
them happens when one of their relative phases (with respect to the stimulus
oscillator) is zero while the other is � . It is standard to normalize the difference
I1 � I2 by the total intensity,

b D I1 � I2

I1 C I2
: (19)

taking values between �1 and 1. The quantity b is called the contrast.
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The contrast provides a way to think about a continuum of responses
between r1 and r2. Assume

ı�1 D ı�2 C � � ı�; (20)

which yields
I1 D A2 .1C cos .ı�// ; (21)

and
I2 D A2 .1 � cos .ı�// : (22)

Then, to determine b all we need is ı�, as

b D cos .ı�/ ; (23)

0 � ı' � � . So, ı� codes a continuum of responses between �1 and 1 or
any arbitrary interval (�1; �2) upon rescaling.
The above discussion presents only some aspects of our oscillator model,

which was designed to reproduce SR theory. It goes beyond the scope of this
chapter to describe fully this model, particularly because learning, one of the
central features of SR theory, is not relevant to our current purposes of showing
quantum-like characteristics in neural oscillators. However, we examine in
more detail two of the mathematical components of the oscillator SR model
that are relevant to us here: sampling and response.

When a stimulus sn is sampled, a collection of neurons fire synchronously,
corresponding to the activation of a neural oscillator, Osn . In consonance with
SR theory, we assume the activation of sn in a way that is consistent with the
random variable Sn. In other words, from a set of sn oscillators, we activate only
one oscillator with equal probability. This is a stochastic characteristic of the
theory that is not part of the dynamics, but is a classical type of stochasticity.

Once sn is sampled, the active oscillators evolve for the time interval
�tr, which is selected as a parameter representing the time of response
computation. This evolution satisfies Kuramoto’s differential equations

d'i

dt
D !i �

X

i¤j

kij sin
�
'i � 'j C ıij

�
; (24)

where kij is the coupling constant between oscillators i and j, and ıij is an anti-
symmetric matrix representing phase differences, and i and j can be either Osn ,
Or1 , or Or2 . Equation (24) can be rewritten as
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d'i

dt
D !i �

X

j

�
kE

ij sin
�
'i � 'j

�C kI
ij cos

�
'i � 'j

��
; (25)

where kE
ij D kij cos

�
ıij
�
and kI

ij D kij sin
�
ıij
�
, and this has an important

physical interpretation: kE
ij corresponds to excitatory couplings, and kI

ij to
inhibitory ones. In terms of those couplings, the evolution equation is

d'i

dt
D !i �

X

i¤j

�
kE

i;j sin
�
'i � 'j

� � kI
i;j cos

�
'i � 'j

��
; (26)

where !i is the oscillator’s natural frequency. The solutions to (26) and the
initial conditions randomly distributed at activation give us the phases at
time tr;n D ts;n C�tr. The coupling strengths between oscillators determine
their relative phase locking, which in turn corresponds to the computation
of a given response, according to Eq. (19). The couplings are determined by
reinforcement, but here we assume the values are given for each experimental
condition (see Suppes et al. 2012 for details).

At this point the attentive reader may have guessed where quantum-like
contextuality come from: the interference of two neural oscillators in (23).
To see how interference renders quantum-like results, let us consider the
following case discussed in detail in de Barros (2012). Imagine that instead of
a single stimulus, Os, we have two stimuli, Os1 and Os2 which can be activated
separately or simultaneously. The activation of stimulus Os1 leads to a response
(contrast) b1 when

kE
s1;r1
D kE

r1;s1
D ˛b1 D �kE

s1;r2
D �kE

r2;s1
; (27)

kE
r1;r2
D kE

r2;r1
D �˛; (28)

and

kI
s1;r1
D kI

r2;s1
D ˛

q
1 � b2

1 D �kI
s1;r2
D �kI

r1;s1
; (29)

kI
r1;r2
D kI

r2;r1
D 0; (30)

where ˛ is a convergence to a synchronization parameter (the larger the ˛, the
faster it converges). A similar set of couplings can be obtained for the other
stimulus oscillator Os2 if we require it to answer b2.
Now, from (26) and couplings (27)–(30), the system is deterministic.

However, the initial conditions are not the same at every trial, and if we assume
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a Gaussian distribution of initial phases at each trial, the responses given to the
stimulus Os1 will vary around the value b1. To code a discrete response, such
as a ˙1-valued random variable A we say the outcome of a random variable
A isC1 if the response b1 is greater or equal to 0:5, and �1 if the response is
lesser than 0:5, and we interpret the valueC1 as an action being preferred over
no action. Then, if we carefully choose the parameters in (27)–(30) such that
b1 is slightly greater than 0:5, then A would be C1 with a higher probability
than�1. Thus we could say that an action is preferred, given stimulus Os1 . We
could perform the same type of set-up for stimulus Os2 , such that whenever
this stimulus is presented, an action is also preferred.

The oscillator case above is equivalent to the example presented in Sect. 2 if
we think of the two distinct stimuli Os1 and Os2 as corresponding to “won first
bet” and “lost first bet,” respectively, and A D 1 as “accept second gamble”
and A D �1 as “reject second gamble.” If Os1 and Os2 are inconsistent
stimuli, the violation of the STP comes from the probabilities of response
for such an oscillator model when both oscillators are activated (in case of
lack of knowledge), and the interference effects of the oscillations lead to
the nonmonotonicity of probabilistic outcomes (de Barros 2012). In other
words, because of interference, neural oscillator models may exhibit contextual
quantum-like features.

A natural question now arises from our oscillator model. Since QM brings
so many features in addition to stochasticity and contextuality,18 it is worth
investigating whether there are violations of CP from our neural model that
cannot be described by QM. A natural starting point is the three random
variable example, X, Y, and Z, given in Sect. 3. It is straightforward to
prove that a Hilbert space description of three observables, represented by the
Hermitian operators X, Y , and Z, where we can observe them in a pairwise
fashion, implies that we can observe all three simultaneously. In other words,
if ŒX; Y� D ŒX; Z� D ŒY;Z� D 0, then there exists a basis where X, Y , and Z
are simultaneously diagonal. This means that if we can concoct an experiment
to measure X and Y together, another to measure Y and Z, and yet another
to measure X and Z, QM predicts it to be possible to create an experiment
where all three observables, X, Y , and Z, are measured simultaneously. Since
a simultaneous measure of three observables is a guarantee of the existence
of a joint probability distribution (by simply counting how many times each

18Nonlocality, as we discussed in Sect. 3, is one prominent case, but there are many nontrivial results in
QM that bear no clear connection to social systems, such as the no-cloning theorem (Dieks 1982), or the
monogamy of entanglement (Yang 2006), to mention a few.
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elementary event shows up), the three random variable example provided in
Sect. 3 cannot be described by QM.19

However, as we showed in de Barros (2012, 2015), inmore complicated three
stimulus and six response oscillators, there are couplings between oscillators
that give a higher probability of anti-correlation between pairwise activations
of stimuli. For strong enough anti-correlations, there are no joint probability
distributions, as Suppes and Zanotti (1981) proved that a joint probability
exists iff

� 1 � E .XY/C E .XZ/C E .YZ/ (31)

� 1C 2 min fE .XY/ ;E .XZ/ ;E .YZ/g :

Thus, there are neural oscillator models that exhibit a type of contextuality
that cannot be modeled by QM.

In this section we have presented a neural oscillator model that reproduces
not only SR theory, but also displays the nonmonotonicity associated with
contextual quantum-like behavior. We also showed that such a model poses
difficulties for quantum descriptions, as it implies the theoretical existence of
systems that would not be describable byQM. In the next section we introduce
an alternative stochastic model that we believe could be a natural replacement
for the quantum formalism in such cases where QM is not applicable.

5 Negative Probabilities

In this section we introduce the idea of negative probabilities (NPs) as a
way to describe certain contextual stochastic processes. Historically, NPs
were first encountered in QM, when Wigner attempted to produce a joint
probability distribution for momentum and position that would give the
same outcomes as quantum statistical mechanics (for a somewhat old review,
see Mückenheim 1986). Wigner dismissed NPs as meaningless, and called
them quasi-probability distributions.20 Later, Dirac used NPs to approach

19This is a point mentioned by Kochen in Kochen and Specker (1975), but in de Barros (2014) we
showed that by increasing the Hilbert space and adding a fourth variable corresponding to context, we
can artificially reproduce the correlations that violate a joint probability distribution.
20Perhaps very much in the same way that mathematicians had problems with negative numbers. For
instance, as late as the 1800s, the famous mathematician Augustus De Morgan stated the following (De
Morgan 1910, p. 72). “Above all, he [the student] must reject the definition still sometimes given of the
quantity �a, that it is less than nothing. It is astonishing that the human intellect should ever have
tolerated such an absurdity as the idea of a quantity less than nothing; above all, that the notion should
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problems in quantum electrodynamics (Dirac 1942), and Feynman used them
to describe the two-slit and spin of particles (Feynman 1987). Dirac and
Feynman’s views were similar to Wigner’s, but they thought of NPs as a
nice accounting tool that could perhaps be as useful as negative numbers in
mathematics. However, not all quantum mechanical set-ups allow for NPs
(e.g., the two-slit experiment can be shown to allow for NPs only under certain
counterfactual reasoning (de Barros and Oas 2014; de Barros et al. 2015)). We
emphasize that hereNPs alwaysmean that a joint probability distribution takes
negative values for non-observable events (such as joint values of position and
momentum), but is always non-negative for observable events.

Before we delve further into our discussion of NPs, we formally define it
(from now on we follow de Barros et al. (2015)). We start with a preliminary
definition related to marginal expectations that are observable.

Definition 3. Let� be a finite set,F an algebra over�, and let .�i;Fi; pi/,
i D 1; : : : ; n, a set of n probability spaces, Fi � F and �i � �. Then
.�;F ; p/,where p is a real-valued function, p W F ! Œ0; 1�, p .�/ D 1, is
compatible with the probabilities pi’s iff

8 .x 2 Fi/ .pi .x/ D p .x// :

Furthermore, the marginals pi are viable iff p is a probability measure.

Intuitively, we can think of the pi’s as observable marginal probabilities on
subspaces of a larger sample space �. Then such marginals are viable21 if it is
possible to “sew” them together to produce a larger probability function over
the whole � (Dzhafarov and Kujala 2013, 2014a; de Barros et al. 2015).

As mentioned, in QM the marginals are not always viable, but are compati-
ble with a real-valued function p that has the characteristic of being somewhere
negative. This motivates the following definition.

Definition 4. Let� be a finite set,F an algebra over�, P and P0 real-valued
functions, P W F ! R, P0 W F ! R, and let .�i;Fi; pi/, i D 1; : : : ; n, a set
of n probability spaces,Fi 	 F and�i � �. Then .�;F ;P/ is an NP space,
and P an NP, if and only if .�;F ;P/ is compatible with the probabilities pi’s
and

have outlived the belief in judicial astrology and the existence of witches, either of which is ten thousand
times more possible.”
21A term coined by Halliwell and Yearsley (2013).
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N1. 8 �P0�
0

@
X

!i2�
jP .f!ig/j �

X

!i2�

ˇ
ˇP0 .f!ig/

ˇ
ˇ

1

A

N2.
X

!i2�
P .f!ig/ D 1

N3. P
�˚
!i; !j

�� D P .f!ig/C P
�˚
!j
��
; i ¤ j:

In this definition we replaced Kolmogorov’s non-negativity axiom with a
minimization of the L1 norm of P. There is an intuitive reason to do this: we
seek a quasi-probability distribution that is as close to a proper distribution
as possible. This departure from a proper norm is the motivation for the
following definition.

Definition 5. Let .�;F ;P/ be an NP space. Then, the minimum L1 prob-
ability norm, denoted M�, or simply minimum probability norm, is given by
M� DP!i2� jP .f!ig/j.

In de Barros et al. (2015) we proved that P is a probability (and therefore
.�;F ;P/ is a probability space) if and only if M� D 1. Since M� can be
greater than one for systems with NP, and since NPs come from the impos-
sibility of defining a proper probability distribution that can put together
the different marginals, we interpret M� as a measure of contextuality. In
other words, not only does the existence of NPs lead to contextuality, but the
more they depart from a proper distribution the more contextuality there is
(de Barros et al. 2015).

An important result for NPs relies on the following definition (de Barros
et al. 2015).

Definition 6. Let� be a finite set,F an algebra over�, and let .�i;Fi; pi/,
i D 1; : : : ; n, a collection of n probability spaces,Fi � F and�i � �. Then
the probabilities pi are contextually biased22 if there exists an a inFi and inFj,
i ¤ j, b ¤ a ¤ b0,

P
8b2Fj

p .a \ b/ ¤P8b02Fi
p .a \ b0/.

In references Abramsky and Brandenburger (2011), Al-Safi and Short
(2013), Oas et al. (2014), and Loubenets (2015) it was independently proven
that NPs (in the sense we use above) exist if and only if the marginals pi are not

22Here we adopt and adapt the terminology of Dzhafarov and Kujala (2014a).
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contextually biased. Thus, it follows that for many systems where proper joint
probability distributions cannot be defined, we can still define NPs if such
systems are not contextually biased. Another way is to say that a collection of
probabilities pi are compatible if and only if they are not contextually biased.
We now present an example of a nontrivial application of NPs to decision-

making (de Barros 2014). In this example, Deana is a decision-maker who
wants to bet on the stock market (well, some “simple” version of it). She
wants to invest in three companies, creatively named here X, Y , and Z. Since
she knows nothing about X, Y , and Z, she contacts three “experts,” Alice,
Bob, and Carlos, who provide her with expected outcomes of X, Y , and Z.
However, each expert is specialized only in two of the companies, but not all.
Furthermore, perhaps because of a bias, experts may give information that
is inconsistent. For example, say we create the following ˙1-valued random
variables, X, Y, and Z, corresponding to their beliefs of a stock value going up
ifC1 and down if �1. Our experts all agree that the probabilities of stocks of
X, Y , and Z going up are the same as going down, and therefore we can say
that

E .X/ D E .Y/ D E .Z/ D 0: (32)

But since Alice only knows about X and Y , she can only tell us that her belief
is

EA .XY/ D �1; (33)

where we put a subscript on the expectation to emphasize that it is Alice’s
subjective belief.23 Equation (33) has the simple interpretation: Alice believes
that if X’s stocks go up/down then Y ’s will go down/up with certainty. Bob’s
and Carlos’s beliefs are that

EB .XZ/ D �1

2
; (34)

and
EC .YZ/ D 0: (35)

It is easy to see from (31) that (33)–(35) are not viable, but (32) imply the
probabilities that lead to Alice, Bob, and Carlos’s expectations are compatible.
Therefore, there exists an NP distribution consistent with (32)–(35).

23An example of inconsistent information like the one we present here is not easily translatable into
objective interpretations of probabilities.
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What is Deana to do with the inconsistent information she got from Alice,
Bob, and Carlos? A standard approach is to start with a prior distribution and
use their information to update the posterior using Bayes’ theorem. However,
as demonstrated in de Barros (2014), such an approach has a shortcoming: it
does not tell us anything new about the triplemomentE .XYZ/. The Bayesian
approach does not update the triple moment, and its value comes purely from
Deana’s prior knowledge.

The lack of update for the triple moment presents a difficulty. To show
it, take the deterministic (and consistent with a proper joint probability)
case where Deana was given EA .XY/ D EB .XZ/ D EC .YZ/ D 1. It is
immediately clear from these correlations that E .XYZ/ D 1. So, since the
experts are not disagreeing, and since their judgment leads to a specific value for
the triple moment, why should Deana not take this into account? Why should
her bet on the triple moment be related simply to her prior knowledge of it?
This seems to be a failure of the Bayesian approach. The situation is different
for NPs. Because we assume that a joint quasi-probability distribution exists
(albeit negative) and that the best joints (as they are not unique) minimize the
L1 norm, as they are the closest to a “rational” and consistent joint, then we are
constrained to only the best joints. In the deterministic case of 1 correlations,
this leads to the correct prediction that the triple moment is 1.

The minimization of the L1 norm also has a consequence for the incon-
sistent pairwise expectations (33)–(35). It restricts the possible values for the
triple moments to the range (de Barros 2014)

�1

4
� E .XYZ/ � 1

2
:

Given that the Bayesian approach provides no information to Deana, it should
be possible to devise a Dutch Book between NPs and Bayesian approaches for
certain situations.24 NP provides normative information that goes beyond the
Bayesian approach.

The situation is a little better between NPs and QC. As we mentioned,
the X, Y, and Z example is only describable via QM with supplementary
assumptions, as done in de Barros (2014), where an extra dimension to the
Hilbert space was added corresponding to the internal states of belief of Alice,
Bob, and Carlos. However, the triple moment correlation needs to be explicitly
given in the state vector, and there are no arguments to limit its values. So, QC

24A Dutch Book is the name given to a strategy that would allow one of the gamblers to win for sure over
the other gamblers in a game (Anand et al. 2009).



222 J.A. de Barros and G. Oas

is in better shape than the Bayesian approach because even though it does not
provide an advantage over the other approaches, it at least makes it explicit
that the triple moment is included ad hoc.

We end this section with some comments about the meaning of NPs. In
this chapter we take Feynman and Dirac’s views: NPs are a useful accounting
tool. However, there are ways to interpret them. For example, Khrennikov
showed that in the frequentist interpretation of von Mises, NPs appear when
we have sequences in the usual Archimedianmetric that violate the principle of
stabilization, and therefore do not converge to a specific probability value.25 In
those cases, a p-adic metric makes such sequences convergent, and NPs appear
as the p-adic limiting case (Khrennikov 1993a,b,c, 1994a,b, 2009). Abramsky
and Brandenburger (2011, 2014) interpret NPs in the context of sheaf theory.
For them NP comes from two independent types of events belonging to
different types. One type of event erases recordings of the other type, and this
allows for the observed correlations. Finally, closely related to Abramsky and
Brandenburger’s, is Szekely’s interpretation, which thinks of NPs P as related
to a proper probability p via a convolution equation P � f D p, which always
exists (Ruzsa and Székely 1983; Székely 2005). This convolution means that
for a random variable X whose probability distribution is P, there exists two
other random variables, XC and X� with proper probability distributions
(p and f , respectively) and such that X D XC � X�. Our interpretation,
though, can be subjective: NPs are an accounting tool, but provide us with
the best subjective information about systems which do not have an objective
probability distribution, as it is the closest distribution to a proper one (via
normalization of the L1 norm).

6 Final Remarks

In this chapter we have discussed how some of the well-known examples
used in QC are connected to the contextuality of the two-slit experiment. A
neural oscillatormodel was introduced based on reasonable neurophysiological
assumptions that reproduce behavioral SR theory and the nonmonotonic char-
acter ofQC. Such a neural model produces outcomes for certain situations that
are not naturally modeled by QM, as in the case with six-response oscillators.
However, such examples could be modeled by NP. More importantly, NP not
only provided a way to describe such systems, but was also normative.

25Pseudo-random sequences may have this property.
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QC comes from the idea that human decision-making is better described by
the mathematics of QM, with its probability associated with density operators
in a Hilbert space. However, there are possible situations where QC is not
appropriate, such as the X, Y, and Z example. Furthermore, we saw that the
X, Y, and Z example shows up in neural oscillator models that reproduce
standard SR theory, but also in decision-making situations. Therefore, as
an extended probability theory, QC is too restrictive, leaving out perhaps
important situations. Furthermore, QC is mostly descriptive, not offering, as
far as we are aware, any normative power. We contrast this with NP, which
describes many of the QC systems (those with compatible probabilities),
but also those created by inconsistent oscillators or inconsistent information.
Given how NP offers normative information via the minimization of the L1
norm, which is computationally simple for biological (as well as computer)
systems, perhaps it is not unreasonable to hypothesize that such processes
actually happen in our brain. This, we believe is an exciting perspective, and
we hope to investigate it further in the future.

Bayesians have problems with not updating their triple moment, even
when faced with indirect information about them. This suggests the exis-
tence of a Dutch Book. An interesting question is how such a Dutch Book
could be constructed. For example, if Alice, Bob, and Carlos are subject to
confirmation biases, could we model it (similar to Fine’s prism model (Fine
1982, 2009)) and show that NP outperforms Bayesianism? Furthermore, if
our L1 norm hypothesis for the brain is correct, wouldn’t human decision-
makers unconsciously follow a strategy that would win bets with “rational”
Bayesians? These questions also present a research program that we believe
will be fruitful.
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Quantum-Like Type Indeterminacy:
A Constructive Approach to Preferences

à la Kahneman and Tversky

A. Lambert-Mogiliansky

1 Introduction

To many people it may appear unmotivated and artificial to turn to quantum
mechanics (QM)when investigating human behavioral phenomena.However,
the founders of QM, including Bohr and Heisenberg, recognized early on
the similarities between the two fields. In particular Bohr was influenced
by the psychology and philosophy of knowledge of Harald Höffding. The
similarity stems from the fact that in both fields the object of investigation
cannot (always) be separated from the process of investigation.1 QM and
in particular its mathematical formalism was developed to respond to that
epistemological challenge. It is therefore legitimate to explore the value of
the mathematical formalism of quantum mechanics in the study of human
behavioral phenomena. The type-indeterminacy (TI) model proposes to use
elements of that formalism to model uncertain preferences. The basic idea is
that the Hilbert space model of QM can be thought of as a general contextual

1In the words of Bohr (1971) “the impossibility of a sharp separation between the behavior of an atomic
object and the interaction with the measuring instrument which serves to define the condition under
which the phenomenon appears”. In psychology investigating a person’s emotional state affects the state
of the person. In social sciences “revealing” one’s preferences in a choice can affect those preferences.
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predictive tool particularly well suited to describing experiments in psychology
or in “revealing” preferences. This chapter provides an introduction to the TI
model and some of its developments. For a complete exposition see (Lambert-
Mogiliansky et al. 2009).

2 Our Approach

The well-established Bayesian approach suggested by Harsanyi to model
incomplete information consists of a chance move that selects the type (i.e.,
their preference and private information) of player and informs each one of his
or her own type. For the purposes of this chapter, I emphasize the following
essential implication of this approach: all uncertainty about a player’s type
exclusively reflects the other players’ incomplete knowledge of it. This follows
from the fact that a Harsanyi type is fully determined. It is a complete well-
defined characteristic of a player that is known to him or her. Consequently,
from the point of view of the other players, uncertainty as to the type can only
be due to lack of information. Each player has a probability distribution over
the type of the other players, but his or her own type is fully determined and
known to him or her.

This brings me to the first important point at which we depart from the
classical approach. We propose that, in addition to informational reasons, the
uncertainty about preferences is due to indeterminacy: prior to the moment a
player acts, his or her (behavior) type is indeterminate. The state representing
the player is a superposition of potential types.2 It is only at the moment when
the player selects an action that a specific type is actualized. It is not merely
revealed but rather determined in the sense that, prior to the choice, there is an
irreducible multiplicity of potential types. Thus we suggest that, in modeling
a decision situation, we do not assume that the preference characteristics (we
do not address private information) can always be fully known with certainty
(neither to the decision-maker nor even to the analyst). Instead, what can be
known is the state of the agent, as a vector in aHilbert space which encapsulates
all existing information to predict how the agent is expected to behave in
different decision situations.

This idea, daringly imported from QM to the context of decision and
game theory, is very much in line with Tversky and Simonson (Kahneman
and Tversky 2000) according to whom “there is a growing body of evidence
that supports an alternative conception according to which preferences are

2A superposition is a linear combination such that the squares of the coefficients sum to one.
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often constructed—not merely revealed—in the elicitation process. These
constructions are contingent on the framing of the problem, the method of
elicitation, and the context of the choice.” This view is also consistent with that
of cognitive psychology, which teaches one to distinguish between objective
reality and the proximal stimulus to which the observer is exposed, and further
to distinguish between those and the mental representation of the situation
that the observer eventually constructs. More generally, this view fits in with
the observation that players (even highly rational ones) may act differently in
game theoretically equivalent situations that differ only in seemingly irrelevant
aspects (framing, prior unrelated events, etc.). Our theory as to why agents act
differently in game theoretically equivalent situations is that they are not in
the same state; that is, they are not the same agents: (revealed) preferences are
contextual because of (intrinsic) indeterminacy.

The basic analogy with physics, which makes it appealing to adopt the
mathematical formalism of QM to the social sciences, is the following. We
view an observed play, decisions, and choices as something similar to the result
of a measurement (of the player’s type). A decision situation is then similar
to an experimental set-up to measure the player’s type. This is modeled as
an operator (called observable) and the resulting behavior as an eigenvalue of
that operator. The analogy to the noncommutativity of observables (a very
central feature of QM) is, in many empirical phenomena, like the following
well-known experiment conducted by Leon Festinger (the father of the theory
of cognitive dissonance). In that experiment people were asked to perform a
very boring task. They would sort a batch of spools into lots of 12 and turn
a square peg a quarter turn to the left. They were then told that one subject
was missing and asked to convince a potential female subject in the waiting
room to participate. In one group they were offered $1, and in the other group
$20, for expressing enthusiasm for the task. Some refused, but others accepted.
Those who accepted for $20 later admitted that they thought the task was
dull. Those who accepted for $1 maintained that the task was enjoyable. The
experiment aimed at showing that attitudes change as a response to cognitive
dissonance. The dissonance faced by those who were paid $1 was between the
cognition of being a “good guy” and of being ready to lie for a dollar. Changing
one’s attitude to the task resolves the dissonance. Similar phenomena have
been documented in hazardous industries, with employees showing very little
caution in the face of danger. Here too, experimental and empirical studies
(e.g., Ben-Horin 1979) exhibited attitude changes among employees following
their decision to work in a hazardous industry. More generally, suppose that
an agent is subject to the same decision situation in two different contexts
(the contexts may vary with respect to the decision situations that precede
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the investigated one, or with respect to the framing in the presentation of the
decision, cf. Selten 1998). If we do not observe the same decision in the two
contexts, then the classical approach is to say that the two decision situations
are not the same: they should be modeled so as to incorporate the context.
In many cases, however, such an assumption, that is, that the situations are
different, is difficult to justify. And so, the standard theory leaves a host of
behavioral phenomena unexplained: the so-called behavioral anomalies (cf.
McFadden 1999).

In contrast, I propose that the observed decisions are not taken by an agent
in the same state. The context, for example, a past decision situation, is viewed
as an operator that does not commute with the operator associated with the
investigated decision situation; its operation on the agent has changed his
or her state. As in QM, the phenomenon of noncommutativity of decision
situations (measurements) leads us to conjecture that an agent’s preferences
are represented by a state that is indeterminate but which gets determined
(with respect to any particular type characteristic) in the course of interaction
with the environment. Our approach allows us to go beyond the cognitive
dissonance argument, as I show below in an example of application of the TI
model.

The objective of this chapter is to provide the basic elements of a theoretical
framework that extends the Bayes–Harsanyi model to accommodate various
forms of the so-called behavioral anomalies. I attempt to provide a model for
the Kahneman–Tversky (KT) man as opposed to what McFadden calls the
“Chicago man” (McFadden 1999). Our work is related to Random Utility
Models (RUMs) as well as to behavioral economics. RUM models have
proven very useful tools for explaining and predicting deviations from standard
utility models. However, RUMs cannot accommodate the kind of drastic and
systematic deviations characteristic of the KT man. These models are based
on a hypothesis of “the primacy of desirability over availability” and they
assume stable taste templates. In RUMs, preferences are noncontextual by
construction, while in the proposed TI model, (actualized) preferences are
contextual. Behavioral economics has contributed a wide variety of theories
(see Camerer et al. 2011). Often the proposed explanations address a very spe-
cific deviation (e.g., “trade off contrast” or “extremeness aversion”, Kahneman
and Tversky 2000). Important insights have been obtained by systematically
investigating the consequences on utility maximization of “fairness concerns”
(Rabin 1993), “cost of self-control” (Gul and Pesendorfer 2001), or “concerns
for self-image” (Benabou and Tirole 2002). Yet, other explanations appeal to
bounded rationality, for example, “superficial reasoning” or “choice of beliefs”
(Selten 1998; Akerlof and Dickens 1982). In contrast, the TI model is a
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framework model that addresses structural properties of preferences, that is,
their intrinsic indeterminacy.

