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Analysis of free text in electronic 
health records for identification of 
cancer patient trajectories
Kasper Jensen1,2, Cristina Soguero-Ruiz3, Karl Oyvind Mikalsen4, Rolv-Ole Lindsetmo5, 
Irene Kouskoumvekaki6, Mark Girolami2,7,8, Stein Olav Skrovseth1,4 & Knut Magne Augestad9

With an aging patient population and increasing complexity in patient disease trajectories, physicians 
are often met with complex patient histories from which clinical decisions must be made. Due to the 
increasing rate of adverse events and hospitals facing financial penalties for readmission, there has 
never been a greater need to enforce evidence-led medical decision-making using available health 
care data. In the present work, we studied a cohort of 7,741 patients, of whom 4,080 were diagnosed 
with cancer, surgically treated at a University Hospital in the years 2004–2012. We have developed a 
methodology that allows disease trajectories of the cancer patients to be estimated from free text in 
electronic health records (EHRs). By using these disease trajectories, we predict 80% of patient events 
ahead in time. By control of confounders from 8326 quantified events, we identified 557 events that 
constitute high subsequent risks (risk > 20%), including six events for cancer and seven events for 
metastasis. We believe that the presented methodology and findings could be used to improve clinical 
decision support and personalize trajectories, thereby decreasing adverse events and optimizing cancer 
treatment.

For cancer patients who tend to have numerous encounters with the healthcare system, personalized care has 
become increasingly important1. However, identifying the information needed for high quality care and the inter-
pretation of the frequently complex medical information that comes with patients, is a resource-consuming task2. 
Similarly, with increasing health care costs, inadequate resources, and a lack of a methodology for measuring 
outcomes and quantifying risks, the demand for interventions to improve health care delivery has gained consid-
erable momentum from taxpayers, health care providers and policy makers3. For example, 30-day readmissions 
cost the National Health Service (NHS) in the United Kingdom alone 1,6 billion GBP per year4–6 and as hospitals 
observe an increased rate of adverse events, with unwanted consequences for the individual patient, there has 
never been a greater need to improve evidence-led medical decision-making5,7.

For cancer patients, clinical decisions must be tailored so that necessary treatment is provided in due time 
to avoid a more severe cancer development. In the case of cancer, a variety of factors may influence diagnosis, 
treatment, and ultimately survival. Understanding the conditions and variations that affect outcomes is therefore, 
important for decision-making and delivery of high quality care8. Ultimately, the treatment profile of the individ-
ual cancer patient must be tailored to the patient’s unique treatment profile and expected trajectory9.

The concept of trajectories has existed for some time in the healthcare domain. For example, Jensen et al.10 
converted disease observations for patients over a 15 years period to disease trajectories. Ebadollahi et al.11,  
predict patient trajectories from physiological data using temporal trends to monitor if a patient will experience 
a subsequent event, while Ji et al.12 used social health records to develop prediction models for comorbidity rela-
tionships and condition trajectories.
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However, to the best of our knowledge, no previous studies describe the creation of trajectories directly from 
free text. It is important to emphasize that still nowadays a lot of the patient information in the EHR is in free text. 
Free text is ubiquitous as it is used to keep track and record of the health of patients and serves as communication 
between healthcare providers. For this reason, unstructured EHR text may provide complete descriptions that 
would not have been possible to obtain from data in a structured form13.

The present paper focuses on identifying cancer patient trajectories in need of resource demanding treatment 
and repeated hospital admissions, and - empowered by control of confounders - identifying events that enable 
each patient’s risk of subsequent events (i.e. signs, symptoms, treatment choices, surgery, death) to be estimated 
from the free EHR text.

Towards this, we used the Norwegian version of Medical Subject Headings (NOR-MeSH)14 which has 
Norwegian terms and synonyms for diseases, drugs and surgical procedures that allow for automated data cap-
ture. In comparison, ICD-1015 is a disease classification system and the ATC codes16 is an anatomical classification 
system for drugs.

The threats to causal inference are different in experimental and observational studies and in observational 
settings the comparability between exposure and negative control may only be approximated. Therefore, we 
grouped non-causal associations into three categories; inaccurate measurements (recall bias), selection bias, and 
confounders17. With this we provide a full assessment of predictive variables that by control of confounders may 
be used to improve cancer care and provide tailored treatment.

