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Nicotine dependence is associated with functional variation
in FMO3, an enzyme that metabolizes nicotine in the brain
AM Teitelbaum1,7, SE Murphy2,7, G Akk1,3, TB Baker4, A Germann1,3, LB von Weymarn2, LJ Bierut5, A Goate6, ED Kharasch1 and
AJ Bloom1,5

A common haplotype of the flavin-containing monooxygenase gene FMO3 is associated with aberrant mRNA splicing, a twofold
reduction in in vivo nicotine N-oxidation and reduced nicotine dependence. Tobacco remains the largest cause of preventable
mortality worldwide. CYP2A6, the primary hepatic nicotine metabolism gene, is robustly associated with cigarette consumption but
other enzymes contribute to nicotine metabolism. We determined the effects of common variants in FMO3 on plasma levels of
nicotine-N-oxide in 170 European Americans administered deuterated nicotine. The polymorphism rs2266780 (E308G) was
associated with N-oxidation of both orally administered and ad libitum smoked nicotine (P⩽ 3.3 × 10− 5 controlling for CYP2A6
genotype). In vitro, the FMO3 G308 variant was not associated with reduced activity, but rs2266780 was strongly associated with
aberrant FMO3 mRNA splicing in both liver and brain (P⩽ 6.5 × 10− 9). Surprisingly, in treatment-seeking European American
smokers (n= 1558) this allele was associated with reduced nicotine dependence, specifically with a longer time to first cigarette
(P= 9.0 × 10− 4), but not with reduced cigarette consumption. As N-oxidation accounts for only a small percentage of hepatic
nicotine metabolism we hypothesized that FMO3 genotype affects nicotine metabolism in the brain (unlike CYP2A6, FMO3 is
expressed in human brain) or that nicotine-N-oxide itself has pharmacological activity. We demonstrate for the first time nicotine
N-oxidation in human brain, mediated by FMO3 and FMO1, and show that nicotine-N-oxide modulates human α4β2 nicotinic
receptor activity in vitro. These results indicate possible mechanisms for associations between FMO3 genotype and smoking
behaviors, and suggest nicotine N-oxidation as a novel target to enhance smoking cessation.
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INTRODUCTION
Despite reduced prevalence, tobacco use remains the largest
cause of preventable mortality both in the US and worldwide.1,2

And although more than half of American smokers attempt to quit
every year, only 6% succeed.3 Currently, three medications—
varenicline, nicotine replacement therapy and bupropion—are
prescribed to aid smoking cessation with modest success,4 but the
heavy burden of tobacco-related disease warrants pursuing
further pharmacotherapy targets.
Nicotine is extensively metabolized. In most smokers, the large

majority of nicotine (70–80%) is metabolized to cotinine, the
product of cytochrome P450 2A6 (CYP2A6)-catalyzed oxidation,5,6

but two further pathways also contribute to human hepatic
nicotine metabolism: N-glucuronidation catalyzed by the UDP-
glucuronsyltransferase UGT2B10, and N-oxidation by the flavin
monooxygenase FMO3. Variation in in vivo nicotine metabolism is
strongly genetically determined and significantly predicts
smoking-related behaviors including cessation.7–9 Specifically,
CYP2A6 is among the few loci consistently associated with
cigarette consumption and related pulmonary disease in
genome-wide association studies.10–12 But, importantly, CYP2A6’s
influence on smoking behavior is primarily related to cigarette
consumption among dependent smokers13 unlike functional

variation in the CHRNA5 nicotinic acetylcholine receptor subunit
gene, which is associated with consumption and dichotomous
nicotine dependence.14–16

On average o7% of total nicotine equivalents (the sum of
nicotine and six metabolites) are typically excreted as nicotine-N-
oxide.17–19 However, a notable feature of the FMOs is their
expression and activity in the human brain,20,21 where CYP2A6 is
not detected.22 FMO3 is also highly polymorphic, including several
common amino acid altering variants with reported substrate
specific consequences.23 The FMO3 polymorphisms that deter-
mine heritable differences in nicotine N-oxidation are not
established; here we describe experiments that evaluated nicotine
N-oxidation in vivo to identify common FMO3 alleles associated
with altered nicotine metabolism. We also pursued the mechan-
isms by which these variants alter enzymatic activity, and the
mechanisms by which variation in nicotine N-oxidation may
influence nicotine dependence.