3 Basic Ingredients of the TI Model

The object of my investigation is individual choice behavior, which I interpret
as the revelation of an agent’s preferences in what I call a Decision Situation
(DS). In the basic model I focus on nonrepeated, nonstrategic decision
situations. Examples of such DSs include the choice between buying a Toshiba
or a Compaq laptop, the choice between investing in a project or not, the
choice between a sure gain of $100 or a bet with probability 0.5 to win $250
and 0.5 to win $0.When considering games, I view them as decision situations
from the perspective of a single player.3

3.1 State, Measurement, and Observable

An agent is represented by a state which captures the agent’s expected behavior
in the decision situation under consideration. Mathematically, a state j'i; j'i
is a vector in a Hilbert space H of finite or countably infinite dimensions
over the field of the real numbers R.4 A key ingredient in the formalism of
indeterminacy is the principle of superposition. This principle states that the
linear combination of any two states is itself a possible state.5 The principle of
superposition implies that, unlike the Harsanyi type space, the state space is
non-Boolean.6

The notion of “measurement” is a central one in my framework. A mea-
surement is an operation (or an experiment) performed on a system. It yields a
result, the outcome of the measurement. A defining feature of a measurement

3All information (beliefs) and strategic considerations are embedded in the definition of the choices. Thus
the agent’s play of C is a play of C given his information (knowledge) about the opponent.
4In quantummechanics the number field is that of complex numbers. However, for our purposes the field
of real numbers provides the structure and the properties needed (see e.g. Beltrametti and Cassinelli 1981;
Holland 1995).
5I use the term “state” to refer to “pure state.” Some people use the term to refer to a mixture of pure
states, which combines indeterminacy with elements of incomplete information. They are represented by
so-called density operators.
6The distributivity condition defining a Boolean space is dropped for a weaker condition called ortho-
modularity. The basic structure of the state space is that of a logic, i.e., an orthomodular lattice. For a good
presentation of quantum logic, a concept introduced by Birkhoff and Von Neuman (1936), and further
developed by Mackey (2004, 1963), see Cohen (1989).
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is the so-called first-kindness property. This refers to the fact that if one
performs a measurement on a system and obtains a result, then one will get the
same result if one again performs the same measurement on the same system
immediately afterwards. Thus, the outcome of a first-kind measurement is
reproducible, but only in a next subsequent measurement. First kindness does
not entail that the first outcome is obtained when repeating a measurement if
other measurements were performed on the system in between.

3.2 One Decision Situation

A DS A can be thought of as an experimental set-up where the agent is invited
to choose a particular action among all the possible actions allowed by this
DS. To every DS A, we associate an observable, namely, a specific symmetric
operator onH which, for notational simplicity, we also denote byA. The actual
implementation of the experiment, that is, the act of choice, is represented by a
measurement of the associated observable A. The outcome, that is, the choice
made, is information about the agent’s preferences.

If A is the only decision situation we consider, we can assume that its eigen-
vectors, which we denote by j1Ai,j2Ai, : : : ,jnAi, all correspond to different
eigenvalues, denoted by 1A,2A, : : : ,mA respectively. As A is symmetric, there is
a unique orthonormal basis of the relevant Hilbert space H formed with its
eigenvectors. It is thus possible to represent the agent’s state as a superposition
of the vectors of this basis:

j'i D
X

k


kjkAi;

where 
k 2R, 8 k2 f1, : : : ,mg and
X

k

.
k/
2 D 1.

According to the so-called reduction principle, the result of a measurement
of A can only be one of its eigenvalues. If the result is mA, that is, the player
selects actionmA, the superposition

X

i


ij iAi “collapses” onto the eigenvector
associated with the eigenvalue mA. The probability that the measurement
yields the result mA is equal to mAj'2i D 
m

2.7 The coefficients 
m,
called “amplitudes of probability,” play a key role when studying sequences
of measurements.

7For simplicity I assume that all eigenvalues are “non-degenerated.”
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In our theory an agent is represented by a state. We shall also use the term
“type” to denote a state degenerated to one eigenvector, say jmAi. An agent in
this state is said to be of type mA. An agent in a general state j 'i is hence a
superposition of all types relevant to the DS under consideration. Our notion
of type is closely related to the notion used by Harsanyi. A type captures all
the agent’s characteristics of relevance (taste, subjective beliefs) for uniquely
predicting his or her choice in a given situation. In contrast to Harsanyi we
shall not assume that there exists an exhaustive description of the agent that
enables us to determine the agent’s choice uniquely in all possible decision
situations simultaneously. Instead, our types are characterized by an irreducible
uncertainty that is revealed when the agent is confronted with a sequence of
choices.

Remark Clearly, when only one DS is considered, the above description is
equivalent to the traditional probabilistic representation of an agent by a
probability vector (˛1, : : : ,˛n) in which ˛k is the probability that the agent will
choose action kA and ˛kD
k2 for kD 1, : : : ,n. The advantage of the proposed
formalism consists in enabling us to study several decision situations and the
interaction between them.

3.3 More than One Decision Situation

When studyingmore than oneDS, say A and B, it turns out that a key question
is whether the corresponding observables are commuting operators in H, that
is, whether ABDBA. The question of whether two DSs can be represented by
two commuting operators is an empirical one.

When dealing with commuting observables, it is meaningful to speak of
measuring them simultaneously. Whether we measure first A and then B
or first B and then A, the probability distribution on the joint outcome
p .iA ^ jB/ D

X

k


k
2. So (iA, jB) is a well-defined event. Formally, this implies

that the two DSs can be merged into a single DS. When we measure it,
we obtain a vector as the outcome, that is, a value in A and a value in B.
In particular, in accordance with the calculus of probability, we see that the
conditional probability formula holds:

pAB .iA ^ jB/ D pA .iA/ pB .jBjiA/ :
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For example, consider the following two decision problems. Let A be the DS
of choosing between a week’s vacation in Tunisia and a week’s vacation in
Italy. And let B be the choice between buying AC1000 of shares in Bouygues
Telecom or in Deutsche Telecom. It is quite plausible that A and B commute,
but whether or not this is in fact the case is of course an empirical question.
If A and B commute we expect a decision on portfolio (B) not to affect the
decision-making regarding the location for vacation (A). And thus the order
in which the decisions are made does not matter.

Remark The type space associated with type characteristics represented by
commuting observables is equivalent to the Harsanyi type space. When
all DSs commute, a type-indeterminate (TI) agent cannot be distinguished
from a classical agent. In particular, if the DSs A and B together provide a
full characterization of the agent, then all types iAjB are mutually exclusive:
knowing that the agent is of type 1A2B it is certain that he or she is not of type
iAjB for i¤ 1 and/or j¤ 2. All uncertainty about the agent’s choice behavior
is due to our incomplete knowledge about his or her type, and it can be fully
resolved by making a series of suitable measurements.

3.4 Noncommuting Decision Situations

It is when we consider DSs associated with observables that do not commute
that the predictions of the TI model differ from those of the probabilistic
model. In such a context, the quantum probability calculus, that is, Born’s
rule: p .hiAj'i/ D hiAj'i2, generates cross-terms, also called interference
terms. These cross-terms are the signature of indeterminacy. In the next section
we demonstrate how this feature of the TI model captures the phenomenon
of cognitive dissonance (in our 2009 article we also provide a model of the
framing).

For simplicity, assume that the two DSs A and B have the same number n of
possible choices, which means that the observables A and B have (nondegen-
erated) eigenvalues 1A,2A, : : : ,nA and 1B,2B, : : : ,nB respectively and each one
of the sets of eigenvectors fj1Ai,j2Ai, : : : ,jnAig and fj1Bi,j2Bi, : : : ,jnBig is an
orthonormal basis of the relevant Hilbert space. Let j 'i be the initial state of
the agent

j'i D
X

i


i jiAi D
X

j

	j jjBi:
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We note that since each set of eigenvectors of the respective observables forms
a basis of the state space there exists a unitary operator S such that S is a
basis transformation n � n matrix with elements hjBjiAi. This matrix plays an
important role in practical applications of the theory. For ease of presentation
we write �ij D hjBjiAi and we can write jjBi as

jjBi D
X

�ij jiAi ;

implying

j'i D
X

i

X

j

	j�ij jiAi

If the agent plays A directly, he chooses iA with probability pA .iA/ D 
X

i

	j�ij

!2

. If he first plays B, he selects action jB with probability 	 j2 and

his state is projected onto jjBi. The agent then selects action iA in DS A with
probability �ij

2. So the (ex ante) probability for iA is pAB .iA/ D P
”2

j �ij
2,

which is in general different from
�P

�ij
�2. Playing B first changes the way A

is played. The difference stems from the so-called interference term which is
the sum of cross-terms generated when taking the square of the sum.

This is illustrated in Fig. 1 for two DSs: the Dictator Game (DG)8 with
two options G for “Generous” and E for “Egoist,” and the Ultimatum Game
(UG)9 with two options, as well, A for “Accept” and R for “Reject.” We are
interested in the probability for G in the DG. The dotted line corresponds to
the probability for G in the direct play of the DG and the dash-dotted lines
for the probability of G when the agent first plays the UG which changes his
state into A or R and thereafter when he plays the DG and G obtains.

Some intuition about interference effects may be provided using the concept
of “propensity” due to Popper (1992). Imagine an agent’s mind as a system
of propensities to act (associated with the different possible actions). As
long as the agent is not required to choose an action in a given DS, the

8The Dictator Game is one in which one player chooses how to divide a pie and the other has no choice
but to accept.
9The Ultimatum Game is one where one player chooses how to divide a pie and the other may either
accept, in which case each player gets the share proposed by the first player, or the other player may
refuse, in which case both get zero.
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|A>
|G>

|R>

|E>

|Y>

Fig. 1 Two non-compatible measurements

corresponding propensities coexist in his mind; the agent has not “made up his
mind.” A decision situation operates on this state of “hesitation” to trigger the
emergence of a single type (of behavior). But as long as alternative propensities
are present in the agent’s mind, they affect choice behavior by increasing or
decreasing the probability of the choices under investigation.

An illustration of this kind of situation may be supplied by the experiment
reported in Knetz and Camerer (2000). The two DSs studied are the Weak
Link (WL) game10 and the prisoner’s dilemma (PD) game. They compare the
distribution of choices in the PD game when it is preceded by a WL game and
when only the PD game is being played. Their results show that playing the
WL game affects the play of individuals in the PD game. The authors appeal to
an informational argument, which they call the “precedent effect.”11 However,
they cannot explain the high rate of cooperation (37.5%) in the last round
of the PD game (Table 5, p. 206). Instead, I propose that the WL game and
the PD game are two DSs that do not commute. In such a case we expect a

10The Weak Link Game is a type of coordination game where each player picks an action from a set of
integers. The payoffs are defined in such a manner that each player wants to select the minimum of the
other players but everyone wants that minimum to be as high as possible.
11The precedent effect hypothesis is as follows: “The shared experience of playing the efficient equilibrium
in the WL game creates a precedent of efficient play strong enough to : : : lead to cooperation in a finitely
repeated PD game” (Knetz and Camerer 2000, p. 206).
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difference in the distributions of choices in the (last round of the) PD game
depending on whether or not it was preceded by a play of the WL or another
PD game.

Remark When A and B do not commute, they cannot have simultaneously
determinate values: the state of the agent is characterized by irreducible
uncertainty. Equivalently, and in contrast with the commuting case, two
noncommuting observables cannot be merged into one observable. There is
no probability distribution on the event “to have the value iA for A and the
value jB for B.” The conditional probability formula does not hold.

As G. W. Mackey expresses it: “When A and B do not commute there
are limitations to the degree to which the probability distribution of the
corresponding observables may be simultaneously concentrated near to single
points” (Mackey 2004, p. 78). In our context these limitations can be
interpreted as reflecting cognitive limitations. When the agent knows what
he or she prefers in one situation, he or she cannot but feel hesitant in some
other (noncommuting) DS.

4 Type Indeterminacy in Social Sciences:
An Example of Application

A central feature of TI is that choices can alter the state of the agent, which
may imply noncommutativity of choice behavior. Of course, not all instances
of noncommutativity in decision theory call for Hilbert space modeling.
For instance, in standard consumer theory, choices do have implications for
future behavior, that is, when goods are substitutes or complements. The
Hilbert space model of preferences is useful when we expect choice behavior
to be consistent with the standard probabilistic model, because nothing
justifies a modification of preferences. Yet, actual behavior contradicts those
expectations. An example of application of the TI model that we next develop
is the modeling of cognitive dissonance (CD).

The kind of phenomena I have in mind can be illustrated as follows.
Numerous studies show that employees in risky industries (like nuclear plants)
often neglect safety regulations. The puzzle is that before moving into the risky
industry those employees were typically able to estimate the risks correctly.
They were reasonably averse to risk and otherwise behaved in an ordinary
rational manner. A TI model of CD defines the choice options as follows. Let
A be a decision about jobs; a1: take a job with a hazardous task (adventurous
type), a2: stay in a safe task (habit-prone type). Let B be a decision about
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behavior at the risky workplace; the choices are b1: use safety equipment
(risk-averse type), b1: don’t use safety equipment (risk-loving type).We assume
A and B are noncommuting so their eigenvectors span the same space.We shall
compare two scenarios.

First scenario. The hazardous task is introduced in an existing context. It is
imposed on the workers. They are given only the choice to use or not to use
safety equipment (B). We write the initial state of the worker as

j'i D 
1 ja1i C 
1 ja2i ; 
1
2 C 
2

2 D 1:

We write the eigenvectors of A in terms of the eigenvectors of B:

ja1i D hb1 ja1i jb1i C hb2 ja1i jb2 i
ja2i D hb1 ja1i jb1 i C hb2 ja2i jb2 i

Substituting for ja1i and ja2i, the probability that a worker chooses to use
safety equipment is

pB .b1/ D hb1 j' i2 D Œ
1 hb1 ja1 i C 
2 hb1 ja2 i�2

D 
2
1hb1 ja1 i2 C 
2

2hb1 ja2 i2 C 2
1
2 hb1 ja1 i hb1 ja2 i :

Second scenario. First A then B. The workers choose between taking a new
job with a hazardous task or staying with the current safe routine. Those who
choose the new job then face the choice between adopting safety measures
or not. Those who turn down the new job offer are asked to answer a
questionnaire about their choice in the hypothetical case where they are
confronted with a risky task. The ex ante probability for observing b1 is

pBA .b1/ D pA .a1/ pB .b1ja1/C pA .a2/ p .b1ja2/

D 
2
1hb1

ˇ̌
a1i2 C 
2

2hb1 ja2 i2

The empirically documented phenomenon of “cognitive dissonance” can now
be formulated as

PBA .b1/ < pB .b1/ ;

which occurs in our model when 2
1
2 hb1ja1i hb1ja2i is strictly positive.
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The contribution of the indeterminacy approach is twofold. First, the TI
model explains the appearance of “cognitive dissonance.” Indeed, if coherence
is such a basic need, as proposed by L. Festinger and his followers, why does
dissonance occur in the first place? In the TI model “dissonance” arises when
resolving indeterminacy in the first DS because of the cognitive limitations on
possible preference types. Second, the TI model features a dynamic process
such that the propensity to use safety measures is actually altered (reduced) as
a consequence of the act of choice. This dynamic effect of coherence (which
arises when choosing in the second DS) is reminiscent of the psychologists’
“drive-like property of coherence” leading to a change in attitude.

5 Discussion 1

Our approach to decision-making yields the result that the type of agents,
rather than being exogenously given, emerges as the outcome of the interaction
between the agent and the DSs. This is modeled by letting a DS be represented
by an operator (observable). Decision-making is modeled as a measurement
process. When the observables commute, the corresponding type space has
the properties of the Harsanyi type space. From a formal point of view, this
reflects the fact that all (pure) types are then mutually exclusive. When the
observables do not commute, the associated pure types are not all mutually
exclusive. Instead, an agent who is in a pure state after the measurement of an
observable will be in a different pure state after the measurement of another
observable that is incompatible with the first one. As a consequence, the type
space cannot be associated with a classical probability space and we obtain an
irreducible uncertainty in behavior.

In the TI model, any type (state) corresponds to a probability measure
on the type space which allows one to make predictions about the agent’s
behavior. It is in this sense that the TI model generalizes Harsanyi’s approach
to uncertainty. The more controversial feature of the TI model as a framework
for describing human behavior is related to the modeling of the impact of
measurement on the state, that is, how the type of agent changes with decision-
making. The rules of change are captured in the geometry of the type space and
in the projection postulate. It is more than justified to question whether this
seemingly very specific process should have any relevance to the social sciences.
It has been shown that the crucial property that gives all its structure to the
process of change can be stated as a “minimal perturbation principle.” The
substantial content of that principle is that we require that when a coarse DS
resolves some uncertainty about the type of agent, the remaining uncertainty
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is left unaffected. In behavioral terms, this can be expressed as follows. When
confronted with the necessity to make a choice, the agent only “makes the
effort” to select his or her preferred item, while leaving the order relationship
between the other items uncertain, as at first. It may be argued that the
minimal perturbation principle is quite demanding. But we do not expect the
TI model to be a fully realistic description of human behavior. Rather, we
propose it as an idealized model of agents characterized by the fact that their
type changes with decision-making.

The next section briefly presents an extension of the TI model to dynamic
optimization that reveals how conceptually fruitful the model can be.

6 Dynamic Optimization: A Theory
of Self-Management

The idea that an individual’s choice of action (behavior) determines his or
her inner characteristics (preference, attitudes, and beliefs) rather than (exclu-
sively) the other way around has been present in people’s minds throughout
history and has been addressed in philosophy, psychology, and more recently
in economics. Nevertheless, the dominant view, particularly in economics, is
based on a postulate: individuals are endowed with an identity (preferences,
attitudes, and beliefs) that explain their behavior. This postulate is hard to
reconcile with a host of experimental evidence. In an extension of the basic
TI model Lambert-Mogiliansky and Busemeyer (2012) consider dynamic
individual optimization and show that it provides a model where identity arises
from decision-making and can explain patterns of self-control.

In a dynamic context, the TI model induces a game among potential incar-
nations of the individual. In each period, these potential incarnations represent
conflicting desires or propensities to act. We formulate the decision problem
in terms of a game between a multiplicity of (one-period lived) players, the
selves. They are linked to each other through two channels: (1) the selves share
a common interest in the utility of the future incarnations of the individual
and (2) they are connected to each other in a process of state transition (which
captures indeterminacy). In each period, the current selves form intentions to
act. One action is played by the individual but the whole profile of (intended)
actions matters to tomorrow’s identity, because of the state transition process.
This creates a strategic concern among contemporaneous selves. In particular
when the selves pool, the individual’s preferences are unchanged, while if
they choose different actions, preferences are modified. We define a Markov
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perfect equilibrium among the selves where the state variable is the individual’s
identity. In our model, behavior affects future preferences (identity) and in
particular a concern for identity (self-image) arises endogenously, because
identity determines future expected utility. Choice behavior exhibits deviations
from standard utility maximization. This is characterized by some degree of
self-control: some selves may refrain from short-run gains (and pool with
others) to secure a desirable identity. It can also feature dynamic inconsistency
because, as preferences are modified, the choices made by the individual
through time are not consistent with a stable preference order.

6.1 Basic Ingredients of the Model

In each period t, the individual faces a DS At corresponding to the finite set
of available actions in period t. We restrict the one-period players’ strategy set
to pure actions. The possible preferences (or eigentype12) over the profiles of
actions are denoted by eM,i whereM defines the complete measurement corre-
sponding to At . The eigentypes eM,i ofM are associated with the eigenvectors
jeM;i of the operator, which form a basis of the state space. The state vector
representing the individual can therefore be expressed as a superposition:

ˇ̌
st
˛ D

X

i


ijeM;ii

where eM,i are the (potential) selves relevant to DS At . This formulation means
that the individual cannot generally be identified with a single true self. He or
she does not have a single true preference. Instead he or she is intrinsically
“conflicted,” which is expressed by the multiplicity of potential selves.

Decision-making is modeled as the measurement of the preferences, and
it is associated with a transition process from the initial state and (intended)
actions to a new state. The rules that govern the state transition process reflect
the intrinsic indeterminacy of the individual’s type or preferences.

Formally, a transition process is a function from the initial state and
(intended) actions to a new state. It can be decomposed into an outcome
mapping and a transition mapping. The first mapping defines the probability
for the possible choices of action when an individual in state s is confronted

12In this section the term “eigen type” refers to the specific preferences, while the term “type” is used as a
synonym for a general state.
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with DS A. The second mapping indicates where the state transits as we
confront the individual with DS A and obtain outcome a.

Let the initial state be jsti D P
i


t
i jeM;ii. The standard Hilbert space

formulation yields that if we, for instance, observe action a1, the state transits
onto:

ˇ̌
stC1

˛ D
X

jD1


0
j

ˇ̌
eM;j

˛
(1)

where 
0
j D 
t

jpP
kt (
t

k)2(s�

k Daj)
and

P
kt (
t

k)2(s�
k D aj) is the sum over the

probabilities for the selves who pool in choosing aj.
As in the basic TI model the distinction with the classical model appears

when the individual faces a series of at least two consecutive noncommuting
DSs, At and AtC1. The probability for the second play depends on the selves’
play with respect to pooling respectively separation in DS At . When no player
chooses the same action, the choice of at separates out a single player (some
etM,i), while when several players pool in choosing the same action, the calculus
of the probability involves the square of a sum. This expresses the fact that the
player is a nonseparable system with respect to At and AtC1.

When dealing with multiple selves, the issue as to how to relate the utility
of the selves (here the players) to that of the individual is not self-given. The
problem is reminiscent of the aggregation of individual preferences into a social
value. We adopt the following definition of the utility of self (or player) etM,i of
playing ait and all the other �i t-period players playing a�i

t

UeM;i

�
at

iI st
�C ıeM;i

TX

kDt

EU
�
skC1

� �
at

i; a
t�iI st

�
at D at

i

��

The utility for etM,i of playing ati is made of two terms. The first term is the
utility in the current period evaluated by self etM,i. This term only depends on
the action chosen by etM,i. And the second term is the expected utility of the
individual evaluated by the future selves. Self etM,i puts some weight ıeM;i on
that expected utility. The second term depends indirectly on the whole profile
of action in the current period through the state transition process stC1(ait ;
st).13

13The utility function may recall a Bernoulli function in the following sense. With some probability, the
self survives (his preferred action is played by the individual); and with the complementary probability,
he is “out of the game.” The formulation in Eq. (4) means that he maximizes utility conditional on
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In each period, the current selves move simultaneously. They know the
current state resulting from the previous (actual and intended) play. We have
common knowledge among the selves about the payoff functions of all current
and future selves and common knowledge of rationality. The selves’ payoffs
are functions of the current actions and the current state as defined in the
previous section. Together, this means that we are dealing with a separable
dynamic game of complete information and that it seems most appropriate to
restrict ourselves to Markov strategies: a strategy for a self is a function from
the current state to the set of actions available at period t. We accordingly focus
on Markov perfect equilibria.

Definition A Markov perfect equilibrium of the game is characterized by at *i

at�
i D argmaxai2At UeM;i

�
at

iI st
� D ıeM;i

TX

�DtC1

EU� �s�
�
atI st

��

In all periods t D 1; : : : ;T and for all eM;i;M; i D 1; : : : ; n:
If all DSs commute, the state variable evolves through Bayesian updating.

The individual eventually learns who he or she is and behaves as a classical
decision-maker who maximizes discounted expected utility. In the TI model,
the concern for identity arises exclusively as a consequence of the noncommu-
tativity of successive DSs.

When the action set is sufficiently rich so as to sort out fully the preferences,
all selves will have “conflicting” preferences with respect to the short-run
choice. If the MPE (Markovian Perfect Equilibrium) is characterized by pool-
ing, some selves must be exercising self-restrain: they refrain from immediate
reward for the sake of the individual’s future utility—this is an instance of self-
control. Generally, i.e., in a standard DS, the set of actions is limited relative
to the possible preferences (because a DS is generally a coarse measurement).
In that case we will talk about self control when selves with conflicting interest
(begin) with respect to the current DS (end ) pool.

In Busemeyer and Lambert-Mogiliansky 2012 we show how the MPE can
be used to define and characterize generic classes of behavior corresponding

surviving. The probability for survival depends on the initial coefficients of superposition and his own
and other selves’ choices. But the selves do not take that into account. The approach is justified on the
following grounds: being “out of the game” cannot be valued. The self ceases to “exist,” which is neither
good nor bad. In other words, there is no reason to assume that selves have a “survival instinct”; they are
simply mental constructs. A self is defined as rational when he maximizes his conditional utility, which is
well-defined for any sequence of DSs.



246 A. Lambert-Mogiliansky

to a balanced and a conflicted individual respectively. I also derive some
comparative statics on the likelihood of the conflicting behavior with respect
to among others the size and sign of the interference effect.

7 Discussion 2

Self-perception theory is based on two postulates: (1) “individuals come to
‘know’ their own attitude and other internal states partially by inferring them
from observations of their own behavior and/or the circumstances in which
behavior occurs; (2) thus the individual is functionally in the same position
as an outside observer, an observer who must necessarily rely upon those
same external cues to infer the individual inner state (Bem 1972, p. 2).” Self-
perception theory’s own postulates are fully consistent with the hypothesis of
(nonclassical) indeterminacy which overturns the classical postulate of pre-
existing identity, attitudes, and preferences. With indeterminacy of the inner
state, behavior (the action chosen in a decision situation) shapes the state
of preferences/attitudes through a state transition process (see next section).
Indeterminacy means intrinsic uncertainty about individual identity so the
individual may not know his or her own attitudes, preferences, and beliefs.
And as in self-perception theory, it is by observing his own action that he
infers (learns) his state (of beliefs and preferences). In self-perception theory,
inner states are not accessible without some instruments to measure them.
Such a “descriptor” includes “cues” that can be manipulated to obtain widely
different perceptions (in an experiment a feeling could be identified as anger
or euphoria depending on the question asked). This is consistent with the
most basic feature of indeterminacy, namely that the property of a system does
not pre-exist observation. Therefore different measuring instruments may give
various incompatible but equally true accounts of the same state.

I also argue that the three basic departures from the classical model in
Benabou and Tirole, that is, imperfect knowledge, recall, and willpower,
are in many respects equivalent to giving up the classical dogma of a pre-
existing (deterministic) individual identity and replacing it by indeterminacy.
Indeterminacy implies imperfect knowledge because of intrinsic uncertainty:
there is no set of “true preferences” (to be learned). Instead, an individual
is represented by a superposition of potential types. Indeterminacy implies
imperfect recall because no type is the true type forever. The (preference)
state keeps changing with the action taken, so yesterday’s correctly inferred
information about oneself may simply not be valid tomorrow. Indeterminacy
implies “imperfect willpower” because it involves selves that are multiple
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both simultaneously (multiplicity of potentials) and dynamically (by force
of the noncommutativity of DSs). Therefore, there are necessarily conflicting
desires and issues of self-control and self-monitoring. Moreover, in a world of
indeterminate agents, actions aimed at shaping one’s identity are fully justified
from an instrumental point of view (it determines future expected utility). In
particular there is no need to add any additional concerns for self-image (as in
Benabou and Tirole) or diagnostic utility (Bodner and Prelec, 2003). The TI
model provides a simple and rigorous setting that relies on one single departure
from the standard setting. Some of our comparative statics results are similar to
those in Benabou and Tirole and consistent with a host of empirical data. My
contribution proposes an alternative explanation in terms of a fundamental
characteristic of the mind: its intrinsic indeterminacy.

