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Glutamatergic and GABAergic gene sets in
attention-deficit/hyperactivity disorder: association
to overlapping traits in ADHD and autism
J Naaijen1, J Bralten2, G Poelmans2, The IMAGE consortium6, JC Glennon1, B Franke2,3,4 and JK Buitelaar1,5

Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD) often co-occur. Both are highly heritable;
however, it has been difficult to discover genetic risk variants. Glutamate and GABA are main excitatory and inhibitory
neurotransmitters in the brain; their balance is essential for proper brain development and functioning. In this study we
investigated the role of glutamate and GABA genetics in ADHD severity, autism symptom severity and inhibitory performance,
based on gene set analysis, an approach to investigate multiple genetic variants simultaneously. Common variants within
glutamatergic and GABAergic genes were investigated using the MAGMA software in an ADHD case-only sample (n= 931), in which
we assessed ASD symptoms and response inhibition on a Stop task. Gene set analysis for ADHD symptom severity, divided into
inattention and hyperactivity/impulsivity symptoms, autism symptom severity and inhibition were performed using principal
component regression analyses. Subsequently, gene-wide association analyses were performed. The glutamate gene set showed an
association with severity of hyperactivity/impulsivity (P= 0.009), which was robust to correcting for genome-wide association levels.
The GABA gene set showed nominally significant association with inhibition (P= 0.04), but this did not survive correction for
multiple comparisons. None of single gene or single variant associations was significant on their own. By analyzing multiple genetic
variants within candidate gene sets together, we were able to find genetic associations supporting the involvement of excitatory
and inhibitory neurotransmitter systems in ADHD and ASD symptom severity in ADHD.
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INTRODUCTION
Attention-deficit/hyperactivity disorder (ADHD) is one of the most
common neurodevelopmental disorders, characterized by age-
inappropriate inattentiveness and/or increased hyperactivity and
impulsivity.1 ADHD is often accompanied by comorbidities, one of
them being autism spectrum disorder (ASD). ASD is defined by
impaired communication and social interaction as well as
repetitive and restricted behaviors and interests.1 ADHD and
ASD frequently co-occur, with the presence of ADHD within ASD
ranging from 30 to 80%, whereas the presence of ASD in ADHD is
estimated at 20–50%.2,3 Both disorders are highly heritable, with
estimates of 90% for ASD and ~ 76% for ADHD.4–6 In addition,
~ 50–70% of the contributing genetic factors are overlapping
between ADHD and ASD,7 but also see Lee et al.8 Despite their
high heritability, finding genetic risk variants for both disorders
has been challenging so far. Several candidate genes have been
associated with ADHD and ASD symptoms,9–12 but genome-wide
association studies have not yielded many genome-wide sig-
nificance findings.11–13 ADHD and ASD are very heterogeneous
and polygenic disorders, which may explain the difficulties in
identifying the underlying genetic factors.14,15 One characteristic
that ADHD and ASD have in common is impairments in behavioral

inhibition;16 for review see Wang et al.13 This overlapping trait in
both disorders is linked to deficits in frontostriatal brain areas.
Studying an overlapping trait in ADHD and ASD may complement
the search for genetic variants involved in the disorders
themselves.17

Glutamate is the most abundant excitatory neurotransmitter in
the human brain and is involved in many neuronal functions
including synaptic transmission, neuronal migration, excitability,
plasticity and long-term potentiation.18 Because of these wide-
ranging functions, altered glutamatergic neurotransmission has
been implicated in many different nervous system processes.19

Gamma-aminobutyric acid (GABA), on the other hand, is the most
abundant inhibitory neurotransmitter of the human brain involved
in long-range signaling responsible for inhibition of behavior. Both
neurotransmitters are involved in frontostriatal signaling, related
to the dysfunctions in inhibition seen in ADHD and ASD.20,21

The balance between glutamate and GABA is essential for
proper brain development and functioning in these frontostriatal
circuits.22,23 The pathophysiology of ASD has been proposed to be
characterized by a glutamate–GABA imbalance.24 Abnormalities in
the expression of glutamate transporters, GABA-A and GABA-B
receptors have been shown in post-mortem brains of patients.25,26
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In addition, clinical trials of glutamate receptor antagonists and
GABA receptor agonists in Fragile X syndrome, which has many
characteristics in common with ASD, have shown improvement of
social impairments.27 In ADHD, an imbalance in glutamate and
GABA signaling has not been reported before. Magnetic reason-
ance spectroscopy studies investigating GABA and glutamate in
ADHD have, however, shown decreased prefrontal GABA levels in
children, whereas in another study increased glutamatergic levels
were found in comparable prefrontal brain areas.28,29 A recent
study showed a role for GABA in impulsivity and response
inhibition.30 In addition, BOLD activity during response inhibition
has been related to striatal glutamate levels, mediating the effect
of dopamine synthesis on inhibition.31