MATERIALS AND METHODS
Human subjects
The study complies with the Code of Ethics of the World Medical
Association. Written informed consent from participants and approval from
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the appropriate institutional review boards was obtained. Metabolism
experiment participants were recruited from the Collaborative Genetic
Study of Nicotine Dependence (COGEND).16,24 Subjects in the clinical
phenotypes experiments were European Americans in the University of
Wisconsin Transdisciplinary Tobacco Use Research Center (UW-TTURC)
cessation trials.25–27

Clinical nicotine disposition
Nicotine was administered and plasma collected 240 min later, as
described.24 We previously demonstrated the validity of single time point
measures of nicotine metabolites as correlates of genetic variation.24,28

Nicotine-N-oxide and d2-nicotine-N-oxide were analyzed by liquid
chromatography tandem mass spectrometry as previously.19 Selective
reaction monitoring was carried out for nicotine-N-oxide (m/z 179→ 130
andm/z 179→ 117), d2-nicotine N-oxide (m/z 181→ 131 and m/z 181→ 117)
and the internal standard d3-nicotine-N-oxide (m/z 182→ 130 and m/z
182→ 117). Percent of total nicotine converted to nicotine-N-oxide was
calculated as nicotine-N-oxide/(nicotine+nicotine-N-oxide+cotinine+trans-
3′-hydroxycotinine+nicotine-glucuronide). Nicotine, cotinine, trans-3′-
hydroxycotinine and nicotine-glucuronide were previously reported.24,28

Genotyping and haplotype determination
Metabolism experiment subjects were genotyped and a nicotine
metabolism metric based on CYP2A6 genotype determined as previously
reported.16,24,28,29 FMO3 haplotypes were determined using PHASE version
2.1.1.30 In all other subjects FMO3 SNPs were genotyped by the Center for
Inherited Disease Research at Johns Hopkins University using the Illumina
Omni2.5 microarray (www.illumina.com), with data cleaning led by the
GENEVA Coordinating Center at the University of Washington.29 All SNPs
analyzed conformed to Hardy-Weinberg equilibrium.

Gene expression and splicing in human liver and brain
Genomic DNAs and cDNAs were previously prepared from de-identified
normal liver biopsy samples and postmortem cerebellum samples of
European descent.31,32 cDNAs from cultured primary human brain
astrocytes and endothelial cells were prepared using the Direct-zol RNA
MiniPrep kit (Zymo Research, Irvine, CA, USA) and EasyScript cDNA
synthesis kit (Lamda Biotech, Sovereign CT, USA). Human neuron cDNA
was purchased from Sciencell Research Laboratories (Carlsbad, CA, USA).
Gene expression and splicing were assessed by real-time PCR using an
ABI-7900HT Fast real-time PCR system (Supplementary Methods).

Recombinant FMO3 expression
Sequence-verified pVL1393 vectors containing full length FMO3 cDNA with
variants were purchased from Life Technologies (Carlsbad, CA, USA).
Protein was expressed as previously33 at a multiplicity of infection of 8,
with 10 μg ml− 1 FAD (Sigma, St. Louis, MO, USA) added 12 h after
infection. Supersomes expressing reference FMO3 and FMO1 were
purchased from Corning (Corning, NY, USA). FAD content was quantified
fluorimetrically34 and used as a measure of FMO holoenzyme content to
calculate kcat values. All protein concentrations were determined by
Bradford assay.

Cell culture
Cryopreserved primary astrocytes and endothelial cells isolated from
human brain (cerebral cortex) were acquired from Sciencell Research
Laboratories. Astrocytes (1 × 106 cells, passage 2) were initially cultured on
poly-L-lysine coated (2 μg cm− 2) T-75 flasks in complete astrocyte medium
(Sciencell Research Laboratories) and grown until confluency. Endothelial
cells (5 × 105 cells, passage 1) were cultured on a bovine fibronectin coated
(2 μg cm− 2) T-25 flask in complete endothelial cell medium (Sciencell
Research Laboratories) and cultured until confluency.