In our approach we formalize internal conflicts and explain features of
self-management without using time preferences, which were the almost
exclusive focus of earlier work on dynamic inconsistency. Moreover, we can
connect to another branch of research related to identity and self-image,
extensively investigated in psychology (especially in self-perception theory)
and more recently in economics, for example, Benabou and Tirole (2002),
whose predictions are delivered by the model, some of which are novel. I
characterize generic classes of personality/behavior: a balanced, weakly decisive
but behaviorally stable character, and a highly conflicted, strongly decisive, and
behaviorally unstable character.

8 Concluding Remarks and Challenges

The TI model introduces quantum-like indeterminacy in decision theory. The
basic idea is to view DSs as experimental set-ups that measure preferences.
Two measurements can be incompatible in the sense that they measure Bohr
complementary type characteristics: the agent cannot have a determinate value
in both simultaneously. A major implication is that preferences are modified
along with the choices made.

This approach has shown itself to be fruitful in formalizing the con-
structive approach to preferences suggested by Kahnemann and Tversky.
In the TI model preferences are not merely elicited in choices, they are
not read off some master list. Instead they are created in the process of
elicitation (decision-making). Different ways of eliciting those preferences
leads to different (actualized) preferences. The TI model can explain a variety
of behavioral anomalies including among others cognitive dissonance, framing
effects, or preferences reversal. A significant advantage is that it offers a
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unified framework for explaining phenomena that are currently explained by
a variety of theories. Our approach appeals to a fundamental characteristic
of preferences: indeterminacy. By so doing it captures and connects two
central themes in behavioral economics, namely contextuality and bounded
rationality, in the following sense. TI agents are not capable of comparing all
choice options simultaneously: different choice sets correspond to different
DSs which may not commute. As a consequence the “revealed” preferences
are contextual to the choice set.

The extension of the basic TI model to dynamic decision-making shows
its potential in addressing issues like concerns for identity, time inconsistency,
and self-control. It also provides a model for internal conflict between selves
which complements the traditional multiple self models.

The multiple-self model arising from optimal dynamic decision-making
with a TI agent shows the way forward for the development of a theory of
games with TI players (see Martinez- Martinez and Lambert-Mogiliansky
2014). The importance of this development is profound and very much in
line with the spirit of both game theory and modern physics. The point is to
make interactions the central building stone of the theory while the agents arise
endogenously. To quoteMermin (1998) in his article titled “What is Quantum
Mechanics Trying to Tell Us”: “correlations have physical reality, that to which
they correlate does not—the rest is commentary.” Similarly, I would like to
contend that the TI model proposes that “interactions have social reality, those
who interact do not.” The challenges linked to developing a theory of games
with TI players are numerous; some are conceptual, others are technical. The
TI model invites a revolution in the way of thinking about behavior and social
interaction that is expected to bring many surprising insights.
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Quantum Models of Human Causal
Reasoning

Jennifer S. Trueblood and Percy K. Mistry

How do people reason about causes and effects? If you wake up in the morning
with a stomach ache, how do you infer that it was the seafood you had for
dinner rather than stress that caused your stomach to hurt? Human causal
reasoning has intrigued scholars as far back as Hume and Kant and currently
involves researchers from a variety of fields including cognitive science, devel-
opmental psychology, and philosophy. Many researchers approach this topic
by developing models that can explain the processes by which people reason
about causes and effects. In this chapter, we review these modeling approaches
and comment on their strengths and weaknesses. We then introduce a new
approach based on quantum probability theory.

1 Classical Probability Models of Causal
Reasoning

Some of the first models of causal reasoning were centered around the idea
that people use the covariation between causes and effects as a basis for causal
judgments (Jenkins and Ward 1965; Kelley 1973). These approaches trace
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their roots back to Hume (1987) and are based on the idea that causation is
inferred from the constant conjunction of events as perceived by our sensory
system. While models based on covariation can account for many situations,
they all face the same ultimate problem—covariation does not necessarily
imply causation. As such, these models cannot account for situations where
covariational relations are not perceived as causal. For example, we would
never think that ice cream consumption causes shark attacks even though
shark attacks increase at the same time as ice cream sales (because both
increase during summer). To overcome this issue, Cheng (1997) and Novick
and Cheng (2004) combined covariational information with domain specific
prior knowledge to create the power PC theory. According to this theory,
reasoners infer causal relations in order to understand observable regularities
between events. The model can explain why covariation sometimes reveals
causation but other times does not. While power PC theory has been able to
account for many behavioral findings, some studies have shown that people’s
causal judgments deviate significantly from the predictions made by the model
(Lober and Shanks 2000; White 2005).

Another approach to modeling causal reasoning uses causal graphical mod-
els (CGMs), which represent causal relationships using Bayes’ calculus (Kim
and Pearl 1983; Pearl 1988). CGMs are quite successful at explaining and
predicting causal judgments, and their predictions are generally accepted as
normative. CGMs can account for causal inferences driven by intervention-
based, observational, and counterfactual processes (Hagmayer et al. 2007),
which are often difficult to discriminate in traditional probabilistic models.
They have also been used to explain causal learning, where people learn the
relationship between variables through observation or intervention (Griffiths
and Tenenbaum 2005, 2009). Some researchers have even combined differ-
ent probabilistic approaches by integrating power PC theory with CGMs
(Griffiths and Tenenbaum 2005; Lu et al. 2008). Beyond causal reasoning
and learning, CGMs have been applied to decision-making (Hagmayer and
Sloman 2009), classification (Rehder and Kim 2009, 2010), and structured
knowledge (Kemp and Tenenbaum 2009).

While CGMs have been quite successful in accounting for human causal
reasoning, several recent empirical studies have reported violations of the
predictions of these models. All CGMs must obey a condition called the local
Markov property, which states that if we know about all the possible causes of
some event Z, then the descendants (i.e., effects) of Z may give us information
about Z, but the nondescendants (i.e., noneffects) cannot give us any more
information about Z. Recently, several studies have provided evidence that
people’s causal inferences often violate the local Markov condition (Rottman
and Hastie 2014; Park and Sloman 2013; Rehder 2014; Fernbach and Sloman
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2009; Waldmann et al. 2008; Hagmayer and Waldmann 2002). Relatedly,
other studies have shown people often ignore relevant variables. For example,
Fernbach et al. (2010) found that people ignore alternative causes in predictive
causal reasoning (i.e., reasoning about an effect given information about
causes), but not in diagnostic causal reasoning (i.e., reasoning about causes
given information about the effect).

To overcome the issues mentioned above, CGMs are often elaborated
through the inclusion of hidden variables (i.e., latent variables that are not
explicitly part of the causal system being studied, but are added to the mental
reconstruction of the causal system by individuals as part of their reasoning
process). While these elaborated CGMs often provide good accounts of data
(Rehder 2014), they are difficult to conclusively test. Further, the inclusion of
hidden variables is typically post hoc, added when a basic CGM fails to capture
data. As an alternative approach, we suggest expanding the set of probabilistic
rules of basic CGMs by using quantum probability theory (Trueblood and
Pothos 2014). Our approach can be considered as a generalization of Bayesian
causal networks. The essential idea is that any CGM can be generalized
to a quantum Bayes net by replacing the probabilities in the classic model
with probability amplitudes in the quantum model (Tucci 1995; Busemeyer
and Bruza 2012). In the next sections, we review CGMs in more detail and
introduce quantum Bayes nets as generalizations of these models.

2 Causal Graphical Models

CGMs describe causal relationships as directed acyclic graphs (DAGs) rep-
resenting a set of random variables and their conditional dependencies. For
example, suppose that either an unusual dinner or the presence of stress can
cause your stomach to hurt. In this example, the three variables—stomach
ache, dinner, and stress—are represented as nodes in the DAG (Fig. 1). Edges
between the nodes represent conditional dependencies. In Fig. 1, edges connect
dinner and stomach ache as well as stress and stomach ache. Nodes that are
not connected by an edge are conditionally independent. In our example,
dinner and stress are conditionally independent and thus there is no edge
connecting them.

The probability of a node taking a particular value is determined by a
probability function that takes as input the values of any parent nodes.
These probabilities are specified in conditional probability tables. Consider
the stomach scenario where all three variables have two possible values: A D
stomach ache is present (true/false), D D dinner is unusual (true/false),
S D stress is present (true/false). The CGM can answer questions such as
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Fig. 1 A CGM of the stomach ache scenario. There are two possible causes of a
stomach ache—an unusual dinner or stress. The three variables are represented as
a DAG with conditional probability tables

“What is the probability that dinner was unusual, given that your stomach
aches?” by using the formula for conditional probability:

p(D D tjA D t) D p(A D t;D D t)

p(A D t)
D

P
j2ft;f g p(A D t;D D t; S D j)

P
i;j2ft;f g p(A D t;D D i; S D j)

(1)

where the joint probability function p(A D t;D D i; S D j) D p(A D tjD D
i; S D j)p(D D i)p(S D j) because D and S are conditionally independent.
We can now calculate the desired probability p(D D tjA D t) using the
conditional probability tables in Fig. 1:

p(D D tjA D t)

D (0:8 � 0:1 � 0:6)C (0:7 � 0:1 � 0:4)

(0:8 � 0:1 � 0:6)C (0:7 � 0:1 � 0:4)C (0:2 � 0:9 � 0:6)C (0:1 � 0:9 � 0:4)

 0:346
(2)

The probabilities of other combinations of variables (e.g., p(D D f jA D f ))
follow similar calculations.
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Fig. 2 Three different ways to elaborate a common cause structure with an
additional variable W

All CGMs obey the local Markov property, which states that any node
in a Bayesian network is conditionally independent of its nondescendants
(i.e., noneffects) given its parents (i.e., direct causes). Consider a situa-
tion where a variable X causes Y and Z (represented by the DAG: Y  
X ! Z). The local Markov property implies that if you know X, then Y
provides no additional information about the value of Z. Mathematically,
we have p(ZjX) D p(ZjX;Y). There is empirical evidence that people’s
causal judgments do not always obey the local Markov property. For exam-
ple, Rehder (2014) presented participants with causal scenarios involving
three variables (e.g., an economic scenario with variables describing interest
rates, trade deficits, and retirement savings) and asked them to infer the
value of an unknown target variable given information about one or two
of the remaining variables. Rehder found that information about nonde-
scendants influenced judgments even when the values of the parent nodes
(i.e., direct causes) were known, showing a direct violation of the local
Markov property. (We discuss this experiment in more detail in a later
section.)

In order to account for the observed violations of the local Markov property,
Rehder (2014) augmented CGMs by including an additional variable that
severed as either a shared disabler, shared mediator, or shared cause. For
example, in a common cause structure whereX causes Y and Z (i.e., Y  X !
Z), the structure can be elaborated in several different ways by the inclusion of
a fourth variable W as shown in Fig. 2. While such an approach can provide a
good account of the data, it is difficult to conclusively test because participants
are never questioned about the hidden variable W. As an alternative approach,
we propose generalizing CGMs to quantum Bayes nets.
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3 Quantum Bayes Nets

In our quantum Bayes nets, we replace the classical probabilities in the
conditional probability tables of a CGMwith quantum probability amplitudes
as proposed by Tucci (2012, 1995) and Moreira and Wichert (2014). Consider
the situation where there are two causally related variables X and Y such
that X ! Y . Further assume that these two variables are binary (true/false).
In quantum probability theory, the observables X and Y are represented by
Hermitian operators:

X D xtPxt C xf Pxf (3a)

Y D ytQyt C xf Qyf (3b)

where xi and yi are eigenvalues and Pxi and Qyi are projectors onto corre-
sponding eigen-subspaces. The probability of a concrete value, such as xt (we
use the notation xt as shorthand for X D t), is given by Born’s rule:

p�(xt) D hPxt j i D jjPxt jj2 (4)

where is a pure state and � D j ih j is the corresponding density operator.
Suppose we want to answer the question “What is the probability Y is false,
given that X is true?” In this situation, we first calculate the output state �xt

as defined by the projection postulate (see the chapter A Brief Introduction to
Quantum Formalism) and then apply Born’s rule:

p�(Y D f jX D t) D p�xt
(yf ) D hQyf xt j xti D jjQyf xt jj2: (5)

We then use these conditional probabilities for our network rather than the
classical ones used in a CGM.

Consider the stomach ache scenario again. In the classical model, in order
to answer the question “What is the probability that dinner was unusual,
given that your stomach aches?,” we needed to calculate joint probabilities
such as p(A D t;D D i; S D j). We can determine these probabilities from
the conditional probability tables of the CGM by writing p(A D t;D D
i; S D j) D p(A D tjD D i; S D j)p(D D i)p(S D j). We take a similar
approach in our quantum Bayes net. First, let the three observables, stomach
ache, dinner, and stress, be represented by Hermitian operators A, D, and S
with the respective projectors P, Q, and R. Now, we define joint probabilities
by Born’s rule:

p�(A D t;D D i; S D j) D p�di ;sj
(at)p�(di)p�(sj) D jjPat di;sj jj2jjQdi jj2jjRsj jj2

(6)
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Fig. 3 A quantum Bayes net generalization of the stomach ache scenario. The
dinner node in the DAG has a thick border to indicate that it is considered before
stress. The tables contain probability amplitudes rather than probabilities. These
amplitudes were determined from the CGM shown in Fig. 1

where the output state is given by

 di;sj D
RsjQdi 

jjRsjQdi jj
: (7)

If the observables D and S do not commute, then the output state will depend
on the order in which these two variables are considered so that di;sj 6D  sj;di .
As a consequence, p(A D tjD D i; S D j) 6D p(A D tjS D j;D D i).

Figure 3 shows a quantum Bayes net generalization of the stomach ache
CGM shown in Fig. 1. For this example, the probabilities in the CGM
have been replaced by probability amplitudes in the quantum Bayes net.
These amplitudes are related to classical probabilities by taking the squared
magnitude of the amplitudes. For example, the probability that dinner was
unusual is given by

p(D D t) D jj0:3162ei�dtjj2 D (0:3162ei�dt)(0:3162ei�dt)

D (0:3162ei�dt)(0:3162e�i�dt)

D (0:3162)2ei(�dt��dt) D 0:1

(8)
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which is the same as the classical probability in the CGM. Note that the term
ei�dt is simply the phase of the amplitude.

When determining the conditional probabilities of the stomach ache given
information about dinner and stress, the order in which dinner and stress
are considered matters. In the quantum Bayes net in Fig. 3, we assume that
information about dinner is always processed before information about stress.
Psychologically, we would say that an individual thinks about dinner and
stress separately, always starting with dinner. In the figure, we used a thick
border on the dinner node to indicate that this variable is processed first. If
we wish to switch the order and have stress processed before dinner, then
we would need to define a different set of conditional probabilities. In other
words, we have two different conditional probability tables describing the
probability of the stomach ache given information about dinner and stress—
one table describing the situation where dinner is considered before stress (as
shown in Fig. 3) and another table describing the situation where stress is
considered before dinner (not shown in the figure). Even though there are two
different conditional probability tables for the quantum version of the stomach
ache scenario, these tables are related to one another. In quantum probability
theory, noncommutative observables (such as dinner and stress) are related by
a unitary transformation, which preserves lengths (the state vector must have
length equal to one) and inner products.

For the stomach ache scenario, we started with a CGM and generalized this
to a quantum Bayes net by designating a processing order (dinner before stress)
and changing the classical probabilities into probability amplitudes. Note that
our decision that dinner should be processed before stress was arbitrary. We
could have easily specified the reverse order (stress processed before dinner).
Thus, there are at least two different ways to generalize the CGM in this
example. In general, there will often be multiple ways to generalize a CGM
to a quantum Bayes net. As a consequence, if we start with a quantum Bayes
net, it is not necessarily the case that we can derive a well-defined CGM.
The conditional probability tables of a quantum Bayes net will always have
classical probability analogs, which are derived by squaring the probability
amplitudes in the quantum tables. However, when a quantum Bayes net
involves noncommutative observables, the corresponding CGM is ill-defined.
This is because noncommutative observables result in different conditional
probabilities tables for the same causal situation. This is not allowed in a
traditional CGM. Thus, the behavior of a quantum Bayes net will often be
fundamentally different than the behavior of a CGM.
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4 Implications

Noncommutative quantum Bayes nets make several interesting predictions
about human behavior. In the next sections, we discuss these predictions and
supporting empirical evidence.

4.1 Order Effects

Quantum Bayes nets with noncommutating observables naturally predict
order effects. Consider a causal scenario where X and Y cause Z (represented
by the DAG: X ! Z  Y). In an experiment, participants might be asked
to judge p(ZjX;Y) where information about X precedes information about
Y . An order effect occurs when final judgments depend on the sequence of
information so that p(ZjX;Y) 6D p(ZjY;X). Classical probability models such
as CGMs have difficulty accounting for order effects due to the commutative
property because p(X;YjZ) D p(Y;XjZ) implies p(ZjX;Y) D p(ZjY;X) by
Bayes’ rule. To account for order effects, classical probability models need to
introduce extra events such as O1, so that X is presented before Y , and such as
O2, so that Y is presented before Z. Then, it is possible that p(ZjX;Y;O1) 6D
p(ZjX;Y;O2). However, without a theory about O1 and O2, this approach
simply redescribes the empirical result. Further, in many empirical studies of
order effects, the order of presentation is randomly determined so that order
information such as O1 and O2 is irrelevant.
A large number of empirical studies have shown that order of information

plays a crucial role in human judgments (Hogarth and Einhorn 1992).
Order effects arise in a number of different situations, ranging from judging
the guilt of a defendant in a mock trial (Furnham 1986; Walker et al.
1972) to judging the likelihood of selecting balls from urns (Shanteau 1970).
Recently, Trueblood and Busemeyer (2011) found evidence for order effects
in causal reasoning. In this experiment, participants made causal judgments
about ten different scenarios where there was a single effect and two binary
(present/absent) causes. For example, in one scenario, participants were asked
about the likelihood of a fictitious person, Mary, losing weight over the next
month (the effect) given that she did not make any changes to her diet (absent
cause) and began an exercise program (present cause).

The participants (N D 113) provided likelihood judgments of the effect
(e.g., Mary losing weight) on a 0–100 scale at three different times: (1) before
reading either cause, (2) after reading one of the causes, and (3) after reading
the remaining cause. Participants judged the present cause before the absent
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cause for a random half of the scenarios. The order of the causes was reversed
(i.e., absent followed by present) for the other half of the scenarios. The results
of the experiment showed a large, significant order effect (p < 0:001) across
the ten scenarios. The presence of order effects in causal judgments provides
support for quantum Bayes nets with noncommutating observables.

4.2 Violations of the Local Markov Condition

The local Markov condition of CGMs stipulates that any node in a DAG is
conditionally independent of its nondescendants when its direct causes are
known. For example, in the common effect structure X ! Z  Y , this
property implies that the two causes X and Y are conditionally independent.
In other words, ifX and Y are binary, then p(Y D ijX D t) D p(Y D ijX D f )
for i 2 ft; f g and similarly when X and Y are swapped. In a quantum Bayes net
where X and Y do not commute, there is a natural dependency between these
two variables. That is, knowing the value of X influences our beliefs about
Y . This dependency can result in violations of the local Markov condition so
that p(Y D ijX D t) 6D p(Y D ijX D f ). By the definition of conditional
probability, p(Y D ijX D j) D p(Y D i;X D j)=p(X D j). In a CGM, X and
Y are independent so that the joint probability p(Y D i;X D j) D p(Y D
i)p(X D j). Thus, p(Y D ijX D j) D p(Y D i) for all i; j. In a quantum Bayes
net, p(Y D i;X D j) D jjQyiPxj jj2. If X and Y do not commute, then it is
clearly the case that jjQyiPxj jj2 6D jjQyi jj2jjPxj jj2, leading to violations
of the local Markov condition.

Rehder (2014) empirically demonstrated that people often violate the local
Markov condition in their causal judgments. In his task, participants were
given two causal situations with an unknown target variable and were asked to
select the situation where the target variable was more probable. For example,
in the common effect structure X ! Z  Y , participants had to decide
whether the target variable Y wasmore likely be true in a situation whereX D t
or in a situation where X D f . According to CGMs, we expect participants’
choice proportions to be equal on average because p(Y D tjX D t) D p(Y D
tjX D f ). However, Rehder (2014) found that on average people selected the
causal situation where X D t more often than the one where X D f , suggesting
people judged p(Y D tjX D t) > p(Y D tjX D f ). He also showed similar
violations with other causal structures such as chain structures (X ! Y ! Z)
and common cause structures (Y  X ! Z).
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4.3 Anti-discounting Behavior

Noncommutating observables can also account for anti-discounting behavior
in causal reasoning. The term discounting refers to the situation where one
cause casts doubts on another cause. In the common effect structure X !
Z  Y , knowing the value of X could cast doubt on the value of Y such
that p(YjZ;X) < p(YjZ). In many causal scenarios, discounting is considered
normatively correct (Morris and Larrick 1995). For example, it is normatively
correct to judge p(Y D tjZ D t) > p(Y D tjZ D t;X D t) because knowing
X D t sufficiently explains the value of the effect Z D t and consequently
renders the other cause Y redundant. When X is unknown, as in p(Y D tjZ D
t), there is a greater chance the effect was brought about by Y .

Rehder (2014) found that many people display anti-discounting behavior.
That is, people judge an unknown target cause Y as highly likely to be based
on the presence of the alternative cause X D t, resulting in judgments where
p(Y D tjZ D t) < p(Y D tjZ D t;X D t). Similar to violations of the local
Markov property, quantum Bayes nets can explain anti-discounting behavior
by the noncommutativity of X and Y , which produces a causal dependency
between these variables.

4.4 Reciprocity

The term reciprocity describes the situation where a person judges the proba-
bility of one variable given another to be the same as the probability when the
variables are swapped, p(XjY) D p(YjX). This phenomenon is similar to the
inverse fallacy (Koehler 1996; Villejoubert and Mandel 2002) where people
equate posterior and likelihood probabilities. If H represents a hypothesis
and D represents data, the inverse fallacy occurs when p(HjD) D p(DjH),
where the first term is the posterior and the second term is the likelihood. The
inverse fallacy has been observed in a number of different medical judgment
problems, where clinicians are asked to judge the likelihood of a disease
based on a set of symptoms (Meehl and Rosen 1955; Hammerton 1973; Liu
1975; Eddy 1982). The fallacy has also been demonstrated in the famous
taxicab problem (Kahneman and Tversky 1972), where individuals are asked
to judge the likelihood that a cab was in a wreck given its color (blue or
green). Results of this experiment showed that most people judged p(HjD)
as p(DjH).

The law of reciprocity (Peres 1998) in quantum probability theory sim-
ulates that if two events X and Y are represented by single dimensional
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Fig. 4 The law of reciprocity in quantum probability theory. In the left panel,
p(xtjyt) is calculated by a series of two projections. First,  is projected onto the yt
subspace (labelled projection 1) and then normalized to yield the output state  yt .
Next, the output state is projected onto the xt subspace (labelled projection 2), and
the probability is calculated by squaring the length of the projection (represented
by the thick black line). In the right panel, the series of projections is reversed to
calculate p(ytjxt)

subspaces, then p(XjY) is equivalent to p(YjX). We illustrate this result
in Fig. 4 for the probabilities p(xtjyt) and p(ytjxt). In the left panel, we
calculate p(xtjyt) by first projecting the state  onto the yt subspace and
then normalizing to produce the output state  yt . This new state is then
projected onto the xt subspace and the conditional probability is the length
of this projection squared as defined by Born’s rule (represented by the thick
black bar in the figure). In the right panel, we calculate p(ytjxt) following
a similar procedure. First, we project the state onto the xt subspace and
then normalize to produce the output state  xt . This revised state is then
projected onto the yt subspace and the conditional probability is the length
of the projection squared. As shown in the figure, the two conditional
probabilities are the same (i.e., the thick black bars are the same length).
Note that not all quantum models can account for reciprocity and the inverse
fallacy. Only quantummodels that make the specific assumption that different
outcomes are represented by single dimensional subspaces can explain these
findings.
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5 Conclusions

One could argue that CGMs have been one of the most successful approaches
in modeling human causal reasoning. These models can account for casual
deductive and inductive reasoning in a large number of situations. Besides
causal reasoning, CGMs have been applied to a variety of other domains
including classification (Rehder 2003; Rehder and Kim 2009, 2010) and
decision-making (Hagmayer and Sloman 2009).

However, there has been recent evidence that people’s judgments often
deviate from the rules of CGMs. There are at least two possible ways to
modify CGMs in order to account for these findings. One method involves
elaborating CGMs through the inclusion of additional nodes and edges in the
network. These hidden variables provide flexibility to the models and help
them accommodate a wider range of human behavior. However, the addition
of hidden variables to a CGM is often ad hoc and these additional variables
are difficult to test conclusively.

In this chapter, we have suggested an alternative approach using quantum
probability theory. Instead of elaborating a CGM with extra nodes and edges,
we suggest changing the probabilistic rules used to perform inference. In our
approach, we replace the classical probabilities of a CGM with quantum ones
to yield quantum Bayes nets. By using quantum probabilities, we allow for
variables to be noncommutative. We show that quantum Bayes nets with
noncommutative observables can account for a variety of different behavioral
phenomena including order effects, violations of the local Markov condition,
anti-discounting behavior, and reciprocity.

Quantum probability theory has successfully explained numerous findings
in cognition and decision-making including violations of the sure-thing
principle (Pothos and Busemeyer 2009), interference effects in perception
(Conte et al. 2009), conjunction and disjunction fallacies (Busemeyer et al.
2011), violations of dynamic consistency (Busemeyer et al. 2012), interference
of categorization on decision-making (Busemeyer et al. 2009), and order
effects in survey questions (Wang and Busemeyer 2013). We feel that quantum
probability theory also has great potential to explain human causal reasoning.
The results we have considered here make us optimistic about this approach
in the future.
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A Quantum Probability Model
for the Constructive Influence

of Affective Evaluation

Lee C. White, Emmanuel M. Pothos, and
Jerome R. Busemeyer

1 Introduction

People experience simple affective evaluations every day. Commonplace
events, such as listening to breakfast radio, deliberating over what to have
for lunch, or unwinding in front of the television in the evening, all have the
potential to generate a positive or negative affective impression, depending on
how we feel about the music on the radio, the menu choices, or the television
program we are watching. Affective evaluation is a fundamental and basic
activity of the human cognitive system and is central to most theories of
cognition and emotion (Musch and Klauer 2003). Research on affective
priming suggests that affective evaluations can be formed automatically,
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independently of other cognitive processes, without fully processing the
features of the stimulus and can be generated in response to novel stimuli
(e.g., Bargh et al. 1992; Damasio 1994; Duckworth et al. 2002; Fazio et al.
1986; Greenwald et al. 1989; LeDoux 1996; Zajonc 1980). What is perhaps
more surprising is that the process of articulating an affective evaluation
might also be constructive. That is, the simple affective impression that we
might form in response to music, food, or a television program, can alter
relevant representations depending on whether or not we are required to state
our affective impression. This was the main premise in recent research by
White et al. (2013, 2014), which was inspired by cognitive applications of
quantum probability (QP) theory.