Genes encoding glutamate and GABA receptors and
transporters are candidate genes for several neuropsychiatric
disorders,32–34 including ADHD and ASD. Deficits in inhibition can
be linked to frontostriatal deficits in glutamate and GABA levels,
which is consistent with findings in ADHD and ASD showing
altered glutamate and GABA signaling.35 Genetic associations
have been found for several candidate genes within the
glutamatergic system. For instance, associations have been found
for variation in the GRIN2B gene with both inattention and
hyperactivity symptoms in ADHD,36 and both GRIN2A and GRIN2B
have been associated with ASD.37 A genome-wide study
investigating rare variants found over-representation of variants
belonging to the metabotropic glutamate receptor genes in
several ADHD cohorts.38 GABA transporter subtype 1 (GAT1) gene
knockout mice have been shown to have decreased attention and
increased impulsive behavior, relating this gene to ADHD
symptomatology and difficulties in inhibiting impulses.39 In
addition, mutations in the GABA-A receptor subunit-encoding
genes GABRQ and GABRA3 have been found in two different
families with ASD.40

Both ADHD and ASD are polygenic, with multiple genetic
variants with small effects assumed to have a role in a major part
of the patient population. Identifying single genetic variants with a
small effect size can be challenging. Considering multiple genetic
variants within the same analysis can potentially increase the total
explained phenotypic variance and thereby boost the power of a
genetic study. Earlier studies on cognitive disorders focusing on
multiple variants within the same gene or within candidate
genetic pathways already showed potential for this approach.41–43

In addition, top findings within genome-wide association studies
of psychiatric disorders have been found to converge on common
underlying biological processes, suggesting that multiple genetic
variants within interacting sets of genes are involved in the
etiology of psychiatric disorders.11,12,44,45

In the present study we explored, whether genes for glutamate
and GABA neurotransmission are associated with ADHD and ASD
traits. This was investigated by looking at the two symptom
dimensions hyperactivity/impulsivity and inattention of ADHD. In
addition, because of the evidence of a genetic overlap between
ADHD and ASD and the glutamate–GABA imbalance hypothesis,
we also investigated whether these neurotransmission gene sets
moderate symptoms of ASD within an ADHD case-only sample.
We used quantitative measures of ADHD and ASD symptom
severity to characterize the disorders in terms of continuous
distributions.46 Such an approach may help to better take into
account the heterogeneity of the disorders as well as the extent of
overlap between them.14,47 Complementary, because of the
common deficit of inhibitory control in ADHD and ASD and
because of its regulation by frontostriatal glutamatergic and
GABAergic signaling, we also investigated in a subsample whether
the genes for glutamate and GABA neurotransmission are
involved in inhibitory control. We made use of the stop-signal
reaction time (SSRT) of a behavioral response inhibition task,
which is related to excitatory and inhibitory signaling in the
frontostriatal circuit. We investigated multiple genetic variants

within glutamatergic and GABAergic genes simultaneously using a
gene-set approach with the MAGMA software. Subsequently, we
investigated gene-wide associations within this data set.

MATERIALS AND METHODS
Sample
The present study is part of the International Multi-center ADHD Genetics
(IMAGE) study, an international collaborative study in seven European
countries (Belgium, Germany, Ireland, Spain, Switzerland, the Netherlands
and the United Kingdom) and Israel.48,49 The IMAGE study was designed to
identify genes that increase ADHD susceptibility. Participants were 5–17
years old and of European Caucasian descent. Exclusion criteria included
an IQ below 70, the presence of a classical autism diagnosis, epilepsy,
known neurological disorders and any genetic or medical disorder
associated with externalizing behaviors that might mimic ADHD. Details
of the IMAGE sample have been described elsewhere.50

ADHD symptom severity
A semi-structured, standardized, investigator-based interview (Parental
Account of Children’s Symptoms51) and questionnaires (parent and
teacher Conners’ long-version rating scales52 and parent and teacher
strengths and difficulties questionnaires53) were used to establish an
ADHD diagnosis in children who were clinically diagnosed previously (see
Rommelse et al.54) for the standardized algorithm that was applied to
derive the DSM-IV symptoms). To investigate symptom severity, a 4-point
scale was used for the questions of the subscales for inattention and
hyperactivity/impulsivity of the Conners parent rating scale. Severity was
defined as the summed value of the questions per subscale.