Liver, brain and cultured astrocyte in vitro nicotine metabolism
Cerebral cortex from a 58 year-old Caucasian male flash-frozen 5.5 h
postmortem was obtained from the National Disease Research Interchange
(NDRI), Philadelphia PA, USA. Microsomes were prepared (Supplementary
Methods) and initial experiments determined an appropriate incubation
time and microsomal protein concentrations that yielded metabolic
activity within a linear range. Metabolites were analyzed by liquid

chromatography tandem mass spectrometry (Supplementary Methods)
and quantified using the ratio of metabolite to internal standard,
subtracting background from control incubations (without NADPH), and
using calibration curves. Further control incubations included with boiled
protein or without protein (Supplementary Figure 1).

Nicotine-N-oxide agonism and modulation of neuronal nicotinic
acetylcholine receptors
Human α4β2 neuronal nicotinic acetylcholine receptors were expressed in
Xenopus oocytes following a protocol approved by the Washington
University in St. Louis Animal Care and Use Committee (Supplementary
Methods). The cRNAs were produced using mMessage mMachine
(Ambion, Austin, TX, USA). Oocytes were injected with a total of 18–
20 ng of cRNA in a final volume of 40–60 nl, and incubated in ND96 (96 mM

NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 2.5 mM Na pyruvate, 5 mM

HEPES; pH 7.4) at 16 °C. Oocytes were used within 2–3 days after injection.
To bias receptor stoichiometries, a 9-fold excess of the α4 or β2 subunit
cRNA was injected, with stoichiometry verified by sensitivity to acetylcho-
line (ACh).35 Electrophysiological experiments were conducted using the
two-electrode voltage clamp technique (Supplementary Methods).

Statistical analysis
Statistical analyses of pharmacogenetic data were performed using ‘R’
(Vienna, Austria). Metabolism phenotypes analyzed are fractions of
deuterated (d2)-nicotine or non-deuterated (d0)-nicotine equivalents
converted to d2 nicotine-N-oxide or d0 nicotine-N-oxide respectively, that
is, nicotine-N-oxide/(nicotine+nicotine-N-oxide+cotinine+trans-3′-hydroxy-
cotinine+nicotine-glucuronide). Valid measurements below the limits of
detection were assumed to be zero. For regression analyses, genetic
variables were treated as previously described.24,28 Current smoking was
defined by a mean d0-cot 42 ng ml− 1. Measures of statistical significance
are not altered to correct for multiple testing. Genetic associations with
smoking phenotypes were tested using a linear model with genotype
coded additively and sex, age, and study as covariates. In tests of the
Wisconsin Index of Smoking Dependence Motives (WISDM) PDM scale the
WISDM Secondary Dependence Motives subscale was used as a covariate.
Michaelis–Menten parameters for recombinant enzyme experiments were
determined by nonlinear regression using SigmaPlot (Systat Software, San
Jose, CA, USA).

RESULTS
FMO3 haplotypes associated with nicotine N-oxidation
FMO3 haplotypes defined by the five FMO3 coding SNPs common
in Europeans (minor allele frequency ⩾ 2%) were determined in
170 subjects with measurements for deuterated nicotine meta-
bolites (Supplementary Table 2). We did not identify any subjects
with the reportedly common FMO3 variant N61K, but this variant
has never been found in studies of trimethylaminuria, nor by an
exome sequencing project including 44000 European American
genomes ((ESP) NGESP, NHLBI Exome Sequencing Project (ESP)
Exome Variant Server). Among our subjects, 59 were current
smokers with non-deuterated nicotine-N-oxide measurements.
The mean plasma concentration of non-deuterated
nicotine-N-oxide in these smokers was 29.4 ± 22.3 pmol ml− 1