The idea that cognitive processes can be constructive is not new. For a
cognitive process to be constructive, the information on which it acts needs to
be altered in some way, as a consequence of being subjected to that process.
Many researchers have argued that, for example, making a choice between
alternatives can be constructive, so that the act of choosing actually influences
the subsequent preferences for the relevant alternatives (e.g., Ariely andNorton
2008; Kahneman and Snell 1992; Payne et al. 1993; Sharot et al. 2010; Sherman
1980; Slovic 1995). However, as will be seen in this review,White et al.’s (2013,
2014) research is new in that it extends the conditions in which cognitive
processes can be constructive and that QP is used as a basis for modelling
this effect.

We will begin this chapter with a brief summary of the research on construc-
tive processes in judgment and decision-making and the rationale for usingQP
to model such processes. We then describe a QP model for the constructive
role of articulating an affective impression and the empirical research that has
been undertaken to support the model. We end by considering some of the
limitations of this model and discuss directions for future research.

2 Constructive Processes in Judgment
and Decision-Making

The constructive role of a judgment was first discussed and empirically
explored by Brehm (1956) who employed a free-choice paradigm. Female
shoppers were presented with eight appliances and asked to rate how desirable
they were. They were then offered two appliances they had rated equally
desirable and told they could choose one as a gift to compensate them for
their trouble in taking part in the study. After a short time they were asked
to re-evaluate the two items and it was observed that the chosen item was
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rated more highly than the rejected item, compared with the initial ratings.
These results have been interpreted as providing support for Festinger’s (1957)
well known theory of cognitive dissonance, which states that when people
detect a discrepancy between their behaviour and their preferences, they
experience psychological tension which they seek to reduce by changing their
preferences to match their behaviour (see also Bem’s (1967) self-perception
theory for an alternative explanation). So, in Brehm’s (1956) study, presumably
participants experienced psychological tension as they considered the desirable
and undesirable aspects of the chosen and rejected appliances. This in turn
motivated them to alter their preferences to reduce the tension, so that the
chosen appliance was seen asmore desirable and the rejected item less desirable.

The central observation in the free choice paradigm, that participants will
like the chosen item more and the rejected item less, has been replicated a
number of times (e.g., Egan et al. 2007; Lieberman et al. 2001; for reviews
see Ariely and Norton 2008; Slovic 1995). However, the free choice paradigm
has not been without criticism. It is argued by some (e.g., Chen 2008; Chen
and Risen 2009) that it does not take into account the idea that choice reveals
preference. Using the free-choice paradigm, it is not possible to say whether
preference shifts result from the constructive influence of making a choice
or are simply predicted by existing preferences which the rating scale cannot
precisely measure.

Research by Sharot et al. (2010) addressed this criticism. In one experiment,
participants were asked to choose between two holiday destinations. After they
initially indicated how happy they would be with various holiday destinations,
they then made a blind choice between destinations (participants had been led
to believe that the study was about subliminal decision-making). They were
then informed which destination they had chosen, before they were asked
again to rate the destinations. The results showed a change in preferences
that reflected their choices. The chosen holiday destinations were rated more
positively, even though the participants’ actual choices had been made with
the holiday destinations masked. Additionally, the choice-induced preference
change was not observed when participants were given a choice that had been
made by a computer. The experiments conducted by Sharot et al. (2010) and
other work by Egan et al. (2010) with children and nonhuman primates appear
to have settled the debate over whether choice can potentially alter preferences.

But there is, arguably, a rationale for why our choice for a particular
option might increase our preference for that option. It helps people to
reduce uncertainty, psychological tension, or post-choice doubts. That the
articulation of a simple affective impression can also be constructive would
seem more surprising, and it is difficult to motivate such a possibility within



270 L.C. White et al.

existing theory. However, the application of QP theory in this area will lead
us to an interesting prediction regarding the scope of constructive influences
in cognition. Specifically, we will see that QP theory predicts a limitation in
how the cognitive system can represent uncertain information, which means
that a judgement (i.e., a choice or affective evaluation) must (sometimes)
be constructive, simply because of how potentialities regarding the different
options translate into certainty for a specific option.

3 Why Use QP to Model Cognitive Processes?

QP is a formal framework for assigning probabilities to observable events
(Hughes 1989; Isham 1989). It originated in attempts to explain some of the
paradoxical findings in physics, such as the double-slit experiment, which
had defied classical interpretations. QP and classical probability (CP) are
derived from different axioms. CP is derived from the Kolmogorov axioms,
which assign probabilities to events defined as sets, and QP is derived from
the von Neumann axioms, which assign probabilities to events defined as
subspaces of a vector space. The use of CP principles in cognitive modeling
has been popular and it is generally assumed that probabilistic computations
in judgment and decision-making conform to the principles of CP theory, at
least in some cases (e.g., Oaksford and Chater 2009; Tenenbaum et al. 2011).
Furthermore, an argument can be made, especially through the Dutch Book
theorem (e.g., Howson and Urbach 1993), that CP theory provides a rational
basis for making decisions.

But as this volume attests, more recently, increasing interest has been shown
for using QP in decision-making theory, as an alternative to CP, with a number
of different QP based modeling approaches being used (e.g., Aerts and Aerts
1995; Basieva and Khrennikov 2014; Bordley and Kadane 1999; Bordley 1998;
Busemeyer et al. 2011; Khrennikov and Haven 2009; Lambert-Mogiliansky
et al. 2009; Pothos and Busemeyer 2009; Trueblood and Busemeyer 2011;
Wang and Busemeyer 2013; Yukalov and Sornette 2008, 2009). Because
CP and QP are based on different axioms, QP incorporates certain unique
features, which do not exist in CP, such as incompatibility, superposition, and
entanglement. These features have been used to help physicists understand,
for example, interference effects and how measuring the state of a system can
actually sometimes create a property of the system. Advocates for the use of
QP theory in cognition argue that phenomena analogous to those observed in
physics are also present in human decision-making. For example, interference
effects between possibilities/questions in the cognitive system can be seen in
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research on order effects in decision-making (e.g., Hogarth and Einhorn 1992)
and the constructive effects of measurement on a system can be seen in the
research we described previously, on the constructive role of choice. So QP
appears to offer principles, which fairly naturally incorporate effects (such as
interference and constructive influences), for which there is empirical evidence
in psychology, but which have been difficult to model within CP frameworks
(for overviews see Busemeyer and Bruza 2011; Pothos and Busemeyer 2013).
One concept from QP theory, in particular, is important for modeling

constructive effects of articulating an affective evaluation—and this is superpo-
sition. Most decision-making models based on CP theory assume that, whilst
the cognitive system can change from moment to moment, at any one point
in time the system is considered to be in a definite state, with respect to the
decision or judgment to be made. So, in the example of providing an affective
evaluation for a visual stimulus, within a CP framework, we would assign
probabilities to the person experiencing positive or negative affect. Perhaps,
if the affective content of the image is more ambiguous, there may be more
fluctuation and change in the observer’s affective state over time, until the final
state is reached. However, importantly, at any one moment in time, the person
is assumed to be in a definite positive or negative affective state.

Modeling the same situation using QP theory is different. Much of the
difference between CP and QP theory derives from the fact that the former is
a set-theoretic representation of probabilities, whereas the latter is a geometric
representation of probabilities. In QP theory, events are represented as sub-
spaces in a multidimensional Hilbert space (see Chapter “A Brief Introduction
to Quantum Formalism”). Thus the person’s affective state, with respect to
the visual stimulus, would be represented by amplitudes across all relevant
possibilities. So, as long as there is a nonzero weight for different possibilities,
the person is said to be in a superposition. This means that at any one moment
in time his or her affective state is consistent with neither possibility. Instead,
there is potential for all possibilities, and which affective state will be eventually
selected cannot be ascertained until the system is measured (i.e., a judgment
or affective evaluation is made).

Exactly what happens when the system is measured leads us to another
important difference between CP and QP. In CP, the measurement of a system
at a given point in time is assumed to represent the state of the system at the
point in time just before the measurement was made. Alternatively, in QP,
taking a measurement of a system creates rather than records a property of the
system (Peres 1998). This means that the state of the cognitive system following
a measurement is constructed from the interaction between the measurement
and the superposition state (Bohr 1958). Applying these ideas to cognition, the
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act of judgment would alter the cognitive state, so that, in the case of our visual
stimuli, whereas the state was a superposition one prior to the measurement,
following a measurement, the state becomes consistent with a specific affect.

These two fundamental principles of QP theory, superposition and the
requirement that measurement creates rather than records a property of the
system, offer a natural and straightforward way in which to model constructive
processes in judgment and decision-making. In what follows, we describe
the research of White et al. (2013, 2014), who provided a demonstration of
these ideas, using a simple experimental paradigm, designed to examine how
measurement of the cognitive system might influence affective evaluations of
visual stimuli.

4 A Design for Investigating the Constructive
Influence of Articulating Affective
Evaluations

In White et al.’s (2013, 2014) research, fictitious adverts were created which
had positive or negative affective content. For example, a positive advert
for insurance showed a group of happy students and a negative advert for
insurance showed a burnt out kitchen (see Fig. 1).

In a within-subjects experiment, participants were asked to consider pairs
of images presented sequentially in either a positive and then negative order or
vice versa. When they viewed images in the double rating condition they were
required to provide a simple affective rating of the first image and were then
again asked for a rating for the second image. In the single rating condition,
they viewed the first image but provided no rating, instead moving on to view
and rate the second image (see Fig. 1).
The reactions that people might have to the individual images can be

easily anticipated as the valence of the images was predetermined to be either
positive or negative. The question posed by this research was this: if the same
participant views the same sequence of positive and negative images twice,
with the only difference being whether or not they rated the first image,
would we expect to see a difference in ratings for the second image? In other
words, does articulating an impression for the first image change how someone
sees the second image? The results of the research showed that there was a
difference between the ratings of the two identical second images. Specifically,
when participants viewed a positive image followed by a negative image, they
found that ratings of the second image in the single rating condition were
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significantly more positive than ratings of the same negative image in the
double rating condition. Similarly, when participants viewed a negative image
followed by a positive image, they found that ratings of the second image in
the single rating condition were significantly less positive than ratings of the
same positive image in the double rating condition.

Clearly one potential influence on the rating of the second image, suggested
by previous research, could have been the order in which the images were
viewed (e.g., Hogarth and Einhorn 1992; Moore 2002; Ross and Simonson
1991). For example, Ross and Simonson (1991) found that when asked to
evaluate an event which was composed of positive and negative components,
participants found more satisfactory the event where the positive component
came last. Moore’s (2002) research, using data from a Gallup poll, found that,
if participants were first asked to rate the honesty of American Vice President
Al Gore, before rating the honesty of President Bill Clinton, Clinton’s honesty
was rated lower than if participants were asked to rate Clinton’s honesty
first. In both examples, the response to the preceding question about the first
component can be seen to change the way the second question is evaluated.
These types of order effect have been extensively considered in the literature in
terms of recency, primary, and contrast effects (e.g., Anderson 1981; Hogarth
and Einhorn 1992; Miller and Campbell 1959; Payne et al. 1993; Tversky and
Griffin 1990; Wang and Busemeyer 2013; Wang et al. 2014). Arguably, these
effects can also be considered to be constructive, in that the response to the
first component in the sequence changes the information that is relevant to
the judgment of the second component. For example, how participants regard
Gore’s honesty changes information that is used to evaluate Clinton’s honesty.

However, White et al.’s (2013, 2014) design controls for the potential
influence of order effects, by having participants view an identical sequence
of positive and then negative images twice. The only difference was whether
or not they provided an intermediate rating of the first image. Thus any
difference between the ratings of the second images could not be explained
as an order effect. Instead, White et al. proposed a cognitive model, using
QP principles, which could predict the results of the experiment. It is worth
noting that, possibly, a CP model augmented with some mechanism for how
decisions/measurements could alter the relevant representations could well
account for the results of White et al. The advantage of a QP approach is
that a constructive influence is unavoidable, whenever the underlying state is
a superposition one.
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5 A QP Model for the Constructive Influence
of Affective Evaluation

In order to describe White et al.’s QP model it is necessary to review briefly
some principles of QP theory, as they apply to cognitive modeling. In QP
theory, a cognitive state is represented as a state vector (of length 1) in a
Hilbert space, which is a multidimensional vector space, with some additional
properties. In such a space, different possibilities are represented as subspaces.
For example, consider a fictitious person, Bill, to whom we have presented
an image. Figure 2 shows a three-dimensional space with Bill’s cognitive state
represented by the cognitive state vector.Wewill assume two possible responses
that Bill might have, following the presentation of the image. Bill might be
happy, which is represented by a one-dimensional subspace (a ray) or Bill
might be unhappy, represented by a two-dimensional subspace (a plane; for
now we do not need to concern ourselves with how the dimensionality of
subspaces for different possibilities is determined).

Now if we want to determine the probability that Bill will be unhappy in
response to the image, we project the cognitive state vector, representing Bill’s
current cognitive state, onto the relevant subspace (the projection is shown
by the dotted line in Fig. 2). The laying down or projection of a vector onto
a particular subspace is a critical operation in QP. One of the fundamental
theorems in QP is that the squared length of a projection, along a subspace,
determines the probability that the associated possibility is true of the system

Fig. 2 Projection: the cognitive state vector is projected onto the two-dimensional
plane (indicated by the shaded area), corresponding to the “unhappy” possibility.
The projection is denoted by the dashed line and its length squared is the
probability that the hypothetical person, Bill, will decide he is unhappy. Source:
White et al. (2014)
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represented by the state vector. Thus, the squared length of the projection in
the unhappy subspace is the probability that Bill will say he is unhappy. And
if Bill does say that he is unhappy, the cognitive state vector will change to
become a vector of length 1 along the line of projection shown by the dashed
line in Fig. 2.
An important principle in determining the positioning of subspaces in

relation to each other is the degree of correspondence between the possibilities
that they represent. Thus the possibility that someone can be happy is assumed
to be mutually exclusive to the possibility that the person is unhappy, hence
the subspaces representing being happy and being unhappy are orthogonal.
If the cognitive state vector is in the happy subspace, the projection to the
unhappy subspace must be zero. In other words, if Prob(unhappy)D 1 then
the Prob(happy)D 0. If there is a greater degree of correspondence between
possibilities then the angle between the subspaces will be smaller, meaning
that it is easier to project from one subspace to another. The degree of overlap
of the cognitive state vector onto the relevant subspace is what determines the
probability, with a greater degree of overlap, suggesting a higher probability.

Finally, we also need to consider how QP theory represents dynamic
processes, such as how the introduction of new information might influence
the cognitive system. For example, suppose Bill is told that he has won the
lottery. We assume that this makes him happy and represent this in the model
by rotating the cognitive state vector towards the happy subspace. This in turn
increases the projection on the happy ray and therefore the probability that
Bill would say that he is happy if we asked. Note that such transformations
of the state vector, to model dynamic processes, are termed “unitary” and
are the simplest kind of dynamic transformation employed in QP theory.
Strictly speaking, to model changes towards a specific subspace we need open-
system dynamics; compare with Asano et al. (2011a, b). Unitary dynamics
are applicable to situations where we can assume a limited or no interaction
between the system of interest and its environment. This assumption is relaxed
in open systems dynamics which are technically more complex. For some QP
cognitive models, unitary dynamics can be thought of as an approximation to
the more realistic open system dynamics.

We can now take these principles and show how they can be used to devise
a model to describe the empirical results found in White et al. (2013, 2014).
In this model, a two-dimensional real space is used to represent the different
possibilities in the experiment. There are two rays at a 90ı angle to each other
to represent the mutually exclusive possibilities of someone experiencing either
positive or negative affect in relation to the visual stimulus (Fig. 3a). In fact,
in White et al.’s experiment, participants were required to rate their happiness
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on a nine-point scale. So strictly speaking, there are nine possible outcomes
which should be represented by a nine-dimensional vector space. However, as
a simplifying approximation, we use a two-dimensional space for the purposes
of explanation.

In addition to the rays representing positive and negative affect, there is a set
of rays to represent the combined, affective, perceptual impact of processing a
positive or negative image (Fig. 3b). These are also orthogonal to each other
because the two images were designed to be unrelated in terms of the theme of
their content (excluding affective polarity), even though, of course, the images
both corresponded to adverts. The assumption of unrelatedness, together with
the obvious point that the affective content of the two images is opposite,
allows the placement of the rays for each at approximately right angles to
each other. In QP terms, this means that, if a naïve observer is thinking about
one advert, it is extremely unlikely that he or she will spontaneously think of
the other advert too. There are various subtleties here. One is that if the two
stimuli were totally unrelated, then one would expect that change of the state
vector relative to one ray to be irrelevant, regarding the relation of the state
vector to the other ray. We think that, given the materials, these assumptions
are reasonable. But, in any case, the assumptions are directly testable in an
empirical experiment. These assumptions lead to a prediction of a very specific
influence of a judgment on a subsequent judgment. If they are wrong, the
prediction would not hold.

It can also be seen in Fig. 3b that there is a relatively small angle between
the positive affect ray and the positive image. This is because it is assumed
that, when someone sees a positive image, it is likely to generate positive
affect. In other words, if the cognitive state vector was in the positive image
subspace, then projection to the positive affect subspace would be greater than
the projection to the negative affect subspace. This simply reflects the idea that
there would be a higher probability of someone saying that they felt positive
affect in relation to the positive image. Thus, the positioning of the affect and
image rays, relative to each other, is fairly automatic, depending on how the
possibilities interrelate with one another.

With these minimal assumptions about how the relevant possibilities are
represented, we are now in a position to demonstrate how the model describes
the experimental effect observed, whereby articulating an affective evaluation,
with respect to the first image, influences the rating of the second image.
Consider, for example, the positive to negative order of presentation (PN).
The § symbol is used to denote the participant’s cognitive state in relation to
the images. In the PN condition, the participant first sees the positive image,
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and so § is initially in the positive image ray (Fig. 3c), since it is assumed
that the only influence on the participant’s cognitive state at that point in
time is the act of processing the image. In the PN single rating condition,
the participant is next shown the second negative image without rating the
first positive image. The effect of this is a fixed rotation of the state vector
towards the negative affect ray. This is a key psychological assumption of the
model. Seeing the negative visual stimulus does not put the participant into an
absolute negative state but rather it induces a change towards negative affect.
For example, if someone is feeling in a good mood as they are about to watch
their favorite television program, they are likely subsequently to feel worse if
they are then told that they have lost, say, £1000, than if they are told that
they have lost £1. Their final affective state in this situation will depend on
how their initial affective state is compounded with the negativity they feel in
response to the two possibilities. This assumption is intuitive and can be seen
in a number of psychological theories (e.g., Hogarth and Einhorn 1992; see
also relative judgment models of perceptual differences, Laming 1984; Stewart
et al. 2005).

So the participant’s final affective state is a function of their initial affective
state and the degree of change in the negative direction. In the QP model this
is represented as a fixed rotation of the cognitive state vector towards the ray
for negative affect. Once the participant has seen the second image, they are
asked to provide a rating. Remember that the smaller the angle between §
and the negative affect ray, the greater the projection of § onto the negative
affect ray. Longer projections, in QP, equate to a higher probability that the
participant will provide a negative rating, which in the model suggests that
they will provide a more negative rating (Fig. 3d).
We now come on to the importance of the idea of superposition in the

model. Unless the cognitive state vector is wholly within the positive or neg-
ative affect subspace, the participant can be considered to be in superposition
with respect to their affective evaluation of visual stimuli. This means that
there is potential for either a positive or negative affective evaluation but,
importantly, it also means that their cognitive state is not consistent with
either of those possibilities, before they state their evaluation. Once they have
made an evaluation, § has to move to the subspace consistent with their
judgment. It is this aspect that makes QP theory constructive and one which
can be distinguished from CP theory in which uncertainty relates to lack of
knowledge of the real value of the state.

We can now examine how themodel describes the alternative PN condition,
where the participant provides a double rating (Fig. 3e). Providing a rating to
the first visual stimulus forces a transition of § to the positive affect subspace.
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This is the key difference between what happens in the single and double rated
conditions (see Fig. 3c vs Fig. 3e). The additional change in the state vector,
following a rating of the first stimulus, combines with the change induced after
the presentation of the second stimulus. So in the PN condition,§ transitions
to the positive affect subspace, as a result of the first rating. As can be seen in
Fig. 3e, this positions§ closer to the negative affect ray. This means that when
the second negative stimulus is presented, § is moved through the same fixed
rotation towards the negative subspace, but because it is starting from a closer
position to the negative affect ray, it ends up with a smaller angle between
the state vector and the negative affect ray (Fig. 3e). This in turn indicates a
greater probability of a negative rating, which is interpreted as meaning that
the participant will provide a more negative rating than that provided in the
single rating condition.

The direction in which the state vector is rotated is determined by the
possible outcomes in the experiment. So in the case of the PN condition,
it makes sense that the impact of presenting the negative image should be
a rotation away from the positive image subspace and towards the negative
affect subspace, which in this experiment has to be clockwise. A consistency
consideration means that the same direction of rotation applies for the single
rating condition. It should be noted that these assumptions provide sufficiently
accurate approximations for this specific experimental paradigm, but would
need to be suitably generalized for a more general experimental one.

In summary, it can be seen how the QP model for the PN condition for
single and double rating of visual stimuli describes the empirical results. An
intermediate judgment in the PN condition will result in a more negative
rating of the second stimulus, compared with the rating of the same stimulus,
when there was no intermediate rating of the first stimulus. Exactly the
opposite prediction is made for the condition where a negative and then
positive image is presented (NP; Fig. 3f).

Psychologically, it could be argued that the QPmodel is describing a process
of differing contrasts depending on whether or not the participant makes an
intermediate evaluation. Consider, for example, the PN condition. The rating
for the second negative stimulus will depend on the contrast between the
stimulus and the participant’s cognitive state, prior to seeing the stimulus.
In the case of the single rating procedure, a participant’s cognitive state
would correspond to the positive stimulus, which will be contrasted with the
subsequent negative stimulus, when that is revealed to the participant. In the
double rating procedure, where the participant has provided a rating of the
first positive image, assuming he or she has rated it positively (a reasonable
assumption given the stimuli were predesigned to evoke positive or negative
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affect), the participant’s cognitive state will correspond to positive affect. So
when the participant sees the following negative image the contrast is between
positive affect and the negative image, which will emphasize the negativity of
the image, leading to a more negative rating.

The QP model, drawing on previous work (e.g., Busemeyer et al. 2011),
provides some insight into the psychological processes that underlie the
constructive influence of articulating an affective impression. Initially, the
cognitive state represents the first positive or negative image, and this is
represented in the model by the cognitive state vector, which coincides with
the positive or negative image ray. When an intermediate judgment is made,
this changes the cognitive state to one of either positive or negative affect,
with respect to the first image. This change is represented in the model by
a collapse of the state vector onto either the positive or negative affect ray.
This is like an abstraction process, whereby some of the information about
the first image is forgotten and attention is focused on information related
to its affective properties. It is also the critical constructive step in the model:
the intermediate rating changes the mental state in a certain way. This means
that having made the intermediate rating and having changed the cognitive
state, when the second oppositely valenced image is presented, it is viewed
from the perspective of a different cognitive state than it would have been if
no intermediate rating had been given and the cognitive state was still the
initial one. As the second image is opposite in valence to the first, when
the cognitive state is a pure affective one, there is a greater contrast in the
impression made by the second image. Without the intermediate rating, the
differences between the images concern aspects of their affective quality, but
also differences between the images that are not related to affect, so the affective
contrast between the first and second image is less pronounced.

6 Alternative Explanations

In three experiments reported inWhite et al. (2014), the predictions of the QP
model were confirmed. An intermediate rating of the first positive stimulus
led to a more negative rating of the second image (and vice versa for the
negative to positive ordering). There are however some alternative explanations
for these results which are worth exploring. The “belief-adjustment model”
(Hogarth and Einhorn 1992) describes how evidence can be combined to
form a view about a hypothesis. The model is pertinent because it describes
how sequences of information and intermediate evaluations can impact on
the overall judgment. Hogarth and Einhorn (1992) compared studies which
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employed either an end of sequence (EoS) methodology, whereby evidence was
presented sequentially and then evaluated in one go at the end of the sequence,
or a step by step (SbS) methodology, whereby information was presented
and evaluated sequentially with a final judgment being made at the end of
the sequence. The EoS methodology is akin to White et al.’s single rating
condition and the SbS approach is similar to the double rating condition.
According to Hogarth and Einhorn’s (1992) review of the evidence, there is
“primacy in 19 of 27 EoS studies and recency in 16 of 16 SbS studies” (p. 6).

There is some similarity between this finding and the results ofWhite et al.’s
experiments. In the double rating condition, the second stimulus was evaluated
more intensively, which is similar to the recency effect, in that the last item in
the sequence had a greater impact. However, there are some clear differences
between Hogarth and Einhorn’s (1992) work and the experimental situation
considered by White et al. in that the latter considered how a judgment
about an earlier stimulus influences the judgment of a completely different,
unrelated second stimulus. Furthermore, the belief-adjustment model was
based on a review of studies in which several pieces of information (e.g.,
2–17 items) were used and Hogarth and Einhorn’s (1992) own experiments
used an initial description followed by at least two pieces of information. The
belief-adjustmentmodel does provide a computational framework but, in their
analysis, White et al. (2014) show that this framework does not predict the
influence of the intermediate rating and instead predicts no difference between
the single and double rated conditions.

Another possible explanation for White et al.’s empirical results is what
Tversky and Kahneman (1974) called the “anchoring-and-adjustment heuris-
tic.” One approach to judging the affective value of a novel stimulus might
be to base your judgment on the known affective value of a previously seen
stimulus and then adjust from that base until you reach a satisfactory value for
the new stimulus. In their original demonstration, Tversky and Kahneman
(1974) asked participants first to make a comparative assessment (e.g., “Is the
percentage of African countries in the UN higher or lower than 10?”) before
making an absolute judgment (e.g., “What is the exact percentage of African
countries in the UN?”). They observed that the latter, absolute judgment was
biased towards the comparison value provided in the first judgment (e.g., the
median estimates for starting values of 10 and 65, were, respectively, 25 and
45), even when that initial value was randomly generated in the participant’s
presence by spinning a “wheel of fortune” numbered 1–100.

Since this early work there have been many demonstrations of the
anchoring-and-adjustment heuristic, including the assessment of gambles
(e.g., Chapman and Johnson 1994; Schkade and Johnson 1989), the responses
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given to general knowledge questions (e.g., Epley and Gilovich 2001, 2006;
Jacowitz and Kahneman 1995; Strack and Mussweiler 1997), property price
estimation (Northcraft and Neale 1987), and judgments of future effort and
performance (Switzer and Sniezek 1991). Research has also shown that both
experts and non-experts are similarly affected by anchors (e.g., Englich and
Mussweiler 2001; Northcraft and Neale 1987), which people use even when
they have been forewarned not to (e.g., Wilson et al. 1996). There have been
demonstrations of anchors that are random or uninformative influencing the
absolute judgement (Russo and Shoemaker 1989; Tversky and Kahneman
1974). For example, Russo and Shoemaker (1989) first asked people for the
last three digits of their telephone number and then added that to 400 before
using that result in the question “Do you think Attila the Hun was defeated
in Europe before or after [insert their answer plus 400] AD?”.

The empirical evidence as it relates to anchoring appears to converge to
at least two mechanisms that explain the cognitive processes underpinning
anchoring, depending on whether or not anchors are self-generated. The
selective accessibility model is a theory in which it is argued that the anchoring
effect is a result of the enhanced accessibility of anchor-consistent information
(Mussweiler and Strack 1999, 2000; Strack and Mussweiler 1997). Epley and
Gilovich (2001, 2006) argue that self-generated anchors act as a heuristic by
simplifying the cognitive process of making the judgment with respect to an
absolute value.