In statistics, a confounder is an extraneous variable in a statistical model that correlates with both the depend-
ent and the independent variable, in a way that explains partly or fully the correlation between these two varia-
bles. For example, the argument presented by R.A. Fisher against R. Doll and A.B. Hill’s initial work on the link 
between smoking and lung cancer was that there might be a confounder such as a genetic predisposition to lung 
cancer and smoking18.

We hypothesized that it is possible to identify the most common patient trajectories of our cohort of cancer 
patients from free text and identify the most common trends among our patients. Secondly, we evaluated the 
trajectories as predictors for subsequent events (i.e. signs, symptoms, treatment choices, surgery, and death) that 
are associated with cancer.

Towards this, we analyzed two cancer trajectory sets, the “disease trajectories” and the “event trajectories”. 
The disease trajectory was created to describe how patients progress from symptoms to diseases and, eventu-
ally, death, and was used to identify the most common cancer trajectories. The “event trajectory” consisted of 
symptoms, disease events, admission type, medication events, surgical procedures, and was used to predict the 
sequential events associated with our patients.

Results
Ethics and data description. The Data Inspectorate and the Ethics Committee at the University Hospital 
of North Norway (UNN) approved the study together with the data management protocol. Our cohort was 
identified as all patients undergoing a gastrointestinal surgical procedure (belonging to Chapter J in Nomesco 
Classification of Surgical Procedures) at UNN in the years 2004–2012. For these patients, we have records from 
1999, when the EHR system was introduced to 2014, where we retrieved the records.

From the list of 7,741 patients, we extracted the corresponding free text documents from the EHRs. The main 
patient journals, i.e., the admission journal, nurse notes, doctor notes, descriptive surgical reports, intensive care 
reports and the discharge note were retrieved together with the date of death from the Norwegian Death Registry.

In total, we have 1,133,223 unstructured EHR text documents, including 77,445 admission reports and 2,781 
intensive care unit reports that describe our cohort of 7,741 patients.

Conversion of EHR texts into conceptual information. To conceptualize the Norwegian EHR text, we 
developed a decompounder that splits Norwegian compounded words into longest possible matches to the terms 
and synonyms in NOR-MeSH.

In this setup, words that are too long will not provide sufficient mapping, and splits that are too short will 
introduce noise. For this reason, splits have both lower and upper boundaries. Supplementary Figure S1 shows 
the evaluation of the minimum length of a split of compounded words in word characters. By manually looking 
at the number of correctly and incorrectly decomposed words we found that a minimum split no shorter than five 
characters provided the most accurate decomposition (accuracy, 80%).

Since written language comes with a certain degree of flexibility, the unstructured EHR text was conceptual-
ized (marked with the position of each match) by matching terms and synonyms from NOR-MeSH to the text 
corpus of the EHR system, using the Smith-Waterman matching algorithm19 to allow words and concepts to be 
matched flexibly.

Supplementary Figure S1 illustrates the alignments between corpus words and those of our NOR-MeSH 
terms. Here, the scores of the alignments depend on the lengths of the strings compared. We observed that cor-
rect alignments cluster above the score of those that are invalid. Therefore, we drew a plane (illustrated as a line) 
as cutoff for accepted mappings as presented in Supplementary Figure S1.

We further evaluated the accuracy of the number of gaps considering correctly and incorrectly matched terms. 
Supplementary Figure S1 illustrates that allowing no more than two gaps in an alignment produced the most 
accurate mapping (accuracy, 85%).

The matches were curated and evaluated manually by computing the number of correctly and incorrectly 
matched terms. We estimated that we mapped the terms with an accuracy of 92% and a fall-out (false positives) 
of 5%.

We distinguished diseases, drugs and symptoms with the NOR-MeSH hierarchy, with 2,245 concepts for dis-
ease and symptoms, 1,936 concepts for drug and medications, and 301 concepts for surgical procedures.
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Acquiring patient data in context. As clinical decisions are often derived from information about a 
patient’s status and a patient’s medical history, the terms we are interested to retrieve are terms that describe 
patient events that occur now (real-time/current), and terms that describe a patient’s past (retrospective/history). 
Thus, we considered patient information in EHRs to consist of three main types of descriptions: (1) real-time 
data, (2) retrospective data, and (3) negated findings and correspondences, such as internal communication 
(noise). When mapping the terms and synonyms of diseases, drugs and surgical procedures in NOR-MeSH to the 
text corpus of EHR’s, a considerable amount of terms and synonyms will be mapped in text not directly describing 
the state of the patient, such as negated findings and correspondences and internal communication (noise).