Autism symptom severity
Autism spectrum symptoms were determined by administration of the
Social Communication Questionnaire55 filled in by the parents. This
validated questionnaire consists of 40 yes/no items determining autistic
symptom severity based on the following domains: (i) reciprocal social
interaction, (ii) communication and (iii) restricted, repetitive and stereo-
typed interests and patterns of behavior. Here, the score (ranging from 0 to
39) was used as a continuous measure of autism symptom severity. As a
DSM-IV diagnosis of autistic disorder or Asperger syndrome was an
exclusion criterion for the IMAGE study (see Sample), the autism symptoms
could not exceed the threshold for clinical diagnosis.

Inhibition
Response inhibition was measured using a Stop task in which participants
are required to withhold their response to a stop signal as opposed to the
more frequently occurring go-trials. This task was part of a larger
neuropsychological assessment battery used in the Dutch part of the
IMAGE study.20 The latency of the stop process, the SSRT, is a reliable
measure of inhibition, which has shown group differences between ASD
and ADHD cases compared with controls, whereas unaffected siblings
showed an intermediate pattern and SSRT correlates between siblings.20

Genotyping
Genome-wide genotyping of the IMAGE probands was performed as part
of the Genetics Association Information Network study using the Perlegen
genotyping platform, described previously.56 An imputation approach was
used with the Hapmap II release 22 data set.57 The imputed data
underwent quality control, in which SNPs with an imputation score lower
than 0.5 and minor allele frequency lower than 0.01 were excluded. After
this step, 2 182 904 SNPs across the genome were retained, excluding the
X-chromosome.
Selection of the glutamate (48 genes) and GABA (36 genes) gene sets

was based on Ingenuity Pathway Analysis software (http://www.ingenuity.
com). This is a frequently updated genetic database for genetic pathway
analysis. Ingenuity generates these ‘canonical’ pathways based on
experimental evidence from the scientific literature and many other
sources, including gene expression and gene annotation databases to
assign genes to different groups and categories of functionally related
genes. We selected genes that are known to have a distinct role in either
glutamate or GABA signaling (see Supplementary Tables S1 and S2 and
Supplementary Figures S1 and S2 for an overview of genes from the
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Ingenuity Pathway Analysis, their functions and which of those were
included in the analysis). SNPs in all selected genes were selected from the
quality-controlled genome-wide data set. As evidence suggests that
genetic variants surrounding a gene can influence gene expression, we
extracted a second set of SNPs based on the selected genes plus a 100
kilobase pair (kb) upstream and downstream flanking region.58–61 Analyses
were performed for the SNPs within all genes only (no flanking) and for the
SNPs within the genes plus the 100 kb flanking region. In addition, we
investigated association with genes encoding glutamate/GABA receptors
and transporters only because of their most central role in neurotransmit-
ter signaling.62 In this way, we wanted to check whether our results are
mainly driven by these genes.

Data analysis
Association analysis to symptom severity was performed separately for
hyperactivity/impulsivity symptoms and inattention symptoms (n=931)
and for autism symptoms (n=922). Post hoc to the analysis of association
to symptoms, in a subsample (n= 162; see Table 1) we also performed
association analysis of behavioral inhibition with the glutamate and the
GABA gene sets to investigate potential association of these gene sets with
a common trait in ADHD and ASD. All phenotypic variables were
normalized using Blom transformation (SPSS 20; SPSS, Chicago, IL, USA).
Gender and age were included as covariates.
Associations were assessed using MAGMA software (Multi-marker