In relating the research on anchoring-and-adjustment to White et al.’s
experimental paradigm, it should be noted that there are some clear differ-
ences. There is no explicit relationship between the first and second stimuli in
their experiments. Participants are asked to view and consider each stimulus
independently. There is no comparison question, as used in the standard
anchoring experiment. Participants, in the double rating condition, make an
absolute judgment with regard to each stimulus. It should also be noted that
White et al.’s experiments do not fit with standard definitions of anchoring.
For example, Chapman and Johnson (2002, p. 122), in their review, define
anchoring as an outcome where “the influence of an anchor : : : renders the
final judgement too close to the anchor : : : thus, anchoring is defined as
assimilation rather than contrast.” In the White et al. experiments, in the
presence of an anchor (i.e., in the double rating condition), subsequent ratings
show greater contrast with previous ratings, whereas in the absence of the first
rating (i.e., the single rating condition), greater assimilation is observed. That
is, the rating of the second image is closer to the valence of the first image than
the rating of the second image in the double rating condition.
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Nevertheless, demonstrations of anchoring are common and it might be
that the White et al. experimental results are a special case of anchoring. What
drives the observed result is possibly the availability of a rating (whatever
the source) after the first image, rather than the act of measurement by the
participant about his or her own feelings. White et al. (2014) addressed this
question in Experiment 3 by showing participants a randomly generated
rating from a hypothetical participant for the first stimulus, before they rated
the second stimulus. They also re-analysed data from previous experiments,
comparing ratings for the first and second rated stimuli, in the double rating
condition. No evidence for anchoring was found and instead they observed a
replication of the key interaction seen in Experiments 1 and 2.

7 Conclusions and Future Directions

There remain some outstanding questions regarding White et al.’s (2014)
work, which also suggest future directions for research. Some of these questions
are methodological. As we have discussed above, the QP model has been
simplified. Strictly speaking judgments should be represented by a nine-
dimensional vector space because participants use a nine-point scale to indicate
their level of affect, with anchors “1: very unhappy to 9: very happy.” However,
the QP model uses a two-dimensional vector space, so that judgments are
represented as being either very unhappy or very happy. We have argued that
this does not affect the generality of the theory. However, it is important
to demonstrate that the same key interaction can be observed when partic-
ipants are required to consider the image and then make a simple choice
between being either happy or unhappy, that is, a binary judgment. Such
a demonstration would support more directly the specific model we have
described.

There is yet another alternative explanation for the results described pre-
viously, which concerns the length of time that participants had to process
the stimuli in the single and double rating conditions. In the single rating
condition, they view the first stimulus for five seconds, before being presented
with the second stimulus for rating. In the double rating condition, they view
the first stimulus for five seconds and then have no time limit on giving their
response, taking as long as they like to consider the image before rating it.
This could mean, then, that a difference arises between the single and double
rating conditions, because people process the first stimulus in the double
rating condition for longer. This potentially allows for more deliberative or
strategic processing. In turn, there is the possibility that the stimulus creates a
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more lasting impression with, perhaps, greater saliency or accessibility of the
stimulus as a standard of reference for the second stimulus. In the double rating
condition, the impression a stimulus makes on a participant, therefore, could
be different from the impressionmade by the same stimulus in the single rating
condition, simply because they have longer to process it.

Research on affective priming suggests that judgments about a stimulus’s
goodness or pleasantness are not dependent on the length of time that a
participant has to process it (e.g., Bargh et al. 1992; Duckworth et al. 2002;
Fazio et al. 1986; Greenwald et al. 1989). Affective content can be processed
relatively quickly and, in spite of the speed in which it is processed, can still
have an influence on subsequent judgments. It seems reasonable to suppose
that, in either the single or double rating condition, initial exposure will lead
participants to form rapidly an affective impression of the stimulus. But it is
also possible that, as participants have longer than 500milliseconds to view the
first stimulus, affective priming is not relevant, as the longer time scale provides
them with ample time to process the stimulus more deliberately. But, in order
to rule out the length of time that they have to process the first stimulus as
an explanation, it would be a simple experiment to control for the amount of
time that they have to make their ratings.

There are also questions about boundary conditions for the effects that
have been observed. There may be something specific to affective impressions,
which have enabled us to confirm the prediction of the QP model for White
et al.’s (2014) results. Perhaps the apparent impression we have that we can
entertain positive and negative emotions concurrently (Brehm and Miron
2006) makes them more ambiguous and, therefore, easier to change. Or
possibly the effect is specific to visual stimuli. We’ve all probably experienced
a debate about the aesthetics of a painting and the varying, complex reactions
that people can have to art. Possibly, the greater potential for ambiguous
affective reactions in relation to visual stimuli makes them more susceptible to
the constructive influence of measurements. But, the QP model should apply
regardless of the stimuli used or the types of judgment made. Extensions that
employ either different types of stimuli or different categories of judgment
would help to establish whether the results only apply to the affective evalua-
tion of visual stimuli.

The potential for QP theory to offer a new perspective on the construc-
tive role of judgment resonates with the thinking of a significant figure in
physics, Wolfgang Pauli, as highlighted by Haven and Khrennikov (2013).
They reproduce a quote from one of Pauli’s unpublished essays, where, in
discussing complementarity in physics, he argues that “any ‘observation’ of
unconscious contents entails fundamentally indefinable repercussions of the
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conscious on these very contents” (Meier 2001, p. 185). The concept of
superposition is new in psychology, and the review of White et al.’s (2013,
2014) research suggests that the transition from superposition to definiteness
in QP theory has potential for formalizing the constructive influence that
articulating an affective evaluation can have on the cognitive system. The
application of QP theory can be seen to be fairly straightforward and requires
only minimal assumptions regarding the relevant psychological processes.
Moreover, QP cognitive models are a bit closer to the process, since, for
example, the assessment of probabilities often involves sequential operations.
Also, as presently relevant, the effect of measurement in QP theory is another
specific way in which representations change as a result of cognitive operations.
The incorporation of process assumptions in cognitive models is considered
to be an important direction for their development (Jones and Love 2011; cf.
Newell 1990).
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Is there Room in Quantum Ontology for
a Genuine Causal Role for Consciousness?

Paavo Pylkkänen

It may be said, indeed, that without bones and muscles and the other parts
of the body I cannot execute my purposes. But to say that I do as I do
because of them, and that this is the way in which the mind acts, and not
from the choice of the best, is a very careless and idle mode of speaking. I
wonder that they cannot distinguish the cause from the condition, which
the many, feeling about in the dark, are always mistaking and
misnaming. (Plato, The Phaedo)

1 Introduction

Does consciousness have causal powers? Does it make a difference to the
effects of information processing whether or not the system is conscious of
a given item of information? Are our actions at least sometimes determined
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by our conscious free will? Since Libet’s (1985) work on the neuroscience of
free will, the notion that the conscious will is not the original determinant
of action has won increasing support. For example, Velmans’s (1991) work
suggests that consciousness “is neither necessary for any type of mental ability
nor does it occur early enough to act as a cause of the acts or processes typically
thought to be its effects” (Van Gulick 2014, p. 36). The radical upshot of
this line of thinking is the claim that “the sorts of mental abilities that are
typically thought to require consciousness can all be realized unconsciously
in the absence of the supposedly required self-awareness” (ibid.). In Libet’s
famous studies, conscious self-awareness is present, but Van Gulick notes that
many claim that it occurs too late to be the cause of the relevant actions: “self-
awareness or meta-mental consciousness according to these arguments turns
out to be a psychological after-effect rather than an initiating cause, more like
a post facto printout” (ibid.). Van Gulick adds, however, that the arguments
are controversial and that many theorists regard the empirical data as no real
threat to the causal status of consciousness (for a recent discussion of the issue
from various viewpoints, see e.g. Pockett et al. 2006).
But how are we to understand the causal status of consciousness? In

philosophy of mind there has been a long debate about the problem of mental
causation. Many philosophers assume that consciousness is in some sense
a nonphysical property. But this immediately gives rise to the problem of
understanding how something nonphysical could possibly influence some-
thing physical. A key idea to be explored in this chapter is that the ontological
interpretation of quantum theory might throw new light upon this perennial
issue. This interpretation suggests that a new type of active information is
playing a key causal role in physical processes at the quantum level. Now,
when one examines the various suggestions about the putative causal powers
of consciousness, many of them refer to the role of information, in one way
or another. This then suggests a strategy for the present chapter. We will first
consider how the various suggestions about the causal status of consciousness
involve information before asking whether such information in mental and
conscious states could be connected to information at the quantum level. In
this way we could begin to understand mental causation, and the causal role of
conscious experiences in particular, in a new way. Of course, this is a big and
difficult issue and we can only sketch the solution in a single chapter. However,
even this sketch will hopefully illustrate the great potential of quantum
theory when trying to meet some of the grand challenges facing the social
sciences.
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2 Van Gulick and Revonsuo on the Causal
Efficacy of Consciousness

In his useful review of the suggestions about the causal role of consciousness
Van Gulick (2014, pp. 34–42) says that consciousness is thought to provide
the organism with (a) more flexible control; (b) better social coordination;
(c) more integrated representation; (d) more global informational access; (e)
increased freedom of will; and (f ) intrinsic motivation. In this section I will
briefly explicate these (as well as some of Revonsuo’s 2006 related ideas)
and then, in the next section, discuss how they connect with the notion of
information. Note that the aim in this chapter is not to evaluate critically
these suggestions. The aim is rather to indicate, for the sake of the discussions
that follows, that there is at least a reasonable possibility that consciousness
has a genuine causal role, and that this connects strongly with the notion of
information. For a more detailed discussion the reader is advised to consult
the references given below, as well as in Van Gulick (2014, pp. 35–42) and
Revonsuo (2006). Let us now consider a number of suggestions about the
causal role of consciousness.

It is common to claim that conscious mental processes provide a flexible
and adaptive type of control, as opposed to unconscious automatic processes
(Anderson 1983). Even if these latter can be quick, they are also relatively fixed
and predetermined, and thus not particularly effective in unexpected situations
(Penfield 1975). Also, when the challenge is to learn new skills, conscious
attention is typically assumed to be important at the early stages of learning
(Shiffrin and Schneider 1977).

It has been suggested that organisms that are conscious of their own and
others’ mental states have a better ability to interact, cooperate, and communi-
cate. The idea is that such meta-mental or “higher-order” consciousness would
enable a better capacity for social coordination, which in turn can be thought
to provide adaptive advantage (Humphreys 1982; Van Gulick 2014, p. 38).
It has further been suggested that conscious experiences enable a more

unified and integrated representation of reality, which allows for amore flexible
response in various situations (Campbell 1994; Van Gulick 2014, pp. 38–39;
Tononi and Koch 2015).
It is a well-known suggestion that information in conscious mental states is

globally available to a number of different mental subsystems or “modules”,
and can thus be made use of in many different ways in behavior (Baars 1988).
In contrast, it is argued that non-conscious information is usually available
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only to special mental modules and has a more limited effect upon behavior
and action (Fodor 1983). (However, Rosenthal 2009 thinks it is unclear that a
state’s potential to have global effects coincides with its being conscious.)

When it comes to free will, it seems that conscious experience not only
presents us with the options to choose from (at least sometimes), it also seems
to be a prerequisite for such freedom. Mustn’t one be conscious to be able
to make a free choice at all (Van Gulick 2014, p. 41)? One should note that
researchers such as Velmans have suggested that there can be unconscious free
will; but it is not obvious that a decisionmade unconsciously can be considered
truly free.

Finally, it has been suggested that certain conscious states, such as pleasure
and pain, have an intrinsic motivating force (e.g., attraction) as an indivisible
part of the experience itself. The idea is that such a force cannot be reduced to
nonconscious properties (for a brief account of the various viewpoints on this
issue, see Van Gulick 2014, pp. 41–2).

Revonsuo (2006) has considered the causal powers of consciousness (or
the “phenomenal level” as he calls it) in the light of various studies on
blindsight, implicit perception, nonconscious visually guided actions, and
similar phenomena. He acknowledges that there are complex information
processing mechanisms in the brain that in themselves are nonconscious
or, in his terms, “realize no phenomenal level of organization.” However,
he emphasizes that such nonconscious “zombie systems” seem to have only
limited causal powers in guiding organism–environment interaction, whereas
the contribution of consciousness (or the “phenomenal level”) seems to be
decisive for meaningful interactions with our environment.

He further considers disorders, such as epileptic automatisms and sleep-
walking, which seem to turn the whole person into a nonconscious zombie,
and notes that a careful examination of such zombies reveals that nonconscious
organism–environment interaction, while complex, is typically pointless. He
concludes (2006, pp. xxiii–xxiv):

other types of disorders show that the simulated phenomenal world in the
brain has unique causal powers in determining the behavioral trajectories of our
physical bodies. In the light of the evidence from these disorders, consciousness
surfaces as a causally potent biological system with unique causal powers.
Therefore, we need not worry about epiphenomenalism any longer.

We note here that Revonsuo’s reference to the way in which the simulated
phenomenal world in the brain determines behavioral trajectories of bodies
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is interestingly analogous to Bohm’s notion that active information encoded
in the quantum field determines the trajectories of particles at the quantum
level (we will discuss this latter idea below). We also note that to avoid truly
epiphenomenalism or reductionism, Revonsuo needs to show how conscious
experiences qua conscious could possibly play a genuine causal role in guiding
the physical organism without violating the laws of physics (or the causal
closure of the physical domain). This is of course connected to the problem of
mental causation, a solution to which we are trying to sketch in this chapter.

3 How the Causal Efficacy of Consciousness
Connects with Information

Let us now see how the above suggestions make a link between consciousness
and information. We can understand “more flexible control” as flexibility in
the way that information can be used to guide the organism. It seems that
consciousness makes possible such flexibility. Unconscious information just
“acts” when it is activated, according to an automatic routine. If there are
items of unconscious information that imply mutually exclusive actions, then
presumably the “stronger” information wins, and this may take place without
conscious experience (“stronger” here may be assumed to correspond to e.g. a
higher level of neural activity). However, it seems possible that when a person
is conscious of an item of information, at least some (automatic) activity of
that information can be suspended. Also, it seems obvious that at least in
some situations a person can review a number of different options, and choose
the one that seems best in the given situation. (In this way consciousness,
flexible control, and free will seem related.) Of course, which option is in
the end chosen may not be the result of a completely “free” choice, but is
instead determined by some further information which arises when reviewing
the options, with a content like “it is reasonable to do X” (cf. Bohm 1990).
We also noted that it has been suggested that organisms that are conscious of

their own and others’ mental states have a better ability to interact, cooperate,
and communicate. “Conscious of” can here be understood to include “having
meta-level information about.” This connects with higher order theories of
consciousness which assume that what makes a given mental state conscious
is that there exists a higher level of (typically) unconscious mental state, which
has the content that one is in the first-order mental state or activity (Rosenthal
1997). Thus, consciousness is not assumed to be a neural or computational
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property, but rather something that arises when initially nonconscious mental
states are related in a suitable way. It seems quite natural to think about
such meta-mentality in terms of information. We could say that meta-
mentality involves higher-order “information about information” rather than
just first-order “information about the environment.” In these terms, higher-
order theories of consciousness suggest that consciousness essentially involves
information about information. A simple possibility would be to postulate that
what makes a given informational state conscious is that there exists a higher
level of (typically) unconscious information, which has the content that one
is in the first-order informational state. When it comes to the causal efficacy
of consciousness, the question is whether having meta-level information (and
consciousness) in this sense implies a better ability to interact, cooperate, and
communicate. Below I will briefly note how in the Bohmian scheme active
information at a given level can organize the behavior of elements at a lower
level. The challenge here, too, is to find out whether being conscious of active
information gives the organism some special advantages when it comes to
interaction, cooperation, and communication.

We further mentioned the suggestion that conscious experiences enable a
more unified and integrated representation of reality, which allows for a more
flexible response in various situations. To understand this feature better, we
can usefully quote van Gulick (2014, pp. 38–9):

Conscious experience presents us with a world of objects independently existing
in space and time. Those objects are typically present to us in a multi-modal fash-
ion that involves the integration of information from various sensory channels as
well as from background knowledge andmemory. Conscious experience presents
us not with isolated properties or features but with objects and events situated in
an ongoing independent world, and it does so by embodying in its experiential
organization and dynamics the dense network of relations and interconnections
that collectively constitute the meaningful structure of a world of objects.

This reminds us about the fact that the information we meet in conscious-
ness is highly integrated and structured and also meaningful in various ways.
Van Gulick acknowledges that non-experiental sensory information can also
have an adaptive effect on behavior (e.g., as seen in reflexes). However, he
draws attention to the work of Lorenz (1977) and Gallistel (1990), which
suggest that conscious experience provides a more integrated representation
of reality, which in turn enables more flexible responses. If we consider this
feature in informational terms, it seems that a certain kind of information only
becomes available and, especially, flexibly usable to the organism in conscious
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experience. This connects with the previously mentioned issues of flexible
control and free will, in the sense that consciousness, flexible control, free will,
and unified and integrated representations are all interconnected. Unified and
integrated representations, especially when consciously experienced, provide
the “free will” rich information about the available options which enables
flexibility in the control of the organism.

There are a number of other researchers who emphasize that consciousness
involves an integrated representation in the form of a “virtual reality” or
“world-simulation.” Revonsuo, for example, characterizes conscious expe-
rience in dreams as a complex, organized, temporally progressing world-
simulation. During waking we also experience subjectively an internal, phe-
nomenal, simulated world, which we take to be the “real” world, when
consciousness happens to be online with the external physical world (Revonsuo
2015, p. 65).

And as we have already seen, for Revonsuo the simulated phenomenal
world in the brain is causally efficacious in that it determines the behavioral
trajectories of our physical bodies. Here we can ask what the nature of a world-
simulation is. It seems natural to think of it as some kind of structure of
information that is meaningful and has phenomenal properties. And given
that this world-simulation guides the organism, it is natural to think of it as a
kind of active information in the Bohmian sense that will be explained later.

Let us then move on to consider the suggestion that information in
conscious mental states is globally available to a number of different mental
subsystems or “modules” and can thus be made use of in many different ways
in behavior. This feature, together with the issues discussed previously, helps to
explain the flexible control that consciousness seems to enable. We saw above
that information in conscious experience is typically very rich in its content—it
is unified and integrated. If consciousness further means that such information
becomes globally available to many different subsystems, it clearly becomes
easier to understand why consciousness enables more flexible control. To put
it briefly, the idea is that consciousness both enables the sort of information
that flexible control requires, and it also makes it possible for such information
to reach the subsystems that are required in the execution of the control.

In recent years much attention has been given to Tononi’s integrated
information theory of consciousness (Tononi and Koch 2015; Oizumi et al.
2014). There are various reasons why Tononi thinks the concept of infor-
mation is needed in a theory of consciousness. To account for the fact that
consciousness is differentiated (i.e., that each experience has a specific set
of phenomenological distinctions), a system of mechanisms must specify a
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differentiated conceptual structure via a process of in-forming (we will see
later that Bohm’s notion of active information likewise refers to a process
of in-forming, though in a somewhat different sense). Tononi further says
that to account for the irreducible unity of consciousness (i.e., that each
experience is irreducible to non-interdependent components), there has to be
integrated information, in the sense that the conceptual structure specified by
the system is irreducible to that specified by non-interdependent subsystems.
More technically, the presence of integration (characterized by big phi or ˆ)
means that a partitioning of a system of mechanisms would destroy several
cause–effect repertoires and change others.

Tononi’s theory tries to explain what consciousness is in terms of the
notion of information. But the theory also suggests that consciousness as
integrated information makes a difference to the behavior of the organism.
Tononi and Koch (2015, p. 11) write: “a brain having a high capacity for
information integration will better match an environment with a complex
causal structure varying across multiple time scales, than a network made
of many modules that are informationally encapsulated.” And given the
hypothesis that consciousness is integrated information, this implies that it
enables a better match with the environment and consequently more adaptive
behavior.

We have already briefly considered the relation of free will and consciousness
above, and will return to this issue below. Van Gulick’s review also drew
attention to the suggestion that certain conscious states, such as pleasure and
pain, have an intrinsic motivating force (e.g., attraction) as an indivisible part
of the experience itself. The idea is that such force cannot be reduced to
nonconscious properties. This suggests that consciousness not only enables
information to be integrated and globally available, but that it also involves
(perhaps gives rise to) “forces,” such as attraction. Again, we will return below
to consider this interesting suggestion when discussing the notion of active
information.

Van Gulick’s review (as well as Revonsuo’s and Tononi’s theories) make
a reasonably strong case for the idea that consciousness has genuine causal
powers. Now, presumably each particular argument for such causal efficacy
is subject to potentially serious criticisms, but I think that it is fair to say
that together they imply that the question is at least an open one. It at least
seems to make a difference to the behavior of an organism whether or not it
is conscious. I have also drawn attention to the way many of the suggestions
about the causal efficacy of consciousness involve a link between consciousness
and information. In the rest of the chapter I will try to understand this link
better by discussing it in the context of a new notion of active information that
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is extended all the way into physics. However, before doing that I want to meet
briefly another challenge. For as was already hinted at above, contemporary
philosophers of mind often suggest that consciousness cannot have genuinely
causal powers if we stay within the physicalist scientific world picture.We need
to address this issue briefly before proceeding.

4 Philosophy of Mind: Does Consciousness
Have No Causal Power?

Much of contemporary Anglo-American analytical philosophy is committed
to physicalism, which means that philosophers assume that everything is
physical, or everything is in an appropriate way dependent (or “supervenient”)
upon the physical. However, many philosophers find it difficult to simply
reduce the mental to the physical, and they thus defend a doctrine known
as “nonreductive physicalism.” This typically holds that mental properties are
nonphysical properties that, however, depend or supervene upon the physical.
Note that “mental” here is not taken to be synonymous with “conscious,” but
includes even such possibly nonconscious properties as intentionality (in the
sense of the “directedness” or “aboutness” of mental states).

The trouble with nonreductive physicalism is that it seems to leave the men-
tal as causally inefficacious or epiphenomenal. If the mental is nonphysical, it
seems impossible to understand how it could be the cause of physical effects.
Even the notion of mental-physical dependence or supervenience doesn’t
seem to help here. Some philosophers (e.g., Stephen Yablo, David Lewis,
and Jaegwon Kim) have developed some ingenious ways to make the idea of
genuine mental causation plausible (see Ritchie 2008). However, it seems that
even these fail to tell us how mental properties (conceived as nonphysical)
could possibly influence the physical course of events. There thus seems to
be no genuine causal role for mental properties in contemporary nonreductive
physicalism. This is a very unsatisfactory situation. However, to go back to, say,
interactive substance dualism seems equally unsatisfactory. Nagel (2005) has
succinctly summarized the situation: “neither dualism nor materialism seems
likely to be true, but it is not clear what the alternatives are.”

Note that this apparent epiphenomenalism of the mental is particularly
troublesome for our above discussion about the causal role of conscious
experience. It is not at all obvious that conscious experiences are physical or
material in any traditional sense (remember e.g. Chalmers’s 1996 discussion
of the “hard problem” of consciousness). Thus contemporary nonreductive
physicalism seems forced to declare consciousness to be an epiphenomenon.
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Reductive physicalism resolves the issue trivially by assuming that conscious
experiences are physical states. But for those who do not understand how
conscious experience could possibly be a physical state, this “resolution” is not
of much value.

We have noted that nonreductive physicalism implies that consciousness
is epiphenomenal, but how seriously should we take the nonreductive phys-
icalists’ arguments? For if one examines the views of many of the leading
physicalists (whether reductive or nonreductive), one is struck by the fact that
hardly any attention is given to what seems to be the most fundamental of the
natural sciences, namely (fundamental) physics. This seems to be in violation
of the very principles the physicalists have usually set themselves, namely that
they ought to base their metaphysics upon the best theories in the natural
sciences. A particularly sharp criticism of such tendencies in philosophy has
recently been made by Ladyman and Ross (2007, p. vii). They write, for
example, that “standard analytic metaphysics (or ‘neo-scholastic’ metaphysics
as we call it) contributes nothing to human knowledge and, where it has any
impact at all, systematically misrepresents the relative significance of what
we do know on the basis of science.” Such “neo-scholastic” metaphysics also
includes analytic philosophy of mind, in so for as this gives little attention to
the results of modern science, including fundamental physics. Ladyman and
Ross’s view is extreme, but I think they are correct in drawing attention to
certain weak points in contemporary philosophy of mind. If we want to claim
that the physical world leaves no room for the causal powers of consciousness,
we should justify our view on the basis of the best theories in physics. And as we
will see in the next section, it is not clear that, say, quantum theory excludes
in principle the causal powers of consciousness. On the contrary, a natural
extension of quantum theory might well make room for mental properties
and even conscious experience in our scientific world picture.

5 Information in the Ontological
Interpretation of Quantum Theory

Can quantum theory throw any new light upon the nature of information,
whichmight also help us to understand the relationship between consciousness
and information, and the causal powers of consciousness? I suggest that the
best place to start exploring this issue is David Bohm’s interpretation of
quantum theory, in its later form developed in cooperation with Basil Hiley
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(Bohm and Hiley 1987, 1993; see also Pylkkänen et al. 2016; for Bohm’s early
work on quantum theory and the mind, see Pylkkänen 2014).
To understand the significance of Bohm’s work for the mind–matter

problem it is necessary to understand the development of physics in the
twentieth century.When quantum theory was emerging, physicists were trying
to make sense of puzzling features such as wave–particle duality and, a little
later, entanglement. In particular they were attempting to develop ontological
models of quantum systems such as electrons. In the 1920s Louis de Broglie
came up with the idea of an electron being a particle guided by a pilot
wave, while Schrödinger was trying to describe the electron as some kind
of a physical field. These models had some difficulties, though in retrospect
we can see that at least de Broglie’s ideas could have been developed further
(Bacciagaluppi and Valentini 2009). What happened however was that the
so-called “Copenhagen interpretation” won the day in the 1920s. There are
actually many different versions of this interpretation, but it is typical of them
that they emphasize epistemology—in the sense of our ability to predict the
statistical results of measurement—rather than ontology—in the sense of a
model of what quantum reality may be like, including when we are not making
measurements. As a result, physicists were not able to offer a new notion of
objective physical reality, which philosophers could then use when discussing
ontological issues, such as the mind–matter relationship.

It is here that Bohm comes in. In the early 1950s, after discussions with
Einstein in Princeton, he independently rediscovered de Broglie’s theory and
formulated it in a more coherent way, providing a first consistent realistic
model of quantum systems (Bohm 1952). Bohm’s interpretation was initially
resisted, but is today more and more widely acknowledged as one of the
key possible interpretations of quantum theory. Later on further ontological
models were proposed, for example Everett’s (1957) “many worlds” interpre-
tation and Ghirardi et al.’s (1986) objective collapse theory, and currently
the nature of quantum reality is intensively debated within the philosophy
of physics community (see e.g. the anthology The Wave Function: Essays on
the Metaphysics of QuantumMechanics, edited by Alyssa Ney and David Albert
(2013)). We do not know which ontological interpretation (if any) is correct,
but each may reveal something significant about the nature of physical reality
at a very fundamental level. One should note that there are by now also
different versions of the Bohm theory. Much attention has in recent years
been given to a minimalist version known as “Bohmian mechanics” (see e.g.
Goldstein 2013; for a balanced discussion of the relation between de Broglie’s
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and Bohm’s approaches, see Holland (2011)). Bohm himself developed from
the mid-1970s, with Basil Hiley, a philosophically more radical version they
called the “ontological interpretation,” culminating in their 1993 book The
Undivided Universe.