We then trained three Naïve Bayes classifiers: one for disease and symptoms, one for drugs and medication 
and one for the surgical procedures20–22 and we compiled language features for each of the three classifiers, to 
distinguish between real-time events and noise (current – noise), retrospective events and noise (history – noise) 
and real-time events and retrospective events (current – history).

The classifier for diseases and symptoms recognition was trained with forward selection of features and with 
10-fold cross validation. The classifier could accurately recognize concepts of diseases and symptoms with an 
F1-score23 of 0.83 using 103 language features (current – noise, F1 =  0.83, history – noise, F1 =  0.85, current–his-
tory, F1 =  0.82) where in this setup negations and negated findings were recognized by the classifier.

The classifier for drug and medication identification was trained and evaluated likewise and could correctly 
recognize concepts of drugs and medications with an F1 score of 0.80 using 138 language features (current – 
noise, F1 =  0.83, history – noise, F1 =  0.74, current – history, F1 =  0.84).

Lastly, the classifier for surgical procedures could correctly recognize concepts with an F1 score of 0.83 using 
114 language features (current – noise, F1 =  0.79, history – noise, F1 =  0.82, current – history, F1 =  0.87).

The amount of information learned from the EHRs naturally increased with time (Fig. 1A). The number of 
learned observations and events that were related to diseases and symptoms was far greater than those for drugs 
(4.3 times) and surgical procedures (8.5 times) with 869,731 disease and symptom observations, 201,990 drug 
and medication events and 102,561 surgical procedure events. Therefore, the clear majority of the free text in the 
EHRs represents a rich archive of symptom and disease observations supported by drug, medication and surgical 
procedure descriptions. Figure 1B illustrates the 25 most common diseases and symptoms, with nausea (5,996 
patients), vomiting (5,516 patients), abdominal pain (5,277 patients), hemorrhage (5,253 patients) and fever 
(4,458 patients), as the most common symptoms, and cancer (4,080 patients) as the most common disease obser-
vation. Similarly, the most common drugs and medications used (Fig. 1C) included morphine (5,689 patients), 
tramadol (3,116 patients), intravenous glucose (3,048 patients) lactulose (1,946 patients) and epinephrine (1,783 

Figure 1. Information stored in free text of EHRs. (A) Patient events in terms of symptoms and diseases 
(blue), drugs, medication (magenta) and surgical procedures (orange) accumulated over time in the EHRs.  
(B) The most common symptoms and diseases. (C) The most common drugs and medication and (D) the most 
common surgical procedures.
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patients). Regarding surgical procedures (Fig. 1D), it was unsurprising that the simple procedure of biopsy (3,420 
patients) ranked as the most common, followed by stoma formation (2,568 patients), upper endoscopic proce-
dures (2,486 patients) and laparotomy (2,473 patients).

Using the non-parametric Kolmogorov-Smirnov test24, we evaluated whether the occurrences of symptoms 
and diseases among our patients depends on age. We found that although few diseases and symptoms appeared 
earlier or later in life than others (Supplementary Figure S2), the variation proceeded non-significant differences 
(p-value >  1.5e-4), when correction for multiple testing with the Bonferroni method and a 25% level of signifi-
cance enables even small variations in age to pin out25.

Construction of patient trajectories. Our goal was to identify common cancer patient trajectories, 
within the trajectory framework described by Murray et al.9. The typical cancer trajectory entails a predicable 
decline in physical health over a period of weeks to several years. Our patient population consists of patients with 
colorectal cancer, pancreatic cancer, ventricular cancer and esophageal cancer. In general, these patients usually 
have a short life expectancy; for instance, approximately 40% of the patients with colorectal cancer will experience 
recurrent cancer disease within five years26. In addition, patients are frail, with numerous concomitant chronically 
diseases, like obstructive pulmonary disease, hearth failure, dementia etc., i.e. diseases that are negatively affected 
by the progressing cancer disease.