(5.2 ± 4.0 ng ml− 1). The percent of oral deuterated nicotine
converted to nicotine-N-oxide after 4 h was highly correlated
with the percent of ad libitum smoked nicotine converted to
N-oxide in these subjects (R2 = 0.82). The dominant indirect effect
of C-oxidation upon the percent of nicotine remaining available
for conversion to N-oxide is demonstrated by the strong
association between CYP2A6 genotype and measures of N-oxida-
tion. Overall CYP2A6 genotype variables account for 34%
(R2 = 0.340, n= 170) of the variance in the percent of oral nicotine
converted to N-oxide and 37% (R2 = 0.367, n= 59) of the variance
in the percent of ad libitum smoked nicotine converted to N-oxide.
Using the most common FMO3 haplotype (1) as the reference,

in a multivariate model including CYP2A6 genotype variables, the
third most common haplotype (haplotype 3, K158; G308) defined
by the minor allele of rs2266780, is significantly associated with
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reduced N-oxidation of both oral nicotine and ad libitum smoked
nicotine (P= 3.3 × 10− 5 and P= 5.6 × 10− 6 respectively, Table 1).
rs2266780 is also significantly associated with reduced nicotine
N-oxidation when tested individually (P= 0.01 and P= 0.002,
respectively). In the same multivariate models, FMO3 haplotype
5 is also significantly associated with reduced N-oxidation
(Table 1), although these associations do not reach significance
in single-variable analyses. After accounting for CYP2A6 genotype,
rs2266780 alone explained 8.5% (R2 = 0.085) and 21.6%
(R2 = 0.216) of the remaining variance in the percent of nicotine-
N-oxide for oral and smoked nicotine, respectively. Common
FMO3 haplotypes 2 (K158) and 4 (M257) were not significantly
associated with altered nicotine-N-oxidation relative to the
reference haplotype (Table 1). Neither current smoking nor sex
was significantly associated with altered nicotine N-oxidation,
consistent with previous reports.36 UGT2B10 haplotypes28 were
also not associated.
Although FMO3 genotype demonstrates a significant influence

on in vivo nicotine N-oxidation, this pathway represents a small
fraction of overall hepatic nicotine metabolism (4–10% of excreted
nicotine equivalents5,19). Although we find CYP2A6 genotype
explains the majority (58%) of the variance in total oral nicotine
metabolism after four hours (metabolism of nicotine to all
measured metabolites, called nicotine equivalents), FMO3 haplo-
types explain o1% of that variance. However, relative to the small
amount of nicotine typically converted to N-oxide, the impact of
rs2266780 genotype (defining haplotype 3) is great. On average
1.6 ± 1.3% of deuterated and 1.3 ± 0.9% of non-deuterated
nicotine equivalents were present as nicotine-N-oxide in
rs2266780 major allele homozygotes compared with only
0.7 ± 0.4% and 0.4 ± 0.1%, respectively in minor allele homo-
zygotes. Thus, less than half as much nicotine N-oxidation occurs
in homozygotes for the reduced function FMO3 haplotype
than in individuals homozygous for the reference haplotype
(P= 5.4 × 10− 3 and 3.9 × 10− 6 respectively, Figure 1).

Nicotine N-oxidation by variant recombinant FMO3 enzymes
One potential explanation for FMO3 variant effects on clinical
nicotine N-oxidation is altered FMO3 catalytic activity. Four
versions of the FMO3 enzyme corresponding to the reference
allele, K158, G308 and K158;G308 haplotypes were expressed to
assess their relative nicotine N-oxidation activity in vitro. However,

we did not observe a reduction in the nicotine-N-oxidation activity
of the variant FMO3s relative to the reference allele in vitro
(Supplementary Table 3). The product of FMO3-mediated nicotine
oxidation is overwhelmingly the trans rather than the cis
stereoisomer. This was true among our four FMO3 haplotypes
and commercially available microsomes containing the reference
allele (≈79:1), similar to previous reports.37 Incubations with
human liver microsomes also primarily produced the trans isomer
(ratio≈53:1). Interestingly, we also found that recombinant FMO1-
containing microsomes overwhelmingly produce the cis isomer
(≈30:1). This suggests nicotine as a convenient probe to
distinguish between FMO3 and FMO1 activities.