How, then, might Bohm’s theory be relevant to the mind–matter rela-
tionship and to the causal status of consciousness in particular? The theory
postulates that an electron is a particle, always accompanied by a new type of
field, which guides its behavior—thus the name “pilot wave theory” which
is sometimes used. Jack Sarfatti has characterized the Bohmian electron
imaginatively by saying that it consists of a “thought-like” pilot wave, guiding a
“rock-like” particle. This metaphor suggests that matter at the quantum level is
fundamentally different from the sort of mechanical matter of classical physics
that is presupposed in philosophy of mind by typical materialists. If even the
basic elements that constitute us have “thought-like” and “rock-like” aspects,
then it is perhaps not so surprising that a very complex aggregate of such
elements (such as a human being) has a body, accompanied by a mind that
guides it.

But, one might think, this is merely a vague metaphor. Now, Bohm himself
realized in the early 1980s that the pilot wave might be more literally “thought-
like” in a very interesting sense. He considered the mathematical expression of
the so-called quantum potential, which describes the way the pilot wave affects
the particle. He realized that the quantum potential, and thus the effect of the
wave upon the particle, only depends on the form or shape of the wave, not
on the size or amplitude of the wave (mathematically, the quantum potential
depends only on the second spatial derivative of the amplitude of the wave).
He went on to suggest that the quantum wave is literally putting form into, or
in-forming, the motion of the particle along its trajectory, rather than pushing
and pulling it mechanically.

Note that we are here talking about information for the electron, not
information for us—we are thus thinking about information as an objective
commodity that exists out there in the world, independently of us, guiding
and organizing physical processes. The form of the quantum wave reflects the
form of the environment of the particle—for example the presence of slits in
the famous two-slit experiment. In this experiment, electrons arrive one by one
at the detecting screen at localized points, suggesting that they are particles. Yet
as we keep on watching, the individual spots build up an interference pattern,
suggesting that each individual electron also has wave properties. Remember
that in the Bohm theory the electron is seen as a particle and a wave. In the
two-slit experiment the particle goes through one of the slits. The wave goes
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through both slits, interferes and guides or in-forms the particle in such a way
that an interference pattern is formed as many electrons pass through the slit
system. It thus seems that with the help of the notion of active information
we can have a realist interpretation of the quantum theory, without the usual
puzzles, such as Schrödinger’s cats, many worlds, or the consciousness of the
observer producing physical reality (for details see Bohm and Hiley 1987,
1993).

What happens with the electron is somewhat analogous to a ship on
autopilot, guided by radar waves that carry information about the environment
of the ship. The radar waves are not pushing and pulling the ship, but rather
in-forming the much greater energy of the ship. Bohm generalized this into
a notion of “active information”—which applies in situations where a form
with smaller energy enters and informs a larger energy. We see this not only
with various artificial devices, but also in the way the form of the DNA
molecule informs biological processes, and even in the way forms act in human
subjective experience (for example, seeing the form of a shadow in a dark night
and interpreting it as “danger” may give rise to a powerful psychosomatic
reaction). Indeed, Bohm (1990) sketched out how the active information
approach could be developed into a theory of mind and matter.

While the radar-wave analogy helps us to understand the Bohmian electron,
it is important to realize that the quantum potential has some radically holistic
properties that go beyond what is implied by such mechanical analogies.
In particular, in the many-body system there can be a nonlocal connection
between particles that depends on the quantum state of the whole, in a way
that cannot be expressed in terms of the relationships of the particles alone.
Bearing in mind that this quantum state involves active information, we can
note an interesting connection to Tononi’s idea of integrated information. It
is likely that the many-body quantum state involves the most radically holistic
(integrated) information that science has thus far detected, thus making it
interesting to consider its role when trying to understand consciousness as
integrated information.

6 Bohm’s Sketch for a Theory of the Relation
of Mind and Matter

Bohm proposed that we understand mental states as involving a hierarchy of
levels of active information. We typically not merely think about objects in the
external world, but we can also become aware of our thinking. He suggested
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that suchmeta-level awareness typically involves a higher level of thought. This
higher level gathers information about the lower level. But because its essential
nature is active information, it not merely makes a passive representation of
the lower level. Rather, the higher level also acts to organize the lower level,
somewhat analogously to the way the active information in the pilot wave acts
to organize the movement of the particle. (In particular, the higher level of
thought can organize the content in the lower level into a coherent whole. This
could be seen as a kind of “integrated information” and suggests yet another
connection with Tononi’s integrated information theory of consciousness.)
And of course, we can become aware of this higher level of thought from a yet
higher level, and so on.

How then does mind, understood as a hierarchy of levels of active informa-
tion, connect with matter in the Bohmian scheme? First of all, he suggested
that it is natural to extend the quantum ontology. So just as there is a pilot
wave that guides the particle, there can be a super-pilot wave that guides
the first-order pilot wave, and so on. (He claimed that such an extension is
“natural” from the mathematical point of view.) Now it seems that we have
two hierarchies, one for mind and another for matter. His next step was to
postulate that these are the same hierarchy, so that there is only one hierarchy.
This then allows, at least in principle, for a new way of understanding how
mind can affect the body. Information at a given level of active information
in the mind can act downwards, all the way to the active information in the
pilot waves of particles in, say, the synapses or neural microtubules, and this
influence can then be amplified to signals in the motor cortex, leading to a
physical movement of the body.

Bohm’s proposal differs strongly from the usual theories in cognitive neu-
roscience. Most neuroscientists ignore quantum considerations and seek the
“neural correlates of consciousness” in some macroscopic neural phenomena,
which can presumably be understood in terms of classical physics. Yet Bohm is
proposing that mind, understood as a hierarchy of levels of active information,
is implemented in (or perhaps even identical with) a hierarchy of super-
quantum fields. However, these fields are not separate from the macroscopic
neural processes. On the contrary, the role of the fields is in the end to gather
information about the manifest neural processes and, on the basis of what this
information means, to organize and guide them.

One should acknowledge that it is a tremendous challenge to work out an
empirically testable theory along the Bohmian lines. The ideas described above
provide a scheme for such an endeavor, rather than a fully developed theory.
Bohm and Pylkkänen (1992) were discussing ways to develop the scheme in
the late 1980s and early 1990s. In a later development, Hiley and Pylkkänen
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(2005) discussed the prospects of applying the Bohm scheme to Beck and
Eccles’s quantum model of synaptic exocytosis (for a review of Beck and
Eccles’s model, as well as other quantum approaches to consciousness, see
Atmanspacher 2011).While this may be a small step forward, problems remain.
For example, Henry Stapp (2005) has pointed out that the sort of interference
of the mind upon the laws of quantum mechanics that the Bohmian scheme
involves can lead to serious problems with special relativity. This is a challenge
that future research along Bohmian lines needs to face. A possible way for
meeting this challenge is opened up by a recent study on the nature of nonlocal
quantum information transfer by Walleczek and Grössing (2016).

While the possibility of non-negligible quantum effects in the brain is often
dismissed as implausible, there are interesting recent advances in quantum
biology. And it is already part of mainstream neuroscience that the retina
acts to amplify the effects of individual photons. Also, researchers such as
Stuart Hameroff and Roger Penrose (2014) have discussed in great detail how
quantum effects might play a role in neural processes via quantum coherence
and collapse in neural microtubules. Connecting the Hameroff–Penrose work
with the Bohm scheme is one potentially fruitful line for future research.
Indeed I have begun to explore these connections together with Hameroff
and the philosopher Rocco Gennaro, who is a specialist on higher-order
(HO) theories of consciousness (which seem to fit together with Bohm’s
idea of the mind as a hierarchy of levels of information). (For an early result
of this cooperation, focusing on combining HO theories with Penrose and
Hameroff’s orchestrated objective reduction (ORCH-OR) hypothesis, leading
to “deeper order thought” (DOT), see Hameroff et al. 2014.)
Note that Bohm introduced a new category, namely information, to the

debate. Is information physical or mental? He suggested that it is simultane-
ously both physical andmental, or has these two as its aspects. This sort of view
is called a double-aspect theory in philosophy of mind. The traditional worry
with double-aspect views is that the underlying thing, which has the aspects,
is left as a mystery. The hypothesis that information is the fundamental,
underlying feature of reality can be seen as a way to alleviate this worry.

7 Understanding Consciousness in the Active
Information Scheme

A common criticism of contemporary theories in the philosophy of mind—
such as identity theory and functionalism—is that they leave out conscious
experience, instead of explaining it (Searle 1992). How might conscious
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experience fit into the active information scheme? In particular, is it possible
to understand the causal status of consciousness in this scheme? While Bohm
saw nature as a dynamic process where information and meaning play a key
dynamic role, he assumed that “99.99 per cent” of our meanings are not
conscious (Bohm in discussion with Renée Weber 1987, p. 439). Thus, for
example, he thought it obvious that the particles of physics are not conscious.
But how can one then address the problem of consciousness in this scheme?
In other words, why is there sometimes conscious experience associated with
the activity of information (as seems obvious at least with humans and higher
animals)? Why doesn’t all the activity of information in humans proceed “in
the dark,” as it seems to do in physical and biological processes in general? And
does the presence of consciousness make a causal difference? Bohm himself did
not say much about the hard problem of consciousness (he died a little before
the hard problem was made the center of attention by David Chalmers in the
1994 Tucson consciousness conference). However, I have suggested that the
most natural context to explore this issue is some version of an HO theory of
consciousness (Pylkkänen 2007, p. 247). Let us here expand somewhat on this
idea.

As we saw above, the basic idea of higher-order theories of consciousness,
when expressed in terms of the notion of information, is to postulate that
what makes a given mental state (or level of information or mental activity)
conscious is that there exists a higher level of (typically) unconscious infor-
mation, which has the content that one is in the first-order mental state or
activity.

Note also that David Chalmers famously suggested that we tackle the hard
problem of consciousness with a double-aspect theory of information. The
idea is that information is a fundamental feature of the world, which always
has both a phenomenal and a physical aspect. Now, we could take this idea to
the Bohm scheme and postulate that active information, too, has phenomenal
properties. This then raises the question about what we should think about
the active information in the pilot wave of an electron. Does it, too, have
phenomenal properties in some sense? Bohmwent as far as to say that electrons
have a “primitive mind-like quality,” but by “mind” he was here referring to
the “activity of form,” rather than conscious phenomenal experience in any
full sense.

I think that it is reasonable to combine Chalmers’s hypothesis to active
information, but we need to restrict the hypothesis. For example, we could
say that a certain kind of active information (e.g., a holistic active information
that is analogous to quantum active information) has the potentiality for
phenomenal properties, but a potentiality that is actualized only in suitable
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circumstances (e.g., when a given level of active information is the intentional
target of a higher level of active information; or if we want to follow an
approach similar to that of Tononi, we could say that suitably integrated active
information is conscious). Of course, this also opens up the possibility for
genuine artificial consciousness. If we could implement quantum-like holistic
active information in an artificial system and set up a suitable higher-order
relationship of levels in the system, phenomenal properties should actualize
themselves, according to this hypothesis. (Or, in a Tononian approach, if
active information is suitably integrated in an artificial context, it would be
conscious.)

We should acknowledge that Bohm andHiley’s proposal about active infor-
mation at the quantum level is radical and somewhat controversial, for they are
in effect suggesting that this type of information ought to be acknowledged as
a fundamental—perhaps the fundamental—category of physics. Indeed, they
wrote in 1984: “the notion of a particle responding actively to information in
the [quantum] field is : : : far more subtle and dynamic than any others that
have hitherto been supposed to be fundamental in physics.” This proposal is
still mostly ignored within the physics community. There are some technical
issues with the proposal, but in my view a major reason for its being ignored
is that it goes so much against the prevalent mechanistic way of thinking
in physics. However, some leading thinkers do take it seriously, for example
Smith (2003). Also, an interesting adaptation of the active information scheme
to neuroscience has been proposed by Filk (2012). In the field of the social
sciences, Khrennikov (2004) has made imaginative use of the proposal and
the Bohm theory has also been applied to financial processes by Choustova
(2007) and Haven (2005). Of course, the notion of “quantum information”
has been widely discussed in recent years (see e.g. Bouwmeester et al. 2000).
The advantages of the concept of active information over quantum informa-
tion, when discussing some quantum experiments, have been argued for by
Maroney (2002); see also Maroney and Hiley (1999).

To summarize: Bohm’s suggestion was that a natural extension of his
ontological interpretation of the quantum theory can include mental processes
and even conscious experience into a single coherent view. From the point
of view of the question about the causal powers of consciousness this view
is particularly promising, for it makes it—at least in principle—possible to
understand how conscious experience, via its effects upon information, could
make a difference to physical processes. If we can provide an intelligible theory
about how conscious experience can make a difference to information, this
scheme provides a view of how such informational differences can then affect
manifest physical processes (see also Hiley and Pylkkänen 2005). We have
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hinted that this question can be approached within some of the already existing
available theories of consciousness—for example, higher order theories or
Tononi’s integrated information theory.

8 Active Information and the Causal Powers
of Consciousness

The view described above sketches out how information content might affect
manifest physical processes (e.g., bodily behavior) in a way that is coherent
with the principles of physics. We have already touched on the question of
the causal role of consciousness in the active information scheme. Let us now
consider this role in more detail. First of all, how can we understand the
idea that consciousness enables more flexible control in the context of the
active information view? More flexible control means, for example, that the
organism is able to choose from among different options the one that best fits
the situation, instead of having to follow mechanically one of the options.
In Bohmian terms this means that consciousness enables the organism to
suspend the activity of information. The way this works is that one is aware of
information that means something like “It is reasonable to consider different
options before acting.” And when one finally acts, this is based on information
that means “It is reasonable to do X.” In other words, flexible control in the
Bohmian view seems to involve higher-order, meta-level information that we
are conscious of (while typically, according to higher order theories, we need
not be conscious of the higher-order thought itself ).

When it comes to better social coordination, Bohm’s view involves a
notion he calls “common pools of information” (Bohm 1990). This notion
applies strikingly well at the quantum level (e.g., in the Bohmian view of
superconductivity) where the behavior of a system of particles can in some
situations be organized by information in the so called many-body wave
function. The particles act together in an organized way (e.g., electrons may
pass obstacles in a wire, which results in very low resistance). Information at the
level of human cognition operates presumably according to different principles
from information at the quantum level. However, when a group of people
communicate with each other (e.g., in a group discussion) they begin to build
up a common pool of information. This enables the group to develop common
intentions and carry out common actions (see e.g. Tuomela 2013). Suppose,
for example, that a group of eight people need to carry a very heavy grand piano
upstairs along a narrow staircase. They need to exchange information and
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make sure that they each understand what they are supposed to do. Again, it
is hard to imagine that such joint tasks requiring collective coordination could
take place without some consciousness of the shared information. However,
it is an experimental question to ask to what extent such collective action is
possible without conscious awareness. Going back to our above example, it
does seem difficult to act without conscious awareness at least in a situation
where the group needs to carry the piano through a very narrow opening.
While the mainstream literature in the field of collective or shared inten-
tionality does not consider quantum principles, there is at the very least an
interesting analogy between Bohm’s notion of common pools of information
at the quantum level and the notion of collective intentionality in social
ontology. Some researchers have even explored whether social phenomena
might involve quantum principles more literally. See, for example, Alexander
Wendt’s (2015) recent ground-breaking study, as well as Flender et al.’s (2009)
radical approach to the shared intentionality of the mother-infant relationship,
making use of quantum principles in a phenomenological context.

We have also considered the suggestion that consciousness enables more
unified and integrated representation. The tricky question here is whether the
information first gets unified and integrated in preconscious processes, and is
then presented to consciousness; or whether consciousness plays a role in the
very unification and integration of the information (Van Gulick seems to favor
the latter alternative). I am inclined to think that much of the unification and
integration takes place (largely) without consciousness, but that consciousness
is needed for such information to be flexibly usable in the control of behavior
(of course, in the Tononian approach one would say that sufficiently integrated
information constitutes consciousness). In the Bohmian picture it is assumed
that typically such information tends to act, even if it is not consciously
attended to. Conscious attention may then make the response of information
stronger, or lead to the suspension of action and reflection of the different
options.

The idea that consciousness involves more global access can also be naturally
understood in terms of the notion of active information. If information is
consciously attended to, this may start what Bohm (2003) calls a “signa-
somatic” flow: the significance of the information acts somatically toward a
more manifest level in the brain. Global access means that the significance can
affect many different modules.

When it comes to free will, Bohm used to emphasize that true freedom is
typically limited by our lack of knowledge—both about the consequences of
one’s actions and about our true motives. He refers to Schopenhauer when
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he writes: “though we may perhaps be free to choose as we will, we are not
free to will the content of the will : : : Is there any meaning to freedom of will
when the content of this will is : : : determined by false knowledge of what is
possible” (Bohm 1986). In a more positive vein, he writes:

How, then, is it possible for there to be the self-awareness that is required for
true freedom? : : : I propose that self-awareness requires that consciousness sink
into its implicate (and now mainly unconscious) order. It may then be possible
to be directly aware, in the present, of the actual activity of past knowledge, and
especially of that knowledge which is : : : false : : : Then the mind may be free
of its bondage to the active confusion that is enfolded in its past. (Ibid.)

By “the implicate order” Bohm above refers (roughly) to the more subtle
levels of active information which include long-term memory and from which
the part of the content of conscious experience unfolds. It is clear that for
Bohm free will requires consciousness. However, it is not enough that we are
conscious of the options that we typically face in a situation when we are about
to make a choice. We also need to be aware of—and thus free from—falsity in
the past knowledge that we typically unconsciously hold and on the basis of
which we tend to react and make our choices.

Let us finally consider intrinsic motivation in the light of the Bohmian view.
What is interesting here is that Bohm emphasizes that information is typically
active (while passive information is a special case). One possibility is that the
presence of consciousness increases the level of activity of the information.
Thus, for example, consciousness of information with an attractive content
may be needed to awaken desire or make that desire more intense. At the
same time conscious awareness of the negative consequences of carrying out a
particular desire may lead to the suspension of action. In Bohmian terms, all
these phases involve active information. For example, desire informs us to carry
out a certain action X, while information about the consequences of the action
may result in information with the content “It is not reasonable to do X.”

9 Concluding Discussion

I have drawn on fundamental physics to support the idea that conscious
experiences can, at least in principle, be causally efficacious in a physical world,
contrary to what much of contemporary physicalism suggests. Yet we have
admittedly only scratched the surface of this difficult topic. Basically, I have
assumed that consciousness (understood as something that arises due to higher
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order information and/or information integration) can influence lower-level
information, and information in turn can influence physical processes “signa-
somatically,” as Bohm would put it.

The Bohmian view we considered suggests that nature can be under-
stood as a two-way movement between the aspects of soma (the physical)
and significance (information, meaning, the mental). Consciousness comes
in here, but only at the higher, subtler levels, where, say, suitable higher-
order relations (and/or a sufficient degree of information integration) prevail,
depending upon which theory of consciousness we are relying upon. Thus the
active information view is consistent with the idea—also supported by recent
experimental work—that much of our most sophisticated brain functions
work totally independently of consciousness. Yet the active information view
also makes room for the genuine causal powers of consciousness, and in this
way can accommodate such causal efficacy of consciousness as is suggested
by Van Gulick, Revonsuo, and others. Bohm himself did not address very
explicitly the causal powers of consciousness, but I think it is reasonable to
assume that his scheme makes such powers in principle possible. To explain
that scheme fully is, however, not possible here, and the interested reader is
referred to a more detailed study (Pylkkänen 2007).

One important potential criticism of the active information approach
has to do with the notion of information that is presupposed. Is it really
justified to use the term “information” to describe the sorts of processes
connected to the quantum field? One could examine this question in the
light of the recent developments in the philosophy of information (e.g.,
Floridi 2015). Floridi distinguishes between environmental and semantic
information; and semantic information can be further distinguished into
factual and instructional information. The quantum active information is
about something (the environment, slits, etc.), it is for the particle and it helps
to bring about something (a certain movement of the particle). This suggests
that it is semantic and has both factual and instructional aspects, though this
issue needs to be explored more carefully in future research. Also, Maleeh
and Amani (2012) have usefully considered active information in relation
to Roederer’s (2005) notion of pragmatic information, suggesting that only
biological systems are capable of “genuine” information processing. I think
one can argue that Bohmian quantum information potential involves genuine
information processing (indeed, the most fundamental kind of genuine infor-
mation processing science has thus far discovered), but this will also need to
be explored in future research.

I would like to end by reflecting upon the quote from Plato’s Phaedo
(1892) provided at the start of the chapter. Plato there thinks it obvious that
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our physical actions depend upon “the choice of the best,” while a typical
materialist would say that insofar as physical actions are determined, they are
determined by the physical state in a previous moment (including “bones
and muscles”). Now, I think that the active information view allows for a
naturalistic grounding of Plato’s view. In their 1984 article Bohm and Hiley
note that there are good reasons for expecting that quantum theory, and
therefore the notion of a quantum information potential, would be relevant
when we are studying consciousness itself, as based on the material structure
of the brain and nervous system:

it may well be that in our mental processes, the quantum information potential
is significant (as is, for example, suggested by the fact that information regarded
as correct is active in determining our behaviour, while as soon as it is regarded
as incorrect, it ceases to be active). The quantum theory may then play a key part
in understanding this domain. (1984, p. 269)

The above implies that our veridicality judgments play a key role in
determining whether or not information acts. For example, if I judge a shadow
in a dark night tomean “an assailant” and thus “danger,” this typically gives rise
to a powerful psychosomatic reaction; if I a little later notice that it was merely
a shadow of a branch (i.e., that the earlier judgment was incorrect), I will
typically calm down. We could expand the idea toward Plato by assuming that
our ethical judgments (e.g., “the choice of the best”) can typically also affect the
way information is activated, and consequently our behavior. The quantum
theoretical active information scheme enables such activity of information to
reach all the way to the level of fundamental physics, and in this way we can
begin, in a newway, tomake sense of a perennial puzzle inWestern philosophy,
namely the place and role of minds, meanings, and morals in the physical
world.
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Why Quantum?

Andrei Khrennikov

1 Introduction

Application of the methods of quantum mechanics (QM) outside of physics
is a novel and rapidly developing area of multidisciplinary research unify-
ing quantum information and probability, open quantum systems, and the
foundations of probability with molecular biology, genetics and epigenetics,
cognitive psychology, decision-making, economics and finance, and social
science and politics.1 The multidisciplinary structure may induce communi-
cation problems related to the use of quantum terminology.

1See, for example, de Barros and Suppes (2009), de Barros (2012), Accardi et al. (2008, 2009), Aerts
et al. (2014a, 2013a,b), Asano et al. (2010a,b, 2011, 2013b, 2012a,b,c, 2013a, 2014, 2015), Atmanspacher
et al. (2002, 2009), Atmanspacher and Filk (2012, 2013), Basieva et al. (2010), Basieva and Khrennikov
(2012, 2014), Blutner et al. (2013), Bruza et al. (2009, 2010), Busemeyer and Bruza (2012), Busemeyer and
Wang (2007), Busemeyer et al. (2006a,b, 2008, 2009, 2011), Cheon and Takahashi (2010), Cheon and
Tsutsui (2006), Conte et al. (2006, 2008, 2009), Dzhafarov and Kujala (2012a,b, 2013, 2014), Fichtner
et al. (2008), Ezhov and Khrennikov (2005), Ezhov et al. (2008), Haven and Khrennikov (2009, 2012,
2013), Ishio and Haven (2009), Khrennikov (2003, 2004, 2006, 2008, 2009, 2010), Khrennikov and
Basieva (2014a,b), Khrennikov et al. (2014), Khrennikov and Haven (2013), Khrennikova et al. (2014),
Khrennikova (2012), Lambert-Mogiliansky and Busemeyer (2012), Ohya and Volovich (2011), Pothos and
Busemeyer (2009, 2013), Pothos et al. (2013), Yukalov and Sornette (2011), Wang and Busemeyer (2013),
Wang et al. (2013).
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First of all, I will clarify for experts in quantum foundations, quantum
information, and quantum probability (QP) the possibility of the application
of QM methods outside of physics in Sect. 2 (this motivating section will also
be useful for nonphysicists using themathematical apparatus of QM). I discuss
the necessity of the generalization of this formalism to cover all problems
generated by the probabilistic description of bio- and sociophenomena. I then
introduce the basic elements of quantum physics—see Haven and Khrennikov
(2016) for more detail (and, especially, its advanced parts such as the theory of
open quantum systems)—to experts in cognition, psychology, economics and
finance, social science, molecular biology, and genetics, which will also serve
to motivate them to explore the mathematical methods of QM, in Sect. 3.
I also discuss the distinguishing features of quantum adaptive dynamics—a
generalization of the standard theory of open quantum systems which is used
in this chapter.

2 Quantum Biophysics or Quantum
Information Biology?

From the very beginning I must emphasize that applications of the methods of
QM to the modeling of cognition have no direct relation to physical quantum
processing of information by the brain, for example, theories of Penrose (1989,
1994) and Hameroff (1994a,b). The superposition of mental states is the key
issue here. In principle, state superpositions can be treated from the purely
information viewpoint. For the moment, there is no commonly accepted
neurophysiological model of the creation of mental superpositions; compare
with Khrennikov (2011). However, the appearance of such superpositions
in the process of decision-making can be (at least indirectly) confirmed
by statistical data collected in molecular biology and cognitive psychology
(Hofstader 1983, 1985; Shafir and Tversky 1992; Tversky and Shafir 1992;
Croson 1999; Inada et al. 1996) which leads to violation of the laws of classical
probability (CP)2 and, in particular, violation of the law of total probability

2See, for example, Asano et al. (2010a,b, 2011, 2013b, 2012a,b,c, 2013a, 2014, 2015); Atmanspacher et al.
(2002, 2009); Atmanspacher and Filk (2012, 2013); Basieva et al. (2010); Basieva and Khrennikov (2012,
2014); Blutner et al. (2013); Bruza et al. (2009, 2010); Busemeyer and Bruza (2012); Busemeyer et al.
(2006a); Busemeyer andWang (2007); Busemeyer et al. (2006b, 2008, 2009, 2011); Cheon and Takahashi
(2010); Cheon and Tsutsui (2006); Conte et al. (2006, 2008, 2009); Dzhafarov and Kujala (2012a,b, 2013,
2014); Khrennikov (2003, 2004, 2006, 2008, 2009, 2010); Khrennikov and Basieva (2014a); Khrennikov
et al. (2014); Khrennikov and Basieva (2014b); Khrennikov and Haven (2013); Khrennikova et al. (2014);
Khrennikova (2012); Lambert-Mogiliansky and Busemeyer (2012); Ohya and Volovich (2011); Pothos and
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(LTP). As was shown by Feynman and Hibbs (1965), in quantum physics
the superposition of states leads to violation of LTP. In Khrennikov (2010) it
was shown that the inverse is true as well: for probabilistic data of any origin,
violation of LTP allows for the representation of states by complex probability
amplitudes—the constructive wave function approach. The entanglement of
mental states is another key issue. In physics, Bell’s inequality is used as a
statistical test of entanglement. The same can be done for decision-making,
for example, by humans, see Conte et al. (2008), Bruza et al. (2010).