For the trajectories to be clinically meaningful, they had to be composed of patient events that appeared 
together (i.e. notes related to hospital admissions, readmissions, adverse events, surgeries, medications, treat-
ment decisions among others). Therefore, the construction of trajectories from Frequent Item Set (FIS)  
mining27 is obvious because medical events that repeatedly appear together are likely to have a clinically mean-
ingful relationship.

The construction of the trajectories has been summarized in Methods and further illustrated in Fig. 2A–C. 
Thus, we identify two sets of sub trajectories within the cancer trajectory framework, while reserving data from a 
set of 1,000 random patients for later validation (referred to as our external validation set), i.e.:

1. The disease trajectories. Symptoms and disease observations together with information from the Nor-
wegian Death Registry (i.e. symptom - disease - death). This trajectory set was created to describe how 
patients progress from symptoms to diseases and, eventually, death.

2. The event trajectories. Symptoms, disease events, admission type, medication events, surgical procedures 
and information from the death registry (symptom →  disease →  admission →  drug →  surgery →  death). 
This trajectory set was created to exhaustively quantify risk from the EHR text.

Figure 2. Construction of trajectories. (A) Progression of health state to multiple morbidities X and Y.  
(B) Variations in how patient information is registered yields a distorted information space observed by 
clinicians. (C) Frequent Item Set (FIS) mining identified observations that repeatedly appear together.  
(D) Trajectories are created using order of first appearance.
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From 2,344,684 trajectories, we found 213,675 trajectories for subsequent events with a risk of at least 10% 
(20%, 123,591 trajectories; 30%, 53,510 trajectories; 40%, 13,776 trajectories; 50%, 2,033 trajectories; 60%, 157 
trajectories; and 70%, two trajectories). The full list of raw data trajectories is included in Supplementary Dataset 
S1. Most of the trajectories led to an increased risk of a subsequent symptom or disease (74%), while some trajec-
tories led to increased risks of medication (23%) or surgery (3%).

Evaluation of trajectories in reconstructing patient events. The method for constructing trajectories 
depends on the questions the latter are expected to answer. For a patient experiencing events a, b, c and d, we 
used trajectories with events a and b to predict c, and trajectories with a, b and c to predict d. We evaluated the 
trajectories’ ability to reproduce the patient data by applying them step-wise forward on our external data set.

For our patients, we have data from the first encounter and an average of 63 months (~5.3 years) ahead with 
an average of 142.6 events. Figure 3A demonstrates that our trajectories could predict upcoming events in our 
external patient data set with a positive predictive value (PPV) of 80%. In comparison, randomized trajectories, 
where sequence of events and length has been randomized (control group), have a PPV of 19.4%.

Figure 3B illustrates that to estimate 75% of the upcoming events we needed approximately 20 unique known 
events. The EHRs do contain some repeated events; nevertheless, for 25% of the patients, 20 unique events were 
recorded within two weeks (15 days) from the first encounter, and for 50% of the patients within one year (394 
days) from the first encounter.

As the trajectories have different numbers of events in sequence, we sought to determine how many events 
in the sequence of events produce the most predictions that match our external data set (our positive predictive 
paths). Figure 3C reveals that the trajectories produced the most positive predictions at event number 4 (55% of 
the predictions) and 5 (31% of the predictions) in the sequence of events. In comparison, randomized trajectories 
(~99%) produced nearly all predictions at event number 2. Therefore, randomized trajectories are not likely to 
predict any events beyond second order of appearance.

Finally, we evaluated the PPV for the probabilities on the trajectories moving from one event to the next along 
the trajectory and compared them with those of the randomized trajectories (Fig. 3D). As expected, we found that 
the PPV of the trajectories (model) increased with event probabilities, while the PPV of the randomized model 
remained constantly low.

Measuring health changes. For patients with longer medical histories and repeated admissions, such as 
cancer patients, clinical decisions often must be tailored so that necessary care is provided in due time to avoid 

Figure 3. Reconstruction of patient events ahead in time. (A) The positive predictive value (PPV) (events 
explained, %) by trajectories compared with randomized trajectories of the same size. (B) The PPV in terms of 
the number of events known for a patient. (C) Positive predictions, % in terms of the event sequence number in 
the trajectories. (D) PPV in terms of event probability.
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further complications. By understanding the health changes, we learn the characteristics of who may have adverse 
events and what their downstream complications may be.