Haplotypes associated with aberrant FMO3 mRNA splicing in liver
and brain
Another potential mechanism of genetically determined variation
in FMO3 activity is altered FMO3 mRNA splicing. Aberrant splicing
of FMO3 mRNA was previously reported in multiple adult and fetal
human tissues; these events result in the omissions of the third
and seventh exons, leading to frame-shifts and premature stop
codons in the aberrantly spliced mRNAs.38 Custom splicing assays
were used to determine the relative amounts of exon skipping of
FMO3 exons 3 or 7 in cDNAs from genotyped European American
liver biopsy samples. Only rs2266780 (E308G) was independently
associated with relative levels of FMO3 cDNAs lacking exons 3 or 7
(Po10− 16; Supplementary Figure 2). These differences equate to
greater than 14-fold and 6-fold increases in transcripts lacking
exons 3 and 7, respectively. We also repeated the experiments in
cDNAs from an unrelated set of human cerebellum samples and
found a similarly unequivocal difference (P= 6.5 × 10− 9). PCR
amplification using the primers from the original study38

confirmed that the products previously reported are associated
with the rs2266780 minor allele (Figure 2). rs2266780 is in high
linkage disequilibrium (R2⩾ 0.95 in Europeans) with at least
eighteen reported intronic SNPs in the FMO3 gene, but none of
these are strongly predicted to affect splicing in silico.
We did not detect significant differences in overall FMO3

transcript expression either in liver or cerebellum samples using
TaqMan gene expression assays (data not shown), possibly due to
the difficulty of detecting such stable differences in liver biopsy
and brain autopsy samples and the demonstrated large effects of
diet on FMO3 mRNA expression.39 However FMO3 was detected in

Table 1. The influence of FMO3 and CYP2A6 haplotype upon in vivo nicotine N-oxidation

MAFa Phenotype Percent of total oral D2-nicotine converted to
nicotine-N-oxideb (n= 170 subjects/340

chromosomes)

Percent of total ad libitum smoked D0-nicotine
converted to nicotine-N-oxidec (n= 59 subjects/

118 chromosomes)

Variable nd Parameter estimate P-value nd Parameter estimate P-value

CYP2A6 normal allelese 244 − 1.8± 0.2 o2 ×10− 16 87 − 1.0± 0.2 1.3 × 10− 8

CYP2A6*1A 48 − 1.5± 0.2 4.6 × 10− 11 19 − 1.1± 0.2 2.6 × 10− 7

CYP2A6*9 22 − 1.1± 0.3 3.1 × 10− 5 4 − 0.3± 0.3 0.4
0.229 FMO3 hap 2 (K158) 78 − 0.1± 0.1 0.4 24 − 0.2± 0.1 0.1
0.179 FMO3 hap 3 (K158;G308) 61 −0.6± 0.1 3.3 × 10−5 26 −0.6±0.1 5.6× 10−6

0.103 FMO3 hap 4 (M257) 35 0.0± 0.2 0.7 18 0.0± 0.1 0.8
0.056 FMO3 hap 5 19 −0.5± 0.2 0.047 4 −0.9±0.3 1.3× 10−3

Total adjusted R2 0.40 0.58

Results of linear regression analyses treating CYP2A6 null alleles (CYP2A6*2, *4, *12 and *38) and FMO3 haplotypes, including 1 (minor allele frequency= 0.426),
as the reference. Genetic variables are coded as number of haplotypes per subject (0,1,2). Negative parameter estimates indicate reduced nicotine N-oxidation
relative to the reference genotype. aFMO3 haplotype minor allele frequency in subjects with measured D2-nicotine-N-oxide.

bDeuterated (d2)-(nicotine-N-
oxide/(nicotine+nicotine-N-oxide+cotinine+trans-3'-hydroxycotinine+nicotine-glucuronide)). cNon-deuterated (d0)-(nicotine-N-oxide/(nicotine+nicotine-N-
oxide+cotinine+trans-3'-hydroxycotinine+nicotine-glucuronide)). dNumber of alleles. eAll CYP2A6 alleles excluding CYP2A6*1A, *9, and assumed null alleles
CYP2A6*2, *4, *12 and *38. Bold values highlight statistically significant associations with FMO3 haplotypes.
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all of the liver and cerebellum samples tested with expression
levels approximately six hundred-fold higher in liver than in
cerebellum, similar to prior reports.20