As in the case of quantum physics,3 we can proceed by treating the mathe-
matical formalism ofQM as an operational formalism describingmeasurements
(Khrennikov 2010); see also Plotnitsky (2015). Neither QM nor cognitive
science can explain why the systems under study produce such random out-
puts. Moreover, according to the Copenhagen interpretation, it is in principle
impossible to provide some “explanation” of quantum behavior, for example,
by using a more detailed description with the aid of so-called hidden variables.
In spite of this explanatory gap, QM is one of the most successful scientific
theories. One may hope that a similar operational approach would finally lead
to the creation of a novel and fruitful theory of decision-making. In recent
studies by D’Ariano et al. (Chiribella et al. 2010; D’Ariano 2007; Chiribella
et al. 2012; D’Ariano 2011; D’Ariano and Jaeger 2009) quantum theory is
asserted to have been derived from a set of purely operational postulates. Such
an approach can be applied to the theory of decision-making as a special theory
of (self-)measurements.

I would also emphasize that recently the informational interpretation of the
quantum state has started to play an important role in QM and, especially, in
quantum information theory.4 In this interpretation QM formalism is merely
about the information processing related to experiments. The information
interpretation matches my aims perfectly (although its creators probably
would not support the attempts to apply it outside of physics).

Of course, cognition is a special biophysical phenomenon. Therefore, the
quantum-mental analogy has to be used with some reservation. Consider, for

Busemeyer (2009, 2013); Pothos et al. (2013); Yukalov and Sornette (2011); Wang and Busemeyer (2013);
Wang et al. (2013); Haven and Khrennikov (2016); Penrose (1989, 1994); Pothos and Busemeyer (2009,
2013); Pothos et al. (2013); Yukalov and Sornette (2011); Wang and Busemeyer (2013); Wang et al. (2013).
3Bohr always pointed out that quantum theory describes the results of measurements and emphasized the
role of an observer (Bohr 1987); he stressed that the whole experimental arrangement has to be taken into
account. Heisenberg and Pauli had similar views; see Plotnitsky (2006, 2009, 2011) for detailed analysis.
4See the works of A. Zeilinger and C. Brukner (Zeilinger 1999, 2010; Brukner and Zeilinger 1999a,b,
2009), C. Fuchs et al. (Caves et al. 2002; Fuchs 2002a,b, 2007; Fuchs and Schack 2011) andM. D’Ariano
et al. (Chiribella et al. 2010; D’Ariano 2007; Chiribella et al. 2012; D’Ariano 2011; D’Ariano and Jaeger
2009).
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example, the issue of nonlocality. The brain is a very small physical system
(compared with distances covered by propagating light); see de Barros and
Suppes (2009). Therefore “mental nonlocality” (restricted to information
states produced by a single brain) is not as mystical as the physical nonlocality
of QM. In principle, the possibility of the future “explanation” of cognition,
for example, in terms of nonlocal hidden variables, is not ruled out.

I hope that previous considerations have justified the possibility of applica-
tion of QM formalism to model information processing by biosystems (from
proteins and cells to brains and social systems) and, in particular, to model
decision-making. However, one may ask5:

Why should it be precisely the QM formalism? May be its generalization would
be more adequate to problems of information biology?

Pragmatically the use of QM formalism can be treated as the first trial
for probing nonclassical probabilistic methods. And at the first stage of its
application outside of physics, for example, in cognitive psychology, this
strategy was very successful.

Later, however, more detailed studies (Khrennikov 2010; Khrennikov et al.
2014) demonstrated that some generalizations are needed indeed. As we
already know, even problems of quantum physics cannot be completely
covered by the standard quantum formalism based on the representation
of quantum observables by Hermitian operators. A more general theory of
quantum instruments (a part of the theory of open quantum systems) was
developed and applied to a variety of problems, especially in quantum optics.
Here the generalized quantum observables are represented by positive-operator
valued measures (POVMs); see Haven and Khrennikov (2016).

The necessity of the application of generalized quantum observables,
POVMs, to cognition and decision-making was emphasized in Khrennikov
(2010) and Khrennikov et al. (2014). (This handbook contains a brief
introduction to the theory of quantum instruments with a model of decision-
making (Basieva and Khrennikov 2016).) Applications of POVMs to cognition
and decision-making were presented in Asano et al. (2010a,b, 2011, 2015),
Basieva and Khrennikov (2014), to molecular biology in Basieva et al. (2010),
Asano et al. (2015) and to epigenetics in Asano et al. (2013a).

5This question was asked by A. Zeilinger during a lecture given by the author in Vienna, May 2014.
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However, it seems that even the use of quantum instruments does not solve
all problems (Khrennikov et al. 2014): cognition and the biological processing
of information in general have a more complex structure than the one
covered by the “standard generalized quantum observables.” Generalizations of
POVMs were invented and explored in decision-making (Khrennikov 2009;
Basieva and Khrennikov 2012); but they did not satisfy the normalization
condition

P
j Mj D I; see (Haven and Khrennikov 2016, Sect. 8).

Recently a novel formalism known as quantum adaptive dynamics was devel-
oped (Asano et al. 2013b) and applied to a variety of problems of cognition
modeling and molecular biology (Asano et al. 2015, 2013b, 2012a,b,c, 2013a).
We shall discuss this briefly below.

Finally, we point to a new model, so-called hyperbolic quantum mechanics,
which has been applied to a series of problems of cognition and decision-
making (Khrennikov 2010). Here, probability amplitudes are valued not in the
field of complex numbers, but in the algebra of hyperbolic numbers, numbers
of the form z D xC jy; where x; y are real numbers and j is the generator of
the algebra satisfying the equation j2 D C1: Hyperbolic amplitudes describe
interference which is stronger than the one given by complex amplitudes used
in QM: the interference term is given by the hyperbolic cosine, opposite to
the ordinary trigonometric cosine in QM.

3 Open Quantum Systems, Adaptive Dynamics

The dynamics of an isolated quantum system is described by the Schrödinger
equation (Haven and Khrennikov 2016). In the standard quantum framework
measurements are mathematically represented by orthogonal projectors (Pi)
onto eigen-subspaces corresponding to the observed values (ai). A quantum
observable can be formally represented as a Hermitian operator A DPi aiPi:

The probability of obtaining the fixed value ai as the result of measurement is
given by Born’s rule. Let a system have the physical state given by a normalized
vector  of the complex Hilbert space H; that is, k k2 D h j i D 1; where
h�j�i is the scalar product on H: (Such states are called pure states.) Then (Born’s
rule (Haven and Khrennikov 2016)):

p(ai) D hPi j i D kPi k2 (1)

and the post-measurement state is given by

 ai D Pi =kPi k: (2)
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In the finite dimensional case  D (z1; : : : ; zn); zj 2 C;
P

j jzjj2 D 1: By
Born’s rule probability is expressed through complex “probability amplitudes”
given by the coordinates of  : Born’s rule (1) is the basis of the QP calculus:
the calculus of such amplitudes.

However, the situation that an isolated quantum system propagates in
space–time and then suddenly meets a measurement device is too ideal. In
the real world a quantum system interacts with other systems, that is, the
presence of an environment cannot be ignored. In particular, measurement
devices can also be treated as special environments. The corresponding part
of quantum theory is known as the theory of open quantum systems. Here
the dynamics of a state is described by the quantum master equation, the
Markovian approximation of which is known as the Gorini–Kossakowski–
Sudarshan–Lindblad (GKSL) equation, for example, Ohya and Volovich
(2011).6 This equation has numerous applications to problems in quantum
physics, especially quantum optics. It was applied to model decision-making
(in games of the prisoner’s dilemma type) in a series of papers (Asano et al.
2010a,b, 2011); see also Khrennikova et al. (2014) for applications for decision-
making in political science. However, the GKSL equation is an approximation
and its derivation is based on a number of assumptions essentially narrowing
the domain of its applications; see Khrennikova et al. (2014) for analysis of the
validity of these assumptions in the modeling of cognition. One of the main
assumptions is that the environment is huge compared to the system under
study. We cannot apply the GKSL equation to model the state dynamics of an
electron interacting with another electron considered as the environment.

In decision-making typically there are two brain functions, for example,
sensation and perception (Accardi et al. 2016), which interact and produce the
output of one of them, for example, the output perception. In such a situation,
the GKSL equation is not applicable. In our work (Asano et al. 2013b)
we developed a general theory of quantum adaptive dynamics generalizing
the standard theory of open quantum systems. Here the state dynamics is
described by a more general class of state transformations than in the standard
theory.

6Note that the quantum master equation (as well as the Schrödinger equation) is a linear first-order (with
respect to time) differential equation. Linearity is one of the fundamental features of quantum theory. It is
very attractive even from the purely operational viewpoint, since it simplifies calculations dramatically. In
fact, no mathematical tool more advanced thanmatrix calculus is required. The question whether QM can
be treated as the linearization of a more complex nonlinear theory has been actively discussed in quantum
foundations. For the moment, it is commonly accepted that QM is fundamentally linear, although strong
reasons in favor of the linearization hypothesis have been presented. This problem is also very important
for cognition but lacks even preliminary analysis, unlike the situation in physics.
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In the paper (Accardi et al. 2016) of this handbook we use the quantum
adaptive dynamics to describe the process of the creation of perceptions from
sensations.

Roughly speaking, the approach relaxes the standard constraints on the class
of state transformations. In particular, in the theory of open quantum systems
all state transformations are the so-called completely positive maps, see Basieva
and Khrennikov (2016) in this handbook. An adaptive dynamical map need
not be completely positive nor even simply positive.

The tricky point is that in quantum physics, for a given state, one can,
in principle, measure any observable. It seems that in problems of decision-
making this (very strong) assumption has to be relaxed. I work with generalized
states which permit measurements of only special (state-dependent) classes of
observables. In this chapter only two observables are considered: sensation
and perception. The class of adaptive dynamical maps is essentially larger
than the class of (completely) positive maps. This simplifies the modeling of
concrete phenomena, for example, recognition of ambiguous figures (Accardi
et al. 2016). Thus it seems that complete positivity is the distinguishing
feature of the operational quantum formalism for physical systems. For
biological systems and, in particular, cognitive systems, this strong mathe-
matical assumption can be relaxed. (Of course, it makes the mathematical
formalism essentially more complicated). In any event creation of quantum
information biology stimulates applications of state transformations which are
not completely positive.

We finish this chapter with emphasizing the role of creation of quantum
information biology, as the general operational formalism describing prob-
abilistic behavior of biological systems, from proteins and cells to cognitive
and ecological systems. Moreover, this was the crucial step towards unification
of the mental and physical phenomena, without the reduction of mental pro-
cesses to physical ones. The samemathematical formalism describes processing
of information by electrons, photons, and other quantum systems as well as
by a variety of biological systems.
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Quantum Principles and Mathematical
Models in Physics and Beyond

Arkady Plotnitsky

1 Introduction

The history of mathematical modeling beyond physics—in biology, neu-
roscience, psychology, and economics—has been and still is dominated by
classical mathematical models (hereafter C-models), primarily of probabilistic
and statistical nature, models inspired by classical statistical physics or chaos (or
complexity) theory. More recently, however, quantum mathematical models
(hereafter Q-models), that is, mathematical models based in the mathematical
formalism of quantum theory, have acquired a certain currency in mathemat-
ical modeling, especially in psychology and economics, my primary subjects
here, beyond quantum mechanics (QM) (Pothos and Busemeyer 2013).1 My
abbreviations mirror Dirac’s distinction between c-numbers and q-numbers,
andmore thanmerely mirror it: the variables used inQ-models are q-numbers.
This chapter examines some of the reasons for using Q-models in these fields.

1By quantum theory I refer to the standard versions of QM or quantum field theory, rather than alternative
theories of quantum phenomena, such as Bohmian theories, although the corresponding mathematical
models have been used in psychology and economics. By quantum phenomena I refer to those physical
phenomena in considering which Planck’s constant, h, must be taken into account; by quantum objects
I refer to those entities in nature that are responsible for the appearance of quantum phenomena.
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In order to do this, I shall revisit the reasons for the use of Q-models
in physics itself, to which a large portion of this chapter is devoted. These
models are based in the mathematics of Hilbert spaces over complex numbers,
with Hilbert-space operators (q-numbers) taking the role of variables in the
equations of QM, as against the functions of real variables that serve in this
role in classical physics. In particular, in the words of Heisenberg’s and Dirac’s
parallel titles of their famous books, I shall examine the fundamental principles
that led to the development of quantum theory, including more recently
quantum information theory, and consider a possible role for similar principles
in using Q-models beyond quantum theory vs C-models (Heisenberg 1930;
Dirac 1930). My emphasis reflects the fact that fields such as psychology
and economics borrow Q-models from quantum theory, rather than derive
them from their own internal principles, while the foundational research in
quantum theory, especially quantum information theory, is still concerned
with deriving Q-models from such fundamental principles. Nevertheless, the
principle perspective may help us to understand better a possible and possibly
necessary role for Q-models beyond physics as well.

2 The Principle Thinking in Physics and Beyond

I begin by explaining the concept of principle, as it is to be understood
in this chapter, following Einstein’s distinction between “constructive” and
“principle” theories (Einstein 1919). This distinction implies two contrasting,
although in practice sometimes intermixed, types of theories. According to
Einstein, “constructive theories” aim “to build up a picture of the more
complex phenomena out of the materials of a relatively simple formal scheme
from which they start out” (Einstein 1919, p. 228). Einstein’s example of a
constructive theory in classical physics is the kinetic theory of gases, which
“seeks to reduce mechanical, thermal, and diffusional processes to movements
of molecules—i.e., to build them up out of the hypothesis of molecular
motion,” described by the laws of classical mechanics (Einstein 1919, p. 228).

By contrast, principle theories “employ the analytic, not the synthetic,
method. The elements which form their basis and starting point are not hypo-
thetically constructed but empirically discovered ones, general characteristics
of natural processes, principles that give rise to mathematically formulated
criteria which the separate processes or the theoretical representations of them
have to satisfy” (Einstein 1919, p. 228; emphasis added). Thermodynamics,
Einstein’s example of a classical principle theory (parallel to the kinetic theory
of gases as a constructive theory), is a principle theory because it “seeks
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by analytical means to deduce necessary conditions, which separate events
have to satisfy, from the universally experienced fact that perpetual motion is
impossible” (Einstein 1919, p. 228). Einstein’s special and general relativity are
principle theories as well, which fact occasioned his reflections on the subject,
although both, especially general relativity, have constructive dimensions to
them.

Principles, then, are “empirically discovered, general characteristics of natu-
ral processes, : : : that give rise tomathematically formulated criteria which the
separate processes or the theoretical representations of them have to satisfy.”
This definition will be adopted here, but with the following qualification.
Principles are not so much empirically discovered as formulated, constructed,
on the basis of empirically discovered or established evidence. It would be
difficult to see “the impossibility of perpetual motion” as empirically given,
rather than as a principle formulated on the basis of such evidence.

Constructive theories tend to be, and are often aimed to be, realist: they
describe, usually causally, the corresponding objects in nature and their behav-
ior by way of mathematical models, assumed to idealize how nature works at
the simpler, or deeper, level thus constructed by a theory. This characterization
will serve this chapter as the definition of a realist theory. Such a theory
offers a description of the processes underlying and connecting the observable
phenomena considered, on the model of classical mechanics, from which
quantum theory departs. By “reality” itself I shall refer to that which actually
exists or is assumed to exist. In the case of physics, it is nature that is generally
assumed to exist independently of our interaction with it, and to have existed
when we did not exist and to continue to exist when we will no longer exist.

All modern, post-Galilean, physical theories proceed by way of idealized
mathematical models, whether realist, descriptive, or only predictive, as are
some of the models used in quantum theory or its interpretations, models
that are only predictive and moreover are only probabilistically or statistically
predictive. Heisenberg adopts this view of QM or quantum electrodynamics,
following Bohr and “the spirit of Copenhagen,” as Heisenberg called it
(Heisenberg 1930, p. iv).2 This suggests a general definition of a mathematical
model that I shall adopt here. A mathematical model is a mathematical structure
or set of mathematical structures that enables any type of relation, descriptive or
predictive, to the (observed) phenomena or objects considered.

Realist mathematical models are descriptive models: they are idealized
mathematical descriptions of physical processes. The probabilistic or statistical

2I distinguish “the spirit of Copenhagen” from “the Copenhagen interpretation,” because there is no
single such interpretation.
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character of quantum predictions must be equally maintained by realist
interpretations of these theories or alternative theories (such as Bohmian
theories), because it corresponds to what is observed in quantum experiments,
concerning which only probabilistic or statistical predictions are possible. The
repetition of identically prepared experiments, in general, leads to different
outcomes, the difference that, unlike in classical physics, cannot be improved
beyond a certain limit (defined by Planck’s constant, h) by improving the con-
ditions of measurement, a fact reflected in the uncertainty relations. This leads
to the quantum probability principle, the QP principle, arguably the most
important principle defining Q-models in physics and beyond. At the same
time, predictive interpretations usually assume, as that of Bohr did, the concept
of reality. If, however, realism, as defined here, presupposes a description or at
least a conception of reality, this alternative concept of reality is that of “reality
without realism” (Plotnitsky and Khrennikov 2015). Assuming this concept of
reality as operative is itself a principle, “the RWR principle.”

It follows that a principle theory could be realist or not, by, in the first case,
unavoidably acquiring constructive dimensions. Constructive theories are, as
I explained, by definition realist and are usually causal, unless one uses a given
construction as a kind of heuristic device within a predictive (principle) theory.
It is also true that a given theoretical construction may be revealed or argued
merely to provide a predictive mechanism for a given theory.3
Constructive theories may and customarily do involve principles, such as

the equivalence principle in general relativity, or the principle of causality,
dominant throughout the history of modern physics, from Galileo on, until
QM put it into question. This principle, as defined, for example, by Kant (this
definition has been commonly used since), states that, if an event takes place,
it has a cause of which it is an effect (Kant 1997, pp. 305, 308). I shall refer
to this form of causality as classical causality.4 Such causal influences are also
commonly, although not always, assumed to propagate from past or present
towards future. This requirement is strengthened by special relativity theory,
which restricts causes to those occurring in the backward (past) light cone

3There are arguments to that effect concerning the status of space–times in general relativity (Butterfield
and Isham 2001).
4I distinguish causality—which is an ontological category, describing reality—from determinism, which
is an epistemological category, describing part of our knowledge of reality, specifically our ability to predict
the state of a system (ideally) exactly at any moment of time once we know its state at a given moment of
time. Determinism is sometimes used in the same sense as causality, and in the case of classical mechanics
(which deals with single objects or a small number of objects), causality and determinism, as defined
here, coincide. Once a classical system is large, one can no longer predict its behavior exactly, but only
statistically.
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of the event that is seen as an effect of this cause, while no event can be a
cause of any event outside the forward (future) light cone of that event. These
restrictions follow from the assumption that causal influences cannot travel
faster than the speed of light in a vacuum, c. Principle theories do not require
classical causality, which becomes difficult to assume in quantum physics,
especially without violating locality. Relativistic “causality,” as the prohibition
of the possibility of physical influences towards the past, may be maintained in
the absence of classical causality, although relativity itself is (locally) classically
causal.

The distinction between constructive and principle theories is, thus, not
unconditional, as Einstein realized. There is, however, an asymmetry between
them: a constructive theory always involves principles, at least philosophical
principles, while a principle theory need not involve constructive strata at the
ultimate level considered by the theory and thus need not be realist.

An appeal to fundamental principles need not imply that there is some
permanent, Platonist, essence to such principles. Principles change as our
experimental findings and our theories change, and we cannot anticipate or
control all of these changes. The principles of QM, such as the QP principle,
replaced, within a new scope, some of the main principles of classical physics,
which continue to remain operative within the proper scope of classical physics
and some of them extend to quantum theory. There could be such changes
within the same physical scope, as in the case of general relativity theory vs
Newton’s theory of gravity. Some principles of quantum theory have changed
as well, both in view of extending the scope of theory to quantum field theory
and with the scope of QM, for example, in quantum information theory. It
is true that the QP principle has remained in place throughout the history of
QM, although the mathematical expression of the principle has been refined a
few times. But that does not mean that it may not be abandoned at some point.

3 Quantum Mechanics as a Principle Theory

QM or higher-level quantum theories are principle theories, at least if one
follows the spirit of Copenhagen in interpreting them. It is, again, the first
theory that, in this interpretation, is strictly principle insofar as it precludes
a constructive theorization of quantum objects and processes. This aspect of
QM, at least as matrix mechanics, was manifest from the outset, in contrast
to Schrödinger’s wave mechanics, which was constructive, even though it pro-
ceeded from certain principles as well. Schrödinger’s mathematics, equivalent
to that of Heisenberg, could be interpreted in the spirit of Copenhagen. If
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understood in this spirit, QM is a principle theory by definition, because
it is not possible to configure constructively the ultimate entities, quantum
objects, from which the observable quantum phenomena are built or due to
which these phenomena arise, unless one sees quantum objects as constructed
by quantum theory as fundamentally unconstructible. It follows that, in this
interpretation, QM is nonrealist: it divorces itself from the description of
quantum objects and processes and relates to quantum phenomena only
in terms of predictions, in general probabilistic or statistical in character.
Einstein hoped that nature will eventually allows us to do better as concerns
the descriptive or realist capacity of quantum theory or, as he thought, an
alternative theory that would eventually replace it. Bohr, on the other hand,
thought that nature might not allow us to do better in dealing with quantum
phenomena, which is not the same as that it will not. The question remains
open and continues to be intensely debated, although most hold on to
Einstein’s hope, and the type of view adopted by Bohr (or following Bohr
here) remains a minority view.

According to Bohr, “in quantum mechanics we are not dealing with an
arbitrary renunciation of a more detailed analysis of atomic phenomena, but
with a recognition that such an analysis is in principle excluded,” beyond a
certain point (Bohr 1987, vol. 2, p. 62). This statement is also an annunciation
of a new principle of quantum reality, defined above as the principle of
“reality without realism,” the RWR principle. This principle maintains both
the existence, reality, of quantum objects and the impossibility of representing
or even conceiving of the nature of this reality, and hence the impossibility
of realism, at least as things stand now. The RWR principle emerged in the
1930s in the Bohr–Einstein debate. Heisenberg, in his initial approach to QM,
merely abandoned the project of describing the motion of electrons because he
thought that such a description was unachievable at the time, rather than “in
principle excluded” (Heisenberg 1925). His approach may be seen as guided
by the combination of a certain “proto-RWR” principle and the QP principle.
As a consequence of the RWR principle or even Heisenberg’s proto-RWR
principle, classical causality becomes impossible. As Schrödinger observed,
with some disparagement, if there is no definable physical state, one cannot
assume that the system’s state evolves causally (Schrödinger 1935a, b, p. 154).
In both Heisenberg’s initial approach to QM and Bohr’s interpretation of

the theory the key principles were:

(1) The principle of discreteness or the QD principle, according to which all
observed quantum phenomena are individual and discrete in relation to
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each other, which is not the same as the atomic discreteness of quantum
objects themselves.

(2) The principle of the probabilistic or statistical nature of quantum predic-
tions, the QP principle (in effect correlative to the QD principle), which
also reflects a special, non-additive, nature of quantum probabilities and
rules, such as Born’s rule, for deriving them.

(3) The correspondence principle, which, as initially understood by Bohr,
required that the predictions of quantum theory must coincide with those
of classical mechanics at the classical limit, but was given by Heisenberg a
more rigorous form, “the mathematical correspondence principle,” requir-
ing that the equations of QM convert into those of classical mechanics at
the classical limit.

Bohr’s interpretation of QM added a new principle:

(4) The complementarity principle, which stems from the concept of comple-
mentarity, introduced by Bohr and which requires: (a) a mutual exclusivity
of certain phenomena, entities, or conceptions; and yet (b) the possibility
of considering each one of them separately at any given point, and
(c) the necessity of considering all of them at different moments for
a comprehensive account of the totality of phenomena that one must
consider in quantum physics.

The RWR principle could be inferred from the complementarity principle,
given that the latter prevents us from ascertaining the composition of the
“whole from parts,” because the complementary parts never add to a whole
in the way they do in classical physics.

Bohr’s initial comment on Heisenberg’s discovery shows a clear grasp of
what was at stake: “in contrast to ordinary mechanics, the new quantum
mechanics does not deal with a space–time description of the motion of
atomic particles. It operates with manifolds of quantities which replace the
harmonic oscillating components of themotion and symbolize the possibilities
of transitions between stationary states in conformity with the correspondence
principle. These quantities satisfy certain relations which take the place of
the mechanical equations of motion and the quantization rules [of the old
quantum theory].” (Bohr 1987, vol. 1, p. 48)
Heisenberg’s matrix scheme essentially amounted to the Hilbert-space

formalism (with Heisenberg’s matrices as operators), introduced by von Neu-
mann shortly thereafter (1932). VonNeumann’s formalism provided a rigorous
mathematical foundation to Heisenberg’s scheme, by then developed more
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properly by Heisenberg himself, Bohr and Pascual Jordan, and, differently
(in terms of q-numbers), by Dirac. Most crucial is the fact that Heisenberg’s
matrices were (re)invented by him from the physical principles coupled to a
mathematical construction leading to an algebra Heisenberg had to define,
beginning with the multiplication rule. This multiplication is noncommuta-
tive and is also accompanied by tensor calculus in a Hilbert space, which were,
arguably, the most essential mathematical features of Heisenberg’s scheme.

Bohr’s complementarity principle may be seen as the physical principle
behind quantum noncommutativity. Conversely, noncommutativity becomes
the mathematical expression of the complementarity principle, even though
noncommutativity was discovered first, from the QD and QP principles.
The QP principle itself is given its mathematical expression via the complex
Hilbert-space structure cum conjugation, inherent in this structure, and
Bohr’s rule. This structure is, however, in turn coupled to complementarity,
a coupling also manifested in the uncertainty relations. Finally, insofar as
the complementarity principle implies the RWR principle, the latter, too, is
mathematically expressed in noncommutativity.

The new character of quantum theory introduced byHeisenberg was bound
to have an impact on the very practice of theoretical physics in the quantum
domain. Indeed, it may be argued that a new way of doing theoretical physics
has, especially with Dirac, effectively taken quantum theory over ever since,
whatever the philosophical attitudes of the practitioners themselves may be.
In this new paradigm, the practice of theoretical physics is transformed into
working with the mathematical apparatus of the theory to enable this appara-
tus to provide correct predictions, rather than trying to develop an idealized
mathematical description of the physical processes considered. Dirac spoke,
in describing his discovery of his famous equation for the (free) relativistic
electron, of most of his work as “playing with equations,” to which expression
the present analysis gives a more rigorous meaning (Dirac 1962). This is how
Dirac discovered his equation, still guided, however, by the physical principles
of quantum theory (Plotnitsky 2015).

4 Quantum Theory and Principles
of Information Processing

I would now like to consider a more recent approach to deriving quantum
theory, in this case the finite-dimensional one, from fundamental principles,
those of quantum information theory, which are related to but different
from the principles considered thus far. There are several recent projects that



Quantum Principles and Mathematical Models in Physics and Beyond 343

exemplify this approach. I shall focus on D’Ariano and coworkers’ theory
because it is expressly principle in character (Chiribella et al. 2011). It has a
constructive dimension as well, introduced by the idea of quantum cellular
automata, though this aspect of their framework will not be considered here.