Among the 4,080 patients with cancer, 2,709 (66%) had events before the cancer diagnosis. Indeed, our 
patients had an average of 38 symptoms and diseases before the diagnosis of cancer with a median of 2.7 years. 
Supplementary Table S1 shows the list of symptom and disease events for our patients before cancer diagnoses. 
Among the total of 106 diseases and symptoms reported before the cancer diagnoses, 99 diseases and symptoms 
resulted in more than 10% of patients returning with cancer, 41 resulted in more than 20%, and three resulted in 
more than 30% (see an example for chest pain in Fig. 4A).

The five most informative trajectories with the highest information gain (KL-divergence)28 are presented in 
Fig. 4B. Among intermediate events, chest pain was associated with high risks of subsequent infarction (44%), 
myocardial infarction (43%), angina pectoris (42%) and ischemia (35%).

Figure 4C illustrates that 1,844 of the patients (45%) with cancer will die at a median of 1.5 years (562 days) 
after initial diagnosis. Considering the most informative trajectories from cancer to death, Fig. 4D illustrates that 
for 50% of the cancer patients, metastasis will be discovered within two weeks after the initial cancer diagnosis.

After the diagnoses of metastatic cancer disease, 18% of the patients will develop ascites with 80% experienc-
ing subsequent death, 19% experiencing sepsis with 73% experiencing subsequent death and 18% experiencing 
hydrothorax with 71% experiencing subsequent death, 31% will develop edema, 16% weight loss, and patients 
with the subsequent observation of constipation have an 80% risk of death.

Drawing causal conclusions and quantifying risks. The risks adjusted by control of confounders for 
moving between events, symptoms and diseases are clearly desirable from a clinical perspective because they may 
disclose novel pathology. The two sets of trajectories, - disease trajectories and event trajectories - describe similar 
outcomes but with different extraneous variables. Figure 5A shows that the adjusted risks in the disease and event 
trajectories correlate (R2 =  0.89), while Fig. 5B shows that the variance between the disease trajectories and the 
event trajectories remains low (R2 =  0.11) with varying extraneous variables in the two trajectory sets.

Supplementary Table S2 presents a full list of adjusted risk markers for complications. From 8,326 quantified 
markers, we found 557 markers that constitute event risks higher than 20%. From high-risk markers, the most 
common were symptoms, such as vomiting (67 markers), nausea (41 markers), death (39 markers), hemorrhage 
(36 markers), metastasis (7 markers), and cancer disease (6 markers). The most common marker for the initial 
cancer diagnosis and subsequent metastasis are shown in Fig. 6A and B.

Figure 4. The most common symptoms and diseases reported prior to cancer diagnoses and from cancer 
to death. (A) The path from chest pain to cancer (neoplasms). (B) The paths from chest pain to cancer 
with intermediate events. (C) The path from cancer to death, and (D) the paths from cancer to death with 
intermediate events.
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We identified dysuria (36% risk), embolism (35% risk), myalgia (31% risk), as high-risk markers for subse-
quent cancer disease. We identified ischemic disease (26% risk), syncope (25% risk), jaundice (22% risk), and 
fatigue (20% risk) as markers for metastatic cancer disease. The findings have been summarized in Table 1.

Discussion
Despite decades of research, there is still a high risk of adverse events and mortality in modern cancer treatment, 
and many variables influence disease outcomes. To optimize treatment, and to prevent adverse events and hos-
pital readmissions, patient related risk factors should be assessed continuously29,30. We believe our method of 
identifying patient trajectories through free text analyses may be used as a data-driven decision support tool 
during the complete cancer patient trajectory, to decrease adverse events and readmission, and to provide high 
quality cancer care.

With many risks factors that have to be recognized by the healthcare providers to reduce complica-
tions and provide high quality treatment31, the identification of the information in EHRs to support clinical 
decision-making is a labor-intensive task. To overcome this limitation, our method captures the massive unstruc-
tured text in the EHRs in a fully automated manner and infers patient trends from the available data. We may use 
these trends to place patients with longer medical histories and repeated readmissions on trajectories, from which 
data-driven clinical decisions can be made directly for the patient in real-time. For causality, we quantified risks 
via the control of confounders to provide a global risk assessment.