FMO3 genotype associated with nicotine dependence
Despite the modest role of N-oxidation to hepatic nicotine
metabolism, prior studies have indicated a potential association
between FMO genotype and smoking behaviors.40–42 Therefore,
we tested for an association between rs2266780 (E308G) and
cigarette consumption and nicotine dependence in a well-
ascertained sample of European Americans seeking smoking

cessation treatment. Interestingly, we found a significant associa-
tion (P= 0.0036, n= 1558) between rs2266780 and nicotine
dependence as measured by the Fagerström Test of Nicotine
Dependence (FTND). rs2266780 was not significantly associated
with cigarette consumption, whether measured as cigarettes
per day or using a biomarker of cigarette smoke exposure, exhaled
carbon monoxide (P40.2). Other FMO3 variants were not
associated with nicotine dependence or cigarette consumption.
The FTND contains six questionnaire items that measure

physical dependence and tolerance on an overall 0–10 scale.
Analyses of these items showed that the association between
rs2266780 and FTND is driven by item 1; rs2266780 was not
significantly associated with other items. Item 1, the ‘time to first
cigarette’, elicits information on the time interval a smoker reports
between waking in the morning and lighting the first cigarette;
the minor allele of rs2266780 is associated with a robust increase
in this measure (−0.13 per allele on a 0–3 scale, P= 9.0 × 10− 4).
Among FTND items, time to first cigarette has been demonstrated
to be the most informative metric of heritable factors that
influence nicotine dependence,43 and distinct from overall
cigarette consumption.44,45 31% of rs2266780 major allele
homozygotes reported typically smoking within the first 5 min
after awakening, while only 13% of rs2266780 minor allele
(haplotype 3) homozygotes reported the same urgency to smoke
(Figure 3).
We subsequently tested and found a significant association

(P= 0.006) between rs2266780 and The Wisconsin Index of
Smoking Dependence Motives (WISDM) Primary Dependence
Motives (PDM) scale. The PDM measures core dimensions of
dependence characterized by strong craving, perceived loss of
control over smoking, and an inability to tolerate the passage of
time without smoking; it is especially predictive of smoking
cessation.46,47

To determine whether FMO3 genotype accounts for variance in
FTND and PDM independent of other predictive genetic
variables,29 we ran multivariable competitive regression models
with rs2266780, rs16969968, the key CHRNA5 variant, and a
previously described nicotine metabolism metric based on CYP2A6
genotype.13,29 These models reveal that the FMO3 variant
independently predicts variance in the FTND total score
(P= 0.009), time to first cigarette (P= 0.002), and WISDM PDM
scale (P= 0.027). CHRNA5 and CYP2A6 did not significantly
independently predict variance in either the FTND total score or
time to first cigarette, but all three genes made independent
contributions to the prediction of the WISDM PDM scale
(P-values = 0.027–0.045).

Nicotine N-oxidation in human brain and astrocytes
The association between nicotine dependence and the reduced
function allele led us to investigate novel potential mechanisms
for FMO3’s influence. Although FMO3 and FMO1 mRNAs are
expressed in the human brain,20 evidence for FMO activity in the
human brain is limited.21,48 To determine whether nicotine
N-oxidation occurs in the brain we prepared microsomes from
human autopsy cerebral cortex tissue, as well as from primary
cultured human astrocytes, and from whole mouse brains.
Cultured astrocytes were chosen because of the reported
preferential expression of FMO1 in mouse astrocytes relative to
other brain cell types (FMO3 is not reported expressed at
detectable levels in any mouse brain cell type).49 We attempted
to detect FMO3 mRNA in human primary cultured astrocytes, as
well as in human cultured primary neurons and brain endothelial
cells, but found the level of expression was below the detection
limits of our assay.
Nicotine N-oxidation activity was detected in human brain

tissue (Supplementary Figure 1). Microsomes were incubated with
nicotine or benzydamine, a common FMO substrate and N-oxide