The program is inspired in part by “a need for a deeper understanding
of quantum theory itself from fundamental principles” (which, the authors
contend, has never been really achieved) and is motivated by the development
of quantum information theory.5 In part for that reason it deals with discrete
variables and the finite-dimensional Hilbert spaces. According to the authors:
“the rise of quantum information science moved the emphasis from logics to
information processing. The new field clearly showed that the mathematical
principles of quantum theory imply an enormous amount of information-
theoretic consequences : : : The natural question is whether the implication
can be reversed: is it possible to retrieve quantum theory from a set of purely
informational principles?” (Chiribella et al. 2011, p. 1). They then say:

In this paper we provide a complete derivation of finite dimensional quantum
theory based on purely operational principles. Our principles do not refer to
abstract properties of the mathematical structures that we use to represent
states, transformations, or measurements, but only to the way in which states,
transformations, and measurements combine with each other. More specifically,
our principles are of informational nature: they assert basic properties of infor-
mation processing, such as the possibility or impossibility to carry out certain
tasks by manipulating physical systems. In this approach the rules by which
information can be processed determine the physical theory, in accordance with
Wheeler’s program “it from bit,” for which he argued that “all things physical
are information-theoretic in origin” [Wheeler 1990]. Note [however, that] our
axiomatization of quantum theory is relevant, as a rigorous result, also for those
who do not share Wheeler’s ideas on the informational origin of physics. In par-
ticular, in the process of deriving quantum theory we provide alternative proofs
for many key features of the Hilbert space formalism, such as the spectral decom-
position of self-adjoint operators or the existence of projections. The interesting
feature of these proofs is that they are obtained bymanipulation of the principles,
without assuming Hilbert spaces from the start. (Chiribella et al. 2011, p. 1)

5Among the key predecessors are Zeilinger’s article (1999), Christopher Fuchs’s work—which, however,
“mutated” into a somewhat different program, that of quantum Bayesianism or QBism (Fuchs et al.
2014)—and Hardy (2001). Hardy’s paper was the first rigorous derivation of that type. For further con-
nections to quantum-informational approaches in quantum modeling beyond physics from a somewhat
different overall perspective, and some extension of and alternative to them, see Khrennikov (2016) and
further references there. (The present chapter does not claim that a sufficient understanding of QM
from such principles has been achieved. This remains an open question, especially when dealing with
continuous variables, where the application of the principles of quantum information is more complex as
well.)
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One of the principles advanced by the authors, the purification principle,
plays a particularly, indeed uniquely, important role in their program, as an
essentially quantum principle (the rest of their principles define the statistical
theories in general):

The main message of our work is simple: within a standard class of theories
of information processing, quantum theory is uniquely identified by a single
postulate: purification. The purification postulate, introduced in (Chiribella
et al. 2010), expresses a distinctive feature of quantum theory, namely that the
ignorance about a part is always compatible with the maximal knowledge of the
whole. The key role of this feature was noticed already in 1935 by Schrödinger in
his discussion about entanglement [Schrödinger 1935b], of which he famously
wrote “I would not call that one but rather the characteristic trait of quantum
mechanics, the one that enforces its entire departure from classical lines of
thought.” In a sense, our work can be viewed as the concrete realization of
Schrödinger’s claim: the fact that every physical state can be viewed as the
marginal of some pure state of a compound system is indeed the key to single
out quantum theory within a standard set of possible theories. It is worth
stressing, however, that the purification principle assumed in this paper includes
a requirement that was not explicitly mentioned in Schrödinger’s discussion: if
two pure states of a composite system AB have the same marginal on system
A, then they are connected by some reversible transformation on system B. In
other words, we assume that all purifications of a given mixed state are equivalent
under local reversible operations.” (Chiribella et al. 2011, p. 2)

The authors also speak of “the purification postulate,” and they refer to
the remaining informational principles as “axioms,” because “as opposed to
the purification ‘postulate,’ : : : they are not at all specific [to] quantum
theory” (Chiribella et al. 2011, p. 3). While these terminological distinctions
are somewhat tenuous, they do not affect the authors’ argument. Besides, as
will be seen presently, the authors qualify these terms and state their strictly
operational principles later in their article (Chiribella et al. 2011, p. 6).
The purification principle is a new principle, although it has its genealogy

in the previous operational approaches mentioned above, which, in particular,
equally stress the significance of quantum entanglement. The principle could
be related to the RWR principle, combined with complementarity, which
implies that “the ignorance about a part [one of the two complementary parts]
is always compatible with the maximal knowledge of the whole.” Indeed, Bohr
saw the EPR experiment (the background for Schrödinger’s claim and for his
concept of entanglement, the term he introduced in German (Verschränkung)
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and English) as a manifestation of complementarity and the RWR principle
(Bohr 1935; 1987, vol. 2, pp. 59–62).6

While having an essential and even unique role in the authors’ operational
derivation of the finite-dimensional quantum theory, the purification postu-
late or principle is not sufficient to do so. The authors need five additional
axioms, which I shall state below. This is not surprising. InHeisenberg’s deriva-
tion, the grounding quantum principles—the suspension of the description of
quantum objects and processes (the proto-RWR principle) and the quantum-
probability (QP) principle—were not sufficient to derive QM either. He
needed the correspondence principle, to which he gave a mathematical form.
What is remarkable, however, is that one needs only one “postulate” to
distinguish classical and quantum information theory. A similar situation
transpires in Hardy’s paper mentioned above, where this difference turns not
only on a single “axiom,” but also on the use of a single word, “continuity,”
technically a single feature of the situation, “the continuity of a reversible
transformation between any two pure states” (Hardy 2001, p. 2; emphasis
added). Both principles also reflect the apparently uncircumventable roles of
complex numbers and the tensor product in QM.

There are instructive specific parallels between the authors’ and Heisen-
berg’s approaches, in particular between Heisenberg’s proto-RWR principle
and the purification principle. The QP principle present in both cases, given
that D’Ariano et al. (rightly) see QM an “operational-probabilistic theory”
of a special type, is defined by the purification postulate. As they write, “the
operational-probabilistic framework combines the operational language of
circuits with the toolbox of probability theory: on the one hand experiments
are described by circuits resulting from the connection of physical devices,
on the other hand each device in the circuit can have classical outcomes
and the theory provides the probability distribution of outcomes when the
devices are connected to form closed circuits (that is, circuits that start with
a preparation and end with a measurement)” (Chiribella et al. 2011, p. 3).
This is close to Heisenberg’s and Bohr’s view of the quantum-mechanical
situation, keeping in mind the difference defined by the concept of “circuit”
(not found in Heisenberg or Bohr). As explained earlier, Heisenberg found his
formalism by using themathematical correspondence principle, not exactly the
first principle, because it depended on the equations of classical mechanics in
the classical limit where h could be neglected. Heisenberg needed new variables

6Bub, one among only a few commentators on QM as a principle theory, uses its principle character in
order to account for the EPR-type experiments and quantum entanglement (2000).
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because the classical variables (as functions of real variables) do not give Bohr’s
frequency rules for hydrogen spectra. Heisenberg discovered that these rules
are satisfied by, in general, noncommuting matrix variables with complex
coefficients related to amplitudes, fromwhich one derives, in essence by means
of Born’s rule for this case, the probability distributions for transitions between
stationary states defining these spectra.

By contrast, D’Ariano et al. arrive at the architecture of quantum theory in a
more first-principle-like way, in particular, independently of classical physics.
This is accomplished by using the rules governing the structure of operational
devices, rules that are more empirical, albeit not completely, because they
are given a mathematical representation or expression, as they must be, in
accordance with the authors’ and the present view, or principle. This principle
entails the necessity of establishing a rigorous mathematical expression for
the physical architecture considered or indeed the fundamental physical
principles of quantum theory: “the rules summarized in this section define the
operational language of circuits, which has been discussed in detail in a series
of inspiring works by Coecke” (Chiribella et al. 2011, p. 4; Coecke 2010). This
may indeed be a more natural way to give the fundamental structures and
principles of quantum theory their mathematical expression. D’Ariano et al.
need five additional axioms for their derivation of quantum theory:

In addition to the purification postulate, our derivation of quantum theory is
based on five informational axioms. The reason why we call them “axioms,”
as opposed to the purification “postulate,” is that they are not at all specific
of quantum theory. These axioms represent standard features of information
processing that everyone would, more or less implicitly, assume. They define a
class of theories of information processing that includes, for example, classical
information theory, quantum information theory, and quantum theory with
superselection rules. The question whether there are other theories satisfying
our five axioms and, in case of a positive answer, the full classification of these
theories is currently an open problem. Here we informally illustrate the five
axioms, leaving the detailed description to the remaining part of the paper:

(1) Causality: the probability of a measurement outcome at a certain time does
not depend on the choice of measurements that will be performed later.7

(2) Perfect distinguishability: if a state is not completely mixed (i.e., if it cannot
be obtained as a mixture from any other state), then there exists at least one
state that can be perfectly distinguished from it.

7This principle is different from that of classical causality (already by virtue of its probabilistic character),
while being consistent with locality.
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(3) Ideal compression: every source of information can be encoded in a suitable
physical system in a lossless and maximally efficient fashion. Here lossless
means that the information can be decoded without errors and maximally
efficient means that every state of the encoding system represents a state in
the information source.

(4) Local distinguishability: if two states of a composite system are different, then
we can distinguish between them from the statistics of local measurements
on the component systems.

(5) Pure conditioning : if a pure state of system AB undergoes an atomic mea-
surement on system A, then each outcome of the measurement induces a
pure state on system B. (Here atomic measurement means a measurement that
cannot be obtained as a coarse graining of another measurement.) (Chiribella
et al. 2011, p. 3)

Importantly, “all these axioms are satisfied by classical information theory”
(ibid.). The authors also “make precise the usage of the expression ‘operational
principle’ in the context of [their] paper:”

By [an] operational principle we mean here a principle that can be stated using
only the operational-probabilistic language, i.e., using only

(1) the notions of system, test, outcome, probability, state, effect, transforma-
tion;

(2) their specifications: atomic, pure, mixed, completely mixed; and
(3) more complex notions constructed from the above terms (e.g., the notion of

“reversible transformation”).

The distinction between operational principles and principles referring to
abstract mathematical properties, mentioned in the Introduction, should now be
clear: for example, a statement like “the pure states of a system cannot be cloned”
is a valid operational principle, because it can be analyzed in basic operational-
probabilistic terms as “for every system A there exists no transformation C with
input system A and output system AA such that C j®) D j®)j®) for every pure
state ® of A. On the contrary [by contrast?], a statement like the state space of a
system with two perfectly distinguishable states is a three-dimensional sphere is
not a valid operational principle, because there is no way to express what it means
for a state space to be a three-dimensional sphere in terms of basic operational
notions. The fact that a state spate is a sphere may be eventually derived from
operational principles, but cannot be assumed as a starting point.” (Chiribella
et al. 2011, p. 6)
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This distinction is important, although, as emphasized throughout this
chapter, operational principles, too, must be given a proper mathematical
expression in the formalism of the theory.

5 Fundamental Principles and Q-Models
Beyond Physics

As I stated from the outset, most currently used models in those fields where
mathematical modeling applies, such as biology, cognitive psychology, and
economics, are either classical-like statistical models or models based in chaos
and complexity theories, all of which are C-models. These models presuppose
the processes considered in these fields to be continuous and causal, and
idealize these processes accordingly. Most of these processes are too complex
to track, which requires recourse to probabilistic or statistical predictions,
similarly to classical statistical physics or chaos and complexity theories.
Essentially, we never deal in these fields with rigorously individual processes
of the type we deal with, probabilistically, in QM, where this individuality
is defined by h, which has no equivalent outside quantum physics. Some C-
models of these types work reasonably well in these fields. However, there also
appear to be phenomena when considering which C-models do not appear
to work: their predictions fail, as did those of classical statistical models in
quantum phenomena, which compelled Planck to introduce quantum theory,
eventually developed into QM.

Beginning with Tversky and Kahneman’s work in the 1970s and 1980s
(e.g., Tversky and Kahneman 1974), it has been primarily the presence
of probabilistic data akin to those encountered in quantum physics that
suggested the possibility or even necessity of using Q-models in order to
predict properly these probabilities in mathematical cognitive psychology and
economics. Economic behavior, too, involves psychological factors of the type
analyzed by Tversky and Kahneman. Kahneman was eventually awarded a
Nobel Prize in economics (Tversky died a few years earlier and thus was
not eligible). Until recently, however, these factors have not been considered
in mathematical economic modeling or elsewhere in economics. One might
say that the recourse to Q-models is motivated in these cases by a form
of the QP principle, especially by the non-additive character of quantum
probabilities, coupled with quantum-like noncommutativity, insofar as the
order of events (responses to the questions asked) statistically depend on the
order in which these questioned are asked. One does not have, however,
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either rigorous quantum discreteness or individuality of the processes leading
to the events considered. But then, at this stage of history, if one needs a
model that is able to predict quantum-like probabilities or, more generally,
address an experimental situation analogous to that of QM outside physics,
one need not invent an appropriate new formalism, either from principle or by
way of mathematical experimentation. One already has mathematical models,
those of QM, that could be used. In these cases Q-models (thus far mostly
finite-dimensional) are used to predict probabilities and correlations involved
in the corresponding phenomena or experiments in cognitive psychology or
economics, without much concern for the fundamental principles apart from
those, such as noncommutativity or the rules for Q-probabilities, derived
from the quantum-mechanical formalism (e.g., Dzhafarov and Kujala 2012;
Pothos and Busemeyer 2013). Whether these Q-models are required or C-
models suffice remains an open question, although it is difficult to assume
that C-models could give us either noncommutativity or, correlatively, Q-
probabilities. It may, however, be possible to construct a C-model, underlying
the Q-model, a model that would have a descriptive potential (cf., e.g.,
Khrennikov 2012). It is also possible to use a Bohmian model in the same
way, without being concerned with those of its features, such as nonlocality,
that pose problems for physics.

The question remains, however, to what degree the use of Q-models in these
fields could be brought in accord with the quantum principles considered
here, either along more conventional quantum-mechanical lines or those of
quantum information theory, even if only interpretatively, rather than in order
to derive such Q-models from these principles. Thus, does the QD principle,
correlative to the QP principle in QM, also find its place in quantum-like
theories in other domains? And if so, would the RWR principle also be
applicable? Bohr thought so in the case of biology and psychology. In the case
of biology he argued as follows:

The existence of life must be considered as an elementary fact that cannot be
explained, but must be taken as a starting point in biology, in a similar way as
the quantum of action, which appears as an irrational element from the point
of view of the classical mechanical physics, taken together with the existence
of elementary particles, forms the foundation of atomic physics. The asserted
impossibility of a physical or chemical explanation of the function peculiar to life
would in this sense be analogous to the insufficiency of the mechanical analysis
for the understanding of the stability of atoms. (Bohr 1931, p. 458; emphasis
added)
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In other words, the ultimate nature of biological processes may be inde-
scribable and even inconceivable, and thus subject to the RWR principle. At
least, this nature would not be (“mechanically”) described by a theory, similarly
to Heisenberg’s proto-RWR principle. Either way, once the theory suspends
accounting for the connections between the phenomena considered, these
phenomena are unavoidably discrete and our predictions concerning them
are unavoidably probabilistic, and are likely to follow (non-additive) rules
of quantum probability, although this last question is, again, open. Bohr’s
invocation of “an irrational element” is of some interest, and I shall comment
on it below. It is also important, and was one of Bohr’s points, that this
approach may be adopted even if the nature of biological processes is not
physically quantum in the sense of life being a physically quantum effect. In
this case, it would be indescribable or inconceivable in Bohr’s interpretation.
At stake here, however, are parallel, rather than connected, situations that may
require the same mathematical models.8
As explained above, in both cognitive psychology and economics, we do

encounter situations in which we deal with probabilities and correlations akin
to those encountered inQM,which compel the use ofQ-models for predicting
these probabilities. But would discreteness and hence theQD principle, even if
not the RWR principle, accompany this use? There are reasons to believe that
such could be the case, at least in economics, and I would surmise, in cognitive
psychology, as well, in both cases, as also noted above, along with the proto-
RWR principle, à la Heisenberg. Recent work by Haven and Khrennikov,
especially their article “Quantum-Like Tunnelling and Levels or Arbitrage,”
provides an instructive example for my, admittedly, hypothetical argument
(Haven and Khrennikov 2013a).9 The phenomenon of quantum tunneling
refers to the quantum phenomenon where a particle tunnels through a barrier
that it would not be able to surmount if it behaved classically; it is a quantum
phenomenon par excellence. The process itself cannot be observed. We only
deal with effects of this process, specifically with the fact that there is a nonzero
probability that a particle can be found beyond the barrier, which is to say that
the corresponding measurement will register an event of the impact of this
particle on the measuring instrument beyond the barrier. Thus, we deal with

8Some arguments for such connections have been advanced, most prominently by Penrose, from his first
major work on the subject (1995) on. While Penrose’s theory primarily concerns the neurobiology of the
brain and consciousness, he also links his argument to the possibility that life itself is a quantum effect.
9See Haven and Khrennikov (2013b) for a more general discussion of quantum-like modeling in
economics and other social sciences.
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two discrete phenomena, connected by probabilistic predictions concerning
the second on the basis of the first.

Haven and Khrennikov argue that the phenomena of arbitrage in finance
could be mathematically modeled by a Q-model of the type used in the
quantum-mechanical account of tunneling. In economics and finance, “arbi-
trage” is the practice of taking advantage of a price difference between two or
more markets, striking a combination of matching deals that capitalize upon
the imbalance, the profit being the difference between the market prices. An
arbitrage is a transaction that involves no negative cash flow at any probabilistic
or temporal state and a positive cash flow in at least one state; in simple terms,
it is the possibility of a risk-free profit at zero cost. Ideally, an arbitrage is risk
free. In practice, there are always risks in arbitrage, sometimes minor (such as
fluctuation of prices decreasing profit margins) and sometimes major (such as
devaluation of a currency or derivative). In most ideal models, an arbitrage
involves taking advantage of differences in price of a single asset or identical
cash flows.

The main point here is that, if arbitrage can be modeled analogously to
quantum tunneling in physics, one might expect features analogous to those
in actual quantum tunneling, which is paradigmatic of the features of quantum
phenomena. Haven and Khrennikov are primarily concerned with the use of
Q-models in predicting the probabilities involved, the QP principle, rather
than with discreteness or the epistemology accompanying them, the QD
and the RWR (or the proto-RWR) principles. Nevertheless, they offer some
considerations concerning discreteness:

We believe that the equivalent of quantum discreteness in this paper corresponds
to the idea that each act of arbitrage is a discrete event corresponding to the
detection of a quantum system after it passed : : : the barrier. In reality arbitrage
opportunities do not occur on a continuous time scale. They appear at discrete
time spots and often experience very short lives. We would like to argue that it
is the tunnelling effect which is closely associated to the occurrence of arbitrage.
This argument is linked to Proposition 5 below [which gives a necessary
mathematical condition of the existence of arbitrage]. We also mentioned the
wave function in the discussion above, and quantum discreteness is narrowly
linked with quantum probabilities. (Haven and Khrennikov 2013a, p. 4095)

This remark allows for an interpretation of the phenomenon along the lines
of the quantum principles considered here, although there is space for debate
as to whether arbitrage requires such an interpretation. Haven and Khrennikov
themselves do not appear to subscribe to all of these principles, especially to the
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RWR principle. However, whether we can or cannot mathematically describe
the economic processes themselves involved in arbitrage, rather than only
predict certain probabilities involved, is secondary for the moment. The proto-
RWR principle suffices: one is not concerned with this description any more
than Heisenberg was concerned with describing the behavior of the electron
in the hydrogen atom in deriving his formalism.10 One is only concerned
with predicting the probabilities of certain future events of arbitrage given the
preceding situation and the data involved, analogously dealing even with the
individual event of arbitrage, although in this case the underlying dynamics,
even if indescribable, is multiple, rather than individual, as it is in quantum
physics.11

The situation appears to be more complex in the case of Tversky and
Kahneman’s analysis in psychological decision-making and subsequent uses
of Q-models in cognitive modeling (Pothos and Busemeyer 2013). As noted
above, the main reasons for using models there are, correlatively, the noncom-
mutative principle and non-additive probabilities, both found in Q-models.
However, the underlying dynamics of the cognitive or psychological processes
leading to the situations in question are causal or quasi-causal, and unlike the
behavior of quantum objects, may be open to analysis within the domain
demarcated by the theory. This is because one might expect that there are
psychological and social reasons for this quantum-like decision-making, and
in a way the task of psychology is to understand and explain these reasons,
although the research using Q-models generally renounces this task. This
situation, again, raises the question of the nature of relationships between the
QP, QD, and (if it is used) RWR principles in this field, specifically, whether
they are linked in the way they are in QM, and whether the corresponding
experiments could be interpreted accordingly. Under the RWR principle, we
cannot explain the reasons for the peculiar behavior of quantum objects and
the corresponding features of quantum phenomena, and, as just suggested,
one could surmise that this may be the case in certain economic phenomena,
where Q-models, including infinite-dimensional ones, could be used. Overall,
economics requires manifold models, just as physics does—be they classical,
classical statistical, chaos-theoretical, relativistic, or quantum.

The same might be expected in psychology. The question, however, is,
again, the possible role of the RWR principle in some psychological situations.
I would surmise that such situations are possible and are likely to emerge. Thus

10Indeed, as I indicated, elsewhere Khrennikov argued for a classical-like model at the ultimate level of
the constitution of nature (2012).
11In this regard the situation may be more analogous to quantum field theory.
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far, however, Q-models in cognitive psychology only use the QP principle;
in other words, these Q-models do not appear to involve either the QD
or the RWR principle. I would venture that our brains may work, at least
sometimes, in accordance with all three principles, thus without relying on
hidden causality but only on the quantum-like play of probabilities and
correlations. One can speak of a Bayesian brain. But, as against rational
Bayesian agents, associated with the term Bayesian in cognitive psychology
(against which association Q-models of cognitive psychology are advanced as
well), this kind of Bayesian brain need not always function rationally. It may,
accordingly, be possible to have a Q-model that would allow one to predict the
outcomes of decision-making situations as governed, on Bayesian lines, by the
information involved in making them, although we cannot have access to all
of this information, even the most crucial one, in accordance with the RWR
principle.12 Nor can those who make these decisions have this access, given
the role of the unconscious in making them, and that this unconscious is not
causal in its functioning in the way, for example, Freud saw it, although his
thinking was ultimately more complex on this point.

Bohr’s repeated invocation of “an irrational element,” as in the passage on
the parallel between biology and quantum physics cited above, is instructive
in this context. The idea and the very language of irrationality have been used
against Bohr by his critics and have troubled some of his advocates, in my
view as a result of misunderstanding his thinking. This “irrationality” is not
any “irrationality” of QM itself, which Bohr always saw as a rational theory
(e.g., Bohr 1987, vol. 1, p. 48; 1987, vol. 2, p. 63). It is a rational theory of
something that may, in a certain sense, be irrational—inaccessible to rational
thinking or even thinking in general. Bohr’s point is misunderstood in part
by virtue of overlooking the difference between the rationality of a theory and
the irrationality of what this theory (rationally) deals with. If, as he says, “the
quantum of action [h], : : : appears as an irrational element from the point
of view of the classical physics,” it cannot be accounted for by the latter. In
other words, it cannot be rationally incorporated into the scheme of classical
mechanics.

Although Tversky and Kahneman’s and related arguments are epistemo-
logically different from that of Bohr, they too are often seen as bringing into
consideration and incorporating “irrational” elements into psychological or
economic decision-making. This decision-making replaces or supplements

12This suggestion need not depend on the applicability of a Bayesian (such as QBist), as against a
frequentist or statistical, approach to QM itself.
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rational Bayesian agents of traditional economics, agents who use probabilistic
reasoning subject to updating their estimates on the basis of new information,
with the partially “irrational” Bayesian agents. This irrationality may be
divided into three types, with sometimes uncertain borderlines between them.
The first type is actually a form of rationality, but of a kind different from that
presumed to be dominant (say that of maximizing one’s monetary benefits),
and this alternative rationality may be unconscious. The second type of this
irrationality would be something that could be explained but that defies it
as anything that could be seen as rational. It is true that this irrationality may
eventually reveal itself to be the irrationality of the first type.13 Finally, the third
type of irrationality may be seen in terms of Bohr’s interpretation, insofar as
classical decision theory cannot incorporate it, while quantum-like decision
theory can make it part of its predictive scheme without explaining it. In the
first place, such a scheme does not, again, describe how things happen, but
only predicts the probabilities involved in the decision-making by the agent
considered. In this way, QD, QP, and RWR principles can be brought together
in this domain.

However, given that in this case one customarily uses finite-dimensional Q-
models (in economics one might also need the infinite dimensional one) and
that a quantum informational approachmay be especially fitting, wemay want
to gauge this use against the scheme of D’Ariano et al. as considered above.14
As I noted above, at this stage, in mathematical modeling in psychology
we need not be concerned with deriving the necessary mathematical model
from fundamental principles. We already know that the finite-dimensional Q-
models, used in cognitive psychology, follow from them (from six principles
and the operational framework defined within this scheme). This gauging,
however, even if now used as an interpretation of such a Q-model, would
allow us to make important conclusions about the nature of the phenomena
being considered in relation to theQD,QP, andRWRprinciples, as considered
earlier, because these relationships obtain in quantum theory. The key point
here is the role of certain fundamental principles behind a given model, even
if this model is already available, because otherwise we don’t really have a
rigorous theory or even a rigorous model. The recourse to such principles gives

13Some, such as Freud, would challenge this type of “irrationality,” because they would presume a hidden,
unconscious form of rationality, as just considered. Indeed Freud does so by way of comparing it in this
regard with the then (1915) emerging quantum physics (Freud 2008, p. 115). However, one could in turn
challenge Freud on this point, as in effect he himself did, against his own grain, on the same occasion.
14I am grateful to G. Mauro D’Ariano for directing my attention to this line of inquiry and insightful
suggestions.
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us a deeper understanding of a given field than only finding a workable model
to use, although the latter should not be undervalued either.

The first step would be to check the five axioms, which “represent standard
features of information processing that everyone would, more or less implicitly,
assume. They define a class of theories of information processing that includes,
for example, classical information theory, quantum information theory, and
quantum theory with superselection rules. The question whether there are
other theories satisfying our five axioms and, in case of a positive answer, the
full classification of these theories is currently an open problem” (Chiribella
et al. 2011, p. 3). One might expect that these axioms would be satisfied by
decision-making, classical or quantum-like, in psychology and economics (see
pp. 336–337 above). As “all these axioms are satisfied by classical information
theory,” the question now is of course whether the purification postulate
applies in those situations where Q-models are used. The postulate states that
“the ignorance about a part is always compatible with the maximal knowledge
of the whole,” and further that “if two pure states of a composite system
AB have the same marginal on system A, then they are connected by some
reversible transformation on system B. In other words : : : all purifications of
a givenmixed state are equivalent under local reversible operations” (Chiribella
et al. 2011, p. 2). It would be surprising if this or analogous postulate did not
apply once Q-models were applicable (e.g., Asano et al. 2012), but a rigorous
verification of this postulate, or of the five axioms, would be a necessary task.

The operational framework merits a brief, but essential, reflection as well.
As I explained, D’Ariano et al. arrive at the required mathematical architecture
in a first-principle-like way, by using the rules governing the structure of
operational devices, “circuits,” via Coecke’s work on monoidal categories and
linear logic (Chiribella et al. 2011, p. 4; Coecke 2010, p. 1). Admittedly, in
cognitive decision-making we deal with human subjects, and establishing the
corresponding quantum mathematical architecture for these “circuits” is a
formidable task, but it is all the more exciting and important for that. Indeed,
we already have important related work along the lines of category theory
in this field (Abramsky and Brandenburger 2011). I suspect that biology and
neuroscience are likely to pursue these lines of thinking as well.

There is plenty of work to be done along these lines in all these fields. But
as QM, in the hands of Heisenberg and Dirac (one could hardly find better
hands), taught us, the principle approach is likely to serve as exceptionally
helpful guidance and bring a rich harvest of new and deeper understanding in
these fields, just as it did in quantum theory.
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