We demonstrate how to derive useful information from EHRs and how to control confounding factors in such 
data. We provide a full list of adjusted risks for progressing from symptoms to diseases and disclose a full list of 
risk factors for surgical patient outcomes. Moreover, we demonstrated for the first-time risk markers exhaustively 
quantified directly from text corpus of EHRs.

It is important to note that cancer patients are frail, with several concomitant chronic diseases, including 
chronic obstructive lung disease and coronary heart disease. As discussed by Reisinger et al., frailty among older 
cancer patients is increasingly recognized as a risk factor for decreased survival and poorer outcomes. Frailty is 
defined as a state of increased vulnerability toward stressors in older individuals, leading to an increased risk of 
developing adverse health outcomes32,33.

We believe our findings, as shown in Supplementary Tables S1 and S2, identify important stressors in older 
frail individuals leading to patient trajectories with a poorer outcome. The risk markers may assist in understand-
ing outcomes and serve as early warnings to ensure high quality of care, and they may serve as starting points for 
further clinical elucidation. We believe that by understanding these risks and common patient trajectories, we 
may improve outcomes and increase patient safety.

The next step in this research is translational, i.e. how can we move this kind of statistical prediction tools 
from statistical laboratories to hospital departments. Clinical decision-making is challenging and is associated 

Figure 5. Control of confounding factors in event trajectories and disease trajectories. (A) The adjusted 
risks from the event trajectories on the x-axis and those of the disease trajectories on the y-axis correlate with 
the outcomes in the trajectories when controlling confounders. (B) The change in intermediate events and 
extraneous variables on the x-axis and the change in adjusted risk on the y-axis. The outcomes in the two sets 
remain the same when the intermediate events and extraneous variables change.
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with tailored risk assessment. For cancer patients, common treatment questions are; Is it possible to tailor cancer 
treatment to the individual patient? Should this patient receive radio-chemotherapy? Should a tumor be sur-
gically removed? What are the risks of adverse events after surgery? What is the risk of worsening of a chronic 
illness? Will surgical treatment improve survival? In general, these decisions are complex and are made in multi-
disciplinary team meetings. We believe that the proposed method may be used for real-time decision support in 
a multidisciplinary setting, to improve tailored cancer treatment. Importantly, the proposed methods, identifying 
individual cancer patient trajectories, may be used for shared decision-making where treatment options are dis-
cussed with the patient.

There exist limitations. Firstly: Observational data are by nature subject to selection bias because of informa-
tion being recorded only for patients that already have a health problem, as in our case elderly patients undergo-
ing surgery. Also, there is bias related to the most accurate information included in EHR, which means that we 
may be able to identify risk markers for patient outcomes, which may not directly infer causality. For example, 
chest pain was the most common symptom that was reported before the diagnosis of cancer, 31% (n =  687) of 
these patients were later diagnosed with cancer. We believe that this observation is explainable by confounding 
symptoms and diseases, as chest pain is not associated with cancer disease. When adjusting for confounders, the 
risk of moving from chest pain to cancer becomes negligible 4%. This illustrates the importance of understanding 
the difference between capturing data in EHRs and drawing causal conclusions because when capturing data 
directly in such observation data, the data is confounded.

Secondly, patient events in the EHRs constitute a scattered time space with no zero-time because of the health 
states of patients being in constant motion with multiple morbidities simultaneously. Shift registration is a known 
problem in data science, and methods do allow for time series curves to be fitted on irregularly sampled registra-
tion data34. However, these methods do not appear to apply to irregular sampled categorical data with repeated 
events and multiple morbidities. For this reason, observations and events reported for patients cannot be sequen-
tially aligned. Jensen et al. 2014 described this problem, where the author’s condensed similar trajectories from 
structured diagnosis codes for the entire Danish population10. However, there are methods that have been found 
to be useful in exploring adverse drug effects, suicide risk, disease severity and patient stratification in EHR35–40, 
these methods depends strongly on the availability of structured information41–44.