Analysis of GenoMic Annotation, http://ctglab.nl/software/magma
(ref. 63)). To account for linkage disequilibrium within our data, we used
a principal components (PCs) regression model, which projects the SNP
matrix for a gene on PCs and then prunes out PCs with too small
eigenvalues. By default only 0.1% of the variance in the SNP data matrix is
pruned away. The remaining PCs are then used as predictors for the
phenotype in a linear regression model to calculate a gene-wide P-value.
Subsequently, we tested whether the genes in the gene set were jointly

associated with the phenotype. This analysis may include a self-contained
test, examining association of the set with the phenotype under a null
hypothesis of no effect. However, the more valid competitive test
examines whether a certain gene set of interest is more strongly
associated with a phenotype than all other genes in the genome,
correcting for gene size and density. In the competitive test, the effect of

the gene set is compared with the background signal of all genes that are
not in your gene set. Here, we only report the results of the
competitive tests.
Initial testing considered gene-set associations with the phenotypes'

inattention severity, hyperactivity/impulsivity severity and autistic symp-
tom severity. The association to inhibition was performed post hoc in a
subsample because of availability of behavioral data only for a small group.
In addition, gene-wide and single SNP associations were considered.

Because of the correlations between the phenotypic variables, corrections
for multiple comparisons were based on the effective number of tests
calculated by using the eigenvalues of the correlation matrix. Taking the
correlations into account, our number of effective tests was 2.5. For the
gene sets, a P-value of o0.01 was considered statistically significant
(Pcorrected = 0.05/#gene-sets/#effective tests). For gene-wide association, a
P-value of 0.0003 was considered statistically significant (Pcorrected = 0.05/
#genes/#effective tests).

RESULTS
Table 1 lists the general characteristics of the sample. Moderate
correlations were found between the two symptom domains of
ADHD (0.506, Po0.01) and weak correlations were found
between hyperactivity/impulsivity symptom severity and autism
symptom severity (0.077, Po0.05). No significant correlation was
observed between inattention and autism symptom severity
(−0.006, P= 0.86). Similarly, no significant correlations were found
between any of the clinical ADHD or autism symptom scores and
the SSRT (r =− 0.008 to 0.094, all P-values 40.1).
The selection of glutamate and GABA genes yielded a total of

84 genes (Table 2). Four genes positioned on the X-chromosome
(GRIA3 in the glutamate set, GABRA3, GABRE, GABRQ in the GABA
set) were not included in the analysis because of unavailability of
the X-chromosome variation in this sample. Dependent on
whether flanking regions were included, the glutamatergic gene
set included 42 (no SNPs in CALML5, GRIN1, GRINA, GRM2 and
SLC7A7) or 47 genes, consisting of 9287 and 15 466 SNPs,
respectively. For GABA, the gene set without a flanking region
consisted of 30 genes and 3047 SNPs (not captured were
GABARAP, GABRD and SLC32A21), whereas for the 100 kb condition
the set consisted of 33 genes (7534 SNPs). See Supplementary
Tables S1 and S2 for SNPs per gene.

Glutamate
The glutamate set showed association with hyperactivity/impul-
sivity symptom severity, as shown in Table 3. The significant
competitive test (P= 0.009) shows that the association with the
glutamate gene set was stronger compared with genes that were
not in the gene set, which also survived correction for multiple
comparisons. No significant associations were found for autism
symptom severity and inattention symptom severity (P= 0.176
and P= 0.144, respectively).
Single-gene analyses did not show any significant associations

(Supplementary Table S5 shows the list of included genes in both

Table 1. Demographic characteristics of the study sample

Value N

Age: y, m (s.d.) 10.9 (2.8) 946
Male: % 87.5% 946
Conners parent hyperactive/impulsive T-
scores: mean, median (s.d.)

78,67; 80
(10,67)

931

Conners parent inattentive T-scores: mean,
median (s.d.)

71.08; 71 (9.62) 931

Social Communications Questionnaire total
scores: mean, median (s.d.)

8.33; 8 (6.11) 922

Stop-signal reaction time in milliseconds:
mean, median (s.d.)

299.23; 280.08
(92.54)

162

Abbreviations: m,month; y, year.

Table 2. Glutamatergic and GABAergic genes selected for analysis

Glutamate genes GABA genes

CALM1 GRIA4 GRIK5 GRIN3B GRM5 PICK1 SLC1A2 ABAT GABRA1 GABRB2 GABRP GPHN UBQLN1
CALML5a GRID1 GRIN1a GRINAa GRM6 SLC17A1 SLC1A3 ALDH5A1 GABRA2 GABRB3 GABRQb NSF
CAMK4 GRID2 GRIN2A GRIP1 GRM7 SLC17A2 SLC1A4 ALDH9A1 GABRA3b GABRDa GABRR1 SLC32A1a