Figure 1. rs2266780 genotype associated with (a) deuterated (d2)-
nicotine N-oxidation (d2-nicotine-N-oxide/(d2-nicotine+d2-nicotine-
N-oxide+d2-cotinine+d2-trans-3'-hydroxycotinine+d2-nicotine-glu-
curonide) 4 h after oral administration, and (b) ad libitum smoked
nicotine N-oxidation (nicotine-N-oxide/(nicotine+nicotine-N-oxide
+cotinine+trans-3'-hydroxycotinine+nicotine-glucuronide). The box-
plots provide summaries of the data distributions for each group of
(n) subjects. A box represents the interquartile range, which includes
50% of values. The line across the box indicates the median. The
whisker lines extend to the highest and lowest values that are within
1.5 × the interquartile range. Further outliers are marked with
circles.
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metabolites were detected for both substrates (benzydamine data
not shown). Primary human astrocyte and cerebral cortex
microsomes both produce trans and cis nicotine-N-oxide at ratios
of approximately 4:1 and 1:1 respectively (at 5 mM nicotine,
Table 2), indicating the activities of both FMO3 and FMO1. This is
in contrast to mouse brain microsomes, which overwhelmingly
produce cis nicotine-N-oxide. Production of cis nicotine-N-oxide by
human brain microsomes followed classic Michaelis–Menten
kinetics, but the production of the trans isomer was non-
saturable (Supplementary Figure 2) as previously reported for
recombinant FMO3.40 Microsomes prepared from different
passages of cultured primary astrocytes (passages 3–7) did not
show a reduction in FMO activity.

Activation and modulation of α4β2 nicotinic acetylcholine
receptors by trans-nicotine-N-oxide

An alternative hypothesis to explain the association between
FMO3 genotype and time to first cigarette would be that nicotine-
N-oxide, whether generated in the liver or brain, has pharmaco-
logical activity relevant to tobacco use, such as a direct effect on
neuronal nicotinic acetylcholine receptors. Therefore, we mea-
sured direct activation and modulation of currents elicited by ACh
in human α4β2 nicotinic receptors expressed in Xenopus oocytes.
In receptors expressed in the 3:2 (α4:β2) stoichiometry, exposure
to 200 μM trans-nicotine-N-oxide resulted in small (peak ampli-
tude: 87 ± 10 nA, mean± s.e.m., n= 8 cells) inward currents. Each

Figure 2. Aberrant FMO3 splicing in human liver and cerebellum tissues by rs2266780 genotype. (a) Aberrant exon 2–4 splicing (skipping exon
3) versus correct exon 3–4 splicing in liver cDNAs, and (b) aberrant exon 6–8 splicing (skipping exon 7) versus correct exon 7–8 splicing in liver
or (c) cerebellum cDNAs. The difference in PCR cycle times (ΔCt) for cDNAs for (n) samples divided by rs2266780 genotype. Relative
expression, ΔCt, determined by subtracting the Ct value of the reaction using exon skipping primers from the Ct value of the reaction using
correct splicing primers (see methods). The boxplot provides a summary of the data distribution. The box represents the interquartile range,
which includes 50% of values. The line across the box indicates the median. The whisker lines extend to the highest and lowest values that are
within 1.5 × the interquartile range. Further outliers are marked with circles. (d) The products of PCR primers38 flanking regions of FMO3
including exons 3 or 7 amplified from liver cDNAs heterozygous for s2266780 (AG), homozygous for the s2266780 major allele (AA) or from
pooled cDNAs from eight liver samples of various genotypes.
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cell was also tested with a saturating concentration (1 mM) of ACh.
The relative peak response to trans-nicotine-N-oxide was
1.7 ± 0.3% of the response to ACh. Sample current traces are
shown in Figure 4a.
Co-application of trans-nicotine-N-oxide modulated current

responses to ACh. The (α4)3(β2)2 receptors activated by 1 μM
ACh (approximately EC3) in the presence of 200 μM trans-nicotine-
N-oxide showed a mean peak response of 44 ± 5% (n= 5) of
control (Figure 4a). The concentration–response data for inhibition
of currents elicited by 1 μM ACh are shown in Figure 4c. Currents
from receptors activated by 1 mM ACh (a saturating concentration)
were not modulated by 200 μM trans-nicotine-N-oxide (98 ± 2% of
control, four cells, P40.4, paired t-test). We infer that the
inhibitory effect is competitive by nature.
The (α4)2(β2)3 receptors exhibit higher sensitivity to ACh, and

changes in modulation by Zn2+ and Ca2+ permeability compared
with (α4)3(β2)2 receptors.35 To increase assembly of (α4)2(β2)3
receptors, we injected oocytes with an excess of β2 subunit cRNA
(see Methods). The resulting receptors showed larger direct
activation (5.7 ± 1.1% of the response to saturating ACh; n= 5)
compared with (α4)3(β2)2 receptors (Po0.01; two-sample t-test) in
the presence of 200 μM trans-nicotine-N-oxide. Co-application of
trans-nicotine-N-oxide resulted in depressed peak response.