Due to this, such methods are not easily translated to the clinical reality, and real-world applications are lim-
ited to work-flow discussions and documents searches45,46. A considerable obstacle to conceptualizing free text 
from EHRs is that the terms are not necessarily spelled accurately, and the sentences may not be grammatically 
correct. In some cases, the clinicians enter text directly into the records. This usually occurs during a consultation 

Figure 6. Adjusted risk of complication and readmission events. There are several paths that may bring 
a patient from an event to an outcome. Thus, we nominate the number of paths k. (A) The six events with 
high-risk for downstream complications and readmission with cancer. (B) The seven events with high-risk for 
downstream complications and readmission with metastasis.
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or immediately afterward. In other cases, the consulting physician records information on an audio-recorder and 
then the recording is transcribed later. In either case, the time and resources spent on entering text into the EHRs 
are sparse, and consequently, imbue the text corpus with a considerable amount of unstructured variation that 
cannot be handled linguistically.

With the clear majority of methods for processing text in EHRs being proprietary and those that are publicly 
available designed for English texts, we envision to provide with our method an open-source framework for the 
community that may be applied to and integrated into other existing EHR systems. We believe that the methodol-
ogy presented here has the potential to improve health care and to provide consensus and transparency by taking 
the first steps towards standardized metrics that may be shared without privacy concerns between clinics. Also, 
clinicians and other healthcare providers may use the gained knowledge and develop methodologies to improve 
diagnoses applied in real-time on EHR data to identify cancer patients with high risk adverse events, decreased 
survival and a suboptimal patient trajectory.

Methods
Conversion of EHR text into conceptual information. The unstructured EHR text was conceptualized 
(annotated with the position of conceptual terms) by matching the terms and synonyms from the Norwegian 
version of the Medical Subject Headings14 (NOR-MeSH) to the text corpus of the EHRs.

We created a decompounder that splits compounded words into longest possible conceptual match to 
NOR-MeSH. We then manually evaluated the minimum length of splits that provided the most accurate decom-
position of compound words from 1,000 random samples.

We allowed for some unstructured variations in the matching with the Smith-Waterman algorithm19 using 
a default setup in which match =  2, mismatch =  − 1 and gap =  − 1. Thus, one match weighs the same as two 
errors. The maximum number of gaps allowed in a match was subsequently manually evaluated in 1,000 random 
samples.

With a cutoff for the good alignments from the Smith-Waterman algorithm as a log-linear function of the 
length of the query string (corpus word) and the database string (NOR-MeSH term), the remaining fall-out (false 
positives) was addressed by manual curation of the top 2,500 most frequent terms in each MesH group (i.e., dis-
eases, drugs and surgical procedures).

Acquiring patient data in context. We trained Naïve Bayes classifiers to distinguish (1) real-time data, 
(2) retrospective data, and (3) negated findings and correspondences, such as internal communication (noise).

We created language features for each group as following: (i) the first 3 words before a paragraph with a 
matched term; this provides a feature for location of the term, (ii) the words in the paragraph of the term in which 
the term is used, (iii) the words in the sentence of the term; this provides features for the context in which the 
term is used, (iv) the 3 words before and after the term.

Number of identified events High-risk events

Disease, symptoms and conditions 8,326 557

Control of confounders No control of 
confounders

Risk correlation with and without 
confounder correction. R2 =  0.89 R =  0.11

Diseases, symptoms, signs Preceding events (n)

Diseases, symptoms or signs with the 
highest number of preceding events 

Vomiting 67

Nausea 41

Death 39

Hemorrhage 36

Metastasis 7

Cancer 6

Diagnosis of cancer

Preceding event Risk, %

Dysuria 36

Embolism 35

Myalgia 31

Diagnosis of metastasis

Preceding event Risk, %

Ischemic disease 26

Syncope 25

Jaundice 22

Fatigue 20

Table 1.  Number of temporal and high-risk events with a risk > 20%. We evaluate the control of 
confounders by correlating the two trajectory sets with and without control of confounders and list the 
highlighted events together with cancer and metastatic risk events.
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We then scored the language features with the tf-idf20,47 method and constructed a binary language feature 
vector for each MeSH group diseases, drugs and surgical procedures. The naïve Bayes classifiers were trained by 
labeling 1,000 randomly selected terms in each group (1), (2), (3) - one classifier for each group.