GLS GRIK1 GRIN2B GRM1 GRM8 SLC17A6 SLC1A6 DNM1 GABRA4 GABREb GABRR2 SLC6A1
GRIA1 GRIK2 GRIN2C GRM2a HOMER1 SLC17A7a SLC1A7 GABARAPa GABRA5 GABRG1 GABRR3 SLC6A11
GRIA2 GRIK3 GRIN2D GRM3 HOMER2 SLC17A8 SLC38A1 GABBR1 GABRA6 GABRG2 GAD1 SLC6A12
GRIA3b GRIK4 GRIN3A GRM4 HOMER3 SLC1A1 GABBR2 GABRB1 GABRG3 GAD2 SLC6A13

Abbreviations: GABA, gamma-aminobutyric acid; SNP, single-nucleotide polymorphism. aNo SNPs for analysis when no flanking region was used. bGene
positioned on the X-chromosome.
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gene sets and their associated P-values). In addition, no
associations were found at the single variant level (data not
shown).
The more specific association analyses that included only genes

encoding for glutamate receptors and transporters showed trend-
significant association with hyperactivity/impulsivity symptom
severity (P= 0.044). See also the Supplementary Table S6.

GABA
The GABA gene set was not significantly associated with any of
the symptom dimensions. Single-gene analyses also did not show
any significant associations (Supplementary Table S5 shows the
list of included genes in both gene sets and their association P-
values). In addition, no associations were found at the single
variant level (data not shown). Table 3 summarizes the results.
Although nonsignificant when no flanking region was used,
nominally significant associations were found with inhibition in
the analysis including the 100 kb flanking region (P= 0.04);
however, this did not survive correction for multiple comparisons.
The more specific association analyses that included only genes
encoding for GABA receptors and transporters also did not
demonstrate any significant associations. See also the
Supplementary Table S6.

DISCUSSION
The present study investigated the combined effects of multiple
genetic variants from glutamate and GABA gene sets with ADHD
and ASD traits. The glutamate gene set was associated with
hyperactivity/impulsivity symptom severity, which was robust
when comparing with the rest of the genome. Although a
nonsignificant competitive test could reflect a lack in power, our
results indicate that GABA is not more associated with ADHD or
ASD symptoms than random gene sets. GABA was, however,
nominally significantly associated with inhibition. Single genes did
not show significant association, suggesting that the results are
because of the combined effect of genetic variants across
several genes.
To the best of our knowledge, this is the first study to

understand the combined effects of glutamate and GABA genes
on ADHD and ASD quantitative traits. Previous investigations of
other traits, which included multiple variants in one analysis, have

been mainly performed based only on so-called self-contained
tests. Recent research suggests that such tests might harbor the
risk of type I errors because in polygenic phenotypes one will
probably never find any association. MAGMA allows performance
of competitive testing, in which it can be investigated whether the
observed association is likely to be more specific to this gene set
(a significant test) or whether its association to other genes or sets
is equally possible (a nonsignificant test) by comparing it to the
effect of genes that are not part of your gene set in the entire
genome. A significant competitive test emphasizes the association
to be specific for the tested gene set, whereas a nonsignificant
test indicates that a part of the polygenic nature of the trait was
captured. Self-contained tests do not take into account the overall
level of association across the genome, the gene size (the number
of principal components or SNPs) and the gene density.
Competitive testing therefore has more merits.
The strongest finding in the current study was for the

association of glutamate signaling-linked genetic variation with
hyperactivity/impulsivity symptoms. This finding is in accordance
with results from studies showing increased glutamate release
from the prefrontal cortex of the spontaneously hypertensive rat,
an animal model showing ADHD-like hyperactive behavior.64–66

Furthermore, glutamate has been related to self-reported
impulsivity in other disorders67 and to impulsive behavior in
healthy adolescents.68 Previous work in the same sample showed
that the hyperactivity/impulsivity domain of ADHD was also
associated with candidate genetic pathways involved in dopa-
mine/norepinephrine and serotonin signaling,41 suggesting that
several genetic mechanisms contribute to hyperactivity/impulsiv-
ity symptoms in ADHD cases.
In our study, we investigated the genetic underpinnings of

autism symptom severity in an ADHD-only sample. ASD itself has
been linked to glutamate and GABA by the excitatory/inhibitory
imbalance hypothesis.24 Our results thus provide an interesting
hypothesis for further investigating the underlying mechanism of
the overlap between ADHD and ASD. Although symptoms coexist
across ADHD and ASD, only weak correlations were found
between hyperactivity/impulsivity symptom severity and ASD
symptoms, and no correlations were found between inattention
and ASD symptoms. The associations found in the current study
could, therefore, not be related to the mere correlation between
the studied phenotypes.
A previous study indicated excitatory/inhibitory gene expres-