Sample current traces are shown in Figure 4b. The inhibitory
effect of the drug was similar for (α4)3(β2)2 and (α4)2(β2)3
receptors (Figure 4c).

DISCUSSION
In this first comprehensive analysis of FMO3 genotype and in vivo
nicotine N-oxidation, we provide strong evidence that a common
haplotype (K158; G308) is associated with significantly reduced
activity. It was our hypothesis that by precisely determining the
FMO3 polymorphisms that affect nicotine N-oxidation we might
refine a genetic model of nicotine metabolism13,24,29 and see a
modest improvement in its prediction of cigarette consumption
over a model based on CYP2A6 genotype alone. However, to our
surprise, we discovered a robust association between the reduced-
function FMO3 haplotype and reduced nicotine dependence as
defined by the FTND. In particular, we find a striking relationship
with longer time to first cigarette, demonstrated as the most
informative measure of heritable factors from the FTND.43

Evidence that differences in cytochrome P450 enzyme activity
in the brain influences substance abuse phenotypes is scant, but
the activity of FMOs in the brain is well established21 and we have
now demonstrated nicotine N-oxidation in human brain micro-
somes. A prominent role for FMO3-mediated nicotine metabolism
in the brain could explain the association with nicotine
dependence and time to first cigarette. In the absence of CYP2A6
activity in the brain,22 differences in N-oxidation may determine a
large portion of the variance in local nicotine clearance, as the
reduced activity FMO3 allele causes a twofold decrease in nicotine
N-oxidation in liver.
A relatively straightforward explanation for FMO3’s influence on

nicotine dependence is via heritable differences in nicotine
clearance, perhaps locally in the brain; but it is also possible that
differences in levels of the metabolite, nicotine-N-oxide, are
responsible. While the modest response elicited by trans-nicotine-
N-oxide in vitro probably rules out direct activation of α4β2
receptors by nicotine-N-oxide as an important mechanism, the
significant inhibition of receptor activation by ACh in the presence
of the metabolite warrants further study. In particular, we are
interested to understand how nicotine-N-oxide may modulate the
activity of receptors containing the α5 subunit, demonstrated to
influence nicotine-related phenotypes.
Selective inhibition of CYP2A6 has been investigated as a

potential strategy to improve the bioavailability of nicotine, but
selective inhibition of FMO activity might lengthen nicotine
perdurance specifically in the brain, the site of nicotine’s
pharmacological activity associated with dependence, while
avoiding increased peripheral effects and risk for cardiovascular
events. Complete FMO3 deficiency in humans is not associated
with symptoms other than trimethylaminuria and therefore FMO
inhibition may allow a wide therapeutic window. Furthermore, the
results reported here indicate that differences in FMO3 activity

Figure 3. Time to first, the interval in minutes that smokers report
typically waiting before lighting their first cigarette after awakening
in the morning, for (n) samples divided by rs2266780 genotype.

Table 2. Nicotine N-oxidation activity in human and mouse microsomes and recombinant human enzymes

Cis nicotine-N-oxide (pmol min− 1 mg− 1)a Trans-nicotine-N-oxide (pmol min− 1 mg− 1)a trans:cis

Human brainb 0.23± 0.01 0.22± 0.03 0.95
Human astrocytesc 0.30± 0.11 1.25± 0.42 4.2
Human liverd 271± 30 10 400± 300 38.4
Mousee brainf 27.6± 0.8 1.1± 0.2 0.04
Mousee liverd 2670± 150 1090± 40 0.4
FMO3 supersomesg 4160± 1090 473 000± 52 000 114
FMO1 supersomesg 94 600± 4540 4280± 250 0.05

a5 mM nicotine. b1.5 mg ml− 1 protein in incubation. c1.0 mg ml− 1 protein in incubation. d30 μg ml− 1 protein in incubation. ePooled tissues from adult female
CD1 mice. f260 μg ml− 1 protein in incubation. g0.5 μg ml−1 protein in incubation.
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influence aspects of nicotine dependence beyond levels of
consumption, suggesting that targeting FMOs may have other
advantages over more broadly targeting hepatic nicotine meta-
bolism as a smoking cessation pharmacotherapy.
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