The performance of the classification was evaluated with 10-fold cross validation48. The features were included 
by sequential forward selection during each cross-validation cycle until the predictive performance stabilized; 
meaning no performance loss or gain was obtained with adding additional features.

Using the non-parametric Kolmogorov-Smirnov test, we evaluated whether the occurrences of symptoms 
and diseases among our patients depended on age49,50. This process was performed to evaluate whether age was a 
confounder when drawing trajectories. To correct for multiple testing, we use the Bonferroni method with a 25% 
level of significance to allow even smaller variations in age to be significant25.

Construction of trajectories. We conducted Frequent Item Set (FIS) mining27 (Eclat/LCM) with a 5% 
minimum support and a minimum of two concepts for a set. We used the order of first appearance of events 
to perform a hierarchical count for the patients while proceeding from one event to the next. We condensed 
the trajectories with patient counts greater than 20 and calculated the probability of progressing one event on a 
trajectory as the fraction of the patients in an event node to the fraction of patients in the next event node. This 
procedure produces accurate probabilities for progressing on trajectories population wide, but the trajectories will 
not sum to one, as a patient can follow multiple trajectories that are not mutually exclusive. Time was measured 
as the median time for patients51 progressing from the first observation and event in the trajectory to the last. The 
construction of the trajectories was described previously in Fig. 2A–C: for a patient experiencing events a, b, c and 
d, we use trajectories with events a and b to predict c, and trajectories with a, b and c to predict d.

Evaluation of trajectories and reconstruction of patient events. We evaluated the trajectories’ abil-
ity to correctly reproduce the patient data forward in time, using data from the 1,000 patients in our external data 
set, reserved prior to constructing the trajectories.

We evaluated the trajectories ability to reproduce the patient data by applying them step-wise forward on the 
patient data. The performance of the outcome predictions was compared to those of trajectories with a rand-
omized event order of the same amount and sizes.

Information scoring in trajectories. We scored the information carried by a trajectory using the 
Kullback-Leiber (KL) divergence28 as follows; to, from and between events we let P(s|b) be the measured proba-
bility of an event s and let b be the events observed prior to the event. If a patient experiences events, a, b, c, d and 
a second patient only a, b, d, the probability of d after the event a and b becomes 1. Thus, a and b are background 
events with d is outcome. The background probability P(s) was defined as the probability of randomly reaching an 
event s without considering the background events. In the above, simplified example the background probability 
of experiencing c is 0.5, while the background probability for a, b and d is 1.

Therefore, we defined the information gain in equation (1) for an event s in a trajectory as the KL-divergence 
between P(s|b) and the background P(s).

≡ = |










D s D P s b P s P s b log
P s b
P s

( ) { ( ) ( )} ( )
( )
( ) (1)KL KL 2

The information gain for the trajectory, S= {si|i = 1… N}, was defined as the sum of the contributions from 
each event, equation (2).

∑= =D S D s( ) ( ) (2)KL i
k

KL i1

Control of confounders in trajectories. The trajectories represent sequences of observations and events 
that are not all determinant of the outcome, and there may be several trajectories that can bring a patient from 
an event to an outcome. This is known as collider bias52. The non-causal associations may be classified into three 
categories; namely, inaccurate measurements (recall bias), selection bias and confounders17, where confounders 
are extraneous variables that correlate in the trajectories. For this reason, the trajectories depend on the preceding 
events, which act as confounding factors. There is no statistical test for confounders; however, we can provide an 
unbiased estimate of an outcome by controlling the confounders53–55.

Considering the events between event x and event y as confounding factors z, we have N trajectories, Sn = {x, 
zn, y} = …z z zz ( , )n n n nk1 2

, n = 1… N that will bring the patient from event x to event y.
An unbiased estimate P(y|do(x)) is obtained by averaging over the trajectories conditioned on the confound-

ing factors, do(x), where the unbiased estimate P(y|do(x)) is formulated as equation (3).

∑ ∑ ∏= = .= = =P y do x
N

P y x z P z
N

P y x z P z( ( )) 1 ( , ) ( ) 1 ( ( , )) ( ) (3)n
N

n n n
N

n n
k

i1 1 1

In equation (3) the outcome event y from event x is not considered confounded if P(y|do(x))= P(y|x)53.
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