sion to be disturbed in ASD, suggesting reduction of the
expression of inhibitory genes to be more pronounced compared
with genes related to excitation and that the imbalance was
mainly due to GABA disturbances.69 In the present study, GABA
was nominally significantly related to inhibition, which may reflect
a disturbance of these inhibitory factors. Our finding was,
however, limited by the small sample size used and needs
replication in an independent data set before any conclusions can
be drawn.
The current results support the hypothesis that glutamate and

possibly also GABA are associated with ADHD and ASD traits.
Unfortunately, current gene-set association analysis cannot reveal
the direction of the observed effects, or whether the directions for
the gene sets differ, which makes the interpretation of the
findings in this study more difficult in terms of the imbalance
theory for GABA and glutamate. In future studies, it would be
interesting to add information on the neural mechanisms under-
lying inhibition by using imaging studies focusing on the
frontostriatal circuitry.
Our findings should be viewed in light of certain strengths and

limitations. An important strength of the current study is the
combination of multiple genetic variants, which enables us to
better take into account the small effect sizes for single variants
and genetic heterogeneity. A second strength is the use of a
competitive test that tests association of the selected gene set

Table 3. Association result P-values for the discovery and post hoc
tests

Competitive

0 kb 100 kb

Glutamate
Autism symptom severity 0.176 0.873
Hyperactivity/impulsivity severity 0.009 0.263
Inattention severity 0.144 0.566
Inhibition (SSRT) 0.037 0.345

GABA
Autism symptom severity 0.465 0.769
Hyperactivity/impulsivity severity 0.473 0.618
Inattention severity 0.827 0.434
Inhibition (SSRT) 0.178 0.040

Abbreviations: GABA, gamma-aminobutyric acid; SSRT, stop-signal
reaction time. Bold marking indicates significance after correction for
multiple comparisons (Meff-corrected, adjusted P-value= 0.01); italics show
nominally significant associations.
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against the background signal of other genes. Gene-set selection
is, however, limited by the fact that the currently available
databases are still incomplete and/or not sufficiently annotated.
For the current study, we took the approach of only including
genes that could be selected by using the canonical pathway
database from Ingenuity. Other approaches would have been
selection based on literature on glutamatergic and GABAergic
genes with a possible role in ADHD, or using proteomic studies,70

both of which have their drawbacks as well. Therefore, with our
approach, we may have missed genes that are involved in
glutamatergic and/or GABAergic signaling; however, we are
confident that the genes that we included are directly involved
in glutamate/GABA signaling.
As the studied sample consisted of ADHD patients only, the

current results should not be viewed as related to disorder risk
either for ADHD or ASD. To this end, a case–control study should
first be performed. In addition, a diagnosis of autistic disorder or
Asperger disorder was an exclusion criterion in the IMAGE study.
We could therefore not directly compare overlapping genetic
underpinnings, but could only investigate the presence of autism
behavior within the ADHD sample. It would be interesting for the
future to replicate these findings in an ASD sample and to include
patients with ASD with comorbid ADHD. Lastly, differences in
results occurred based on the flanking region we used. Although
inclusion of the 100 kb flanking regions of selected genes did not
seem to lead to more explained variance in most cases, the
difference between using the flanking region and not using it
should be highlighted. The gene sets without the flanking region
capture the SNPs in the genes, whereas in the gene sets with the
100 kb flanking region there were 4487 and 6179 extra SNPs
present in the GABA and glutamate set, respectively, which are
not part of the gene itself (see Supplementary Tables S3 and S4 for
number of SNPs per gene). In addition to including regulatory
regions important for gene activity,58–61 this flanking region may
also include neighboring genes that may dilute effects of variants
in the selected genes. We therefore reported both approaches in
the current manuscript.
In conclusion, the current study supports the hypothesis that

genes involved in glutamate neurotransmission are involved in
ADHD as they were associated to hyperactivity/impulsivity
severity. An overlapping trait between ADHD and ASD, altered
response inhibition, may show an association with GABA;
however, additional research is necessary to clarify this. In
addition the present study shows that studying the aggregated
effect of multiple genetic variants may overcome power problems
in genetic association testing.
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