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Multi-scale radiomic analysis of 
sub-cortical regions in MRI related 
to autism, gender and age
Ahmad Chaddad, Christian Desrosiers & Matthew Toews

We propose using multi-scale image textures to investigate links between neuroanatomical regions 
and clinical variables in MRI. Texture features are derived at multiple scales of resolution based on 
the Laplacian-of-Gaussian (LoG) filter. Three quantifier functions (Average, Standard Deviation 
and Entropy) are used to summarize texture statistics within standard, automatically segmented 
neuroanatomical regions. Significance tests are performed to identify regional texture differences 
between ASD vs. TDC and male vs. female groups, as well as correlations with age (corrected 
p < 0.05). The open-access brain imaging data exchange (ABIDE) brain MRI dataset is used to 
evaluate texture features derived from 31 brain regions from 1112 subjects including 573 typically 
developing control (TDC, 99 females, 474 males) and 539 Autism spectrum disorder (ASD, 65 female 
and 474 male) subjects. Statistically significant texture differences between ASD vs. TDC groups are 
identified asymmetrically in the right hippocampus, left choroid-plexus and corpus callosum (CC), and 
symmetrically in the cerebellar white matter. Sex-related texture differences in TDC subjects are found 
in primarily in the left amygdala, left cerebellar white matter, and brain stem. Correlations between age 
and texture in TDC subjects are found in the thalamus-proper, caudate and pallidum, most exhibiting 
bilateral symmetry.

Autism is a complex developmental disability that often appears during infancy, typically in the first three years 
of life1. It is a spectrum disorder that affects about one in 300 children, with individuals affected differently and to 
varying degrees2. The causes of autism are not yet fully understood, and a combination of developmental, genetic, 
and environmental factors are believed to be involved3,4.

With the development of in-vivo brain imaging technologies such as Magnetic Resonance Imaging (MRI), 
significant progress has been made toward understanding the physiological characteristics of Autism Spectrum 
Disorder (ASD). Morphological analysis methods have identified links between regional image measurements 
and ASD, shedding some light on the mechanisms of this complex disorder. Such methods typically quantify 
physiological properties of neuroanatomical structures from image data, e.g. volume, thickness, shape, etc., and 
then identify regions/features for which these properties exhibit statistically significant differences between sub-
ject groups (e.g., normal control and ASD) or correlations with variables of interest (e.g., age).

A number of studies have identified physiological differences between ASD and healthy subjects in several 
key brain regions, including the putamen5, cerebellum6,7, hippocampus8,9, amygdala10, and corpus callosum11. 
The majority of these studies have focused on regional volume or intensity measurements, however, and have 
not fully exploited the rich information contained in MRI. A recent body of research, commonly referred to 
as radiomic analysis, focuses on texture and shape features derived from image data, that provide a source of 
information complementary to traditional voxel-wise or volumetric measurements. In general, radiomic anal-
ysis hypothesizes that texture operators tuned to an appropriate spatial extent or scale may provide informa-
tion regarding the microstructure of the biological tissues observed, a hypothesis closely tied to results from 
scale-space theory12. Texture features can be computed by various means including linear filtering operations 
(e.g., Laplacian-of-Gaussian (LoG)13, wavelets) or gray-level co-occurrence matrices (GLCM)14, and offer a 
means of characterizing localized image variations arising from tissue heterogeneity, boundary smoothness15, 
etc. Such features have been successfully applied in a variety of image analysis contexts, including segmentation 
and computer-aided diagnosis16–22. In lung and head-and-neck cancer data, radiomic features were shown to have 
significant prognostic power, their signature relating intra-tumor heterogeneity with gene-expression patterns23. 
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The links between tumor phenotype diversity, their heterogeneity at cellular and genetic levels, and imaging fea-
tures derived from different modalities have been validated in numerous studies24–28. Radiomic features based on 
texture have also been used to identify subtle differences between brain tissues in control subjects and those of 
Alzheimer’s patients, related to cognitive impairment severity19,29.

The primary contribution of this work is to characterize the link between neuroanatomical regions and ASD 
based on MRI texture features. We propose a region-based radiomics analysis method, whereby textures are first 
computed across a range of spatial resolutions via multi-scale LoG filtering, after which distributions of filter 
responses within neuroanatomical regions are summarized by quantifier functions (average, standard deviation 
and entropy) and compared across groups. While various neuroimaging studies have investigated multi-scale 
filter or wavelet responses on a voxel-wise basis30, our approach characterizes distributions of these measurements 
within neuroanatomical regions, thus capturing tissue-wise heterogeneity on a per-region basis. In contrast to 
voxel-wise analysis which requires accurate image registration and correction for large numbers of multiple com-
parisons, texture analysis requires only region segmentation and correction for multiple comparisons needs only 
to account for the numbers of regions and features, which are typically much fewer than the numbers of voxels 
per image. Moreover, the proposed analysis identifies numerous regions exhibiting significant textural differences 
between healthy control and ASD groups, several of which are consistent with previous results in the literature. 
As an additional contribution, we broaden our analysis to find regional texture differences linked with the sex and 
age of subjects. Once more, our method identifies various significant regions related to sex and age, most of which 
are consistent with findings in the literature.

To our knowledge, this is the first work to investigate the links between MRI textures in neuroanatomical 
regions and autism, sex and age. MRI textures represent a source of information that is complementary to tradi-
tional voxel-wise or volumetric measurements. Our texture analysis method thus provides an additional means 
of characterizing group differences or correlations in structural MRI. This may potentially lead to a better under-
standing of the neuroanatomical substrate of diseases such as ASD and the links between normal neuroanatomy 
and variables such as gender and age.

The rest of this paper is as follows. A review of related work is first presented in Section 2. We then present our 
proposed method in Section 3, and apply it on real brain MRI data in Section 4. The main findings of our exper-
iments are then discussed in Section 5. Finally, we conclude by summarizing the contributions of this study and 
providing potential extension of our work.

Related Work
Our review of relevant work focuses on studies using imaging techniques to identify brain regions/characteristics 
related to autism, gender and age.

Starting with work related to ASD, various studies using MR imaging have shown that young children with 
autism had a significantly larger brain volume compared to normally developing peers31,32. Studies on autism have 
also identified volume differences in specific brain structures including the cerebellum6,31, amygdala31, corpus 
callosum33, caudate nucleus34, hippocampus31,35 and putamen5,36. For example, it was shown that caudate nucleus 
and pallidus volumes were related to the level of ASD-like symptoms of participants with attention-deficit/hyper-
activity disorder, and that the interaction of these two structures was a significant predictor of ASD scores36. 
In some cases, contradictory results have been reported. While8 found that autistic children had an increase 
of hippocampal volume which persisted during adolescence, another study including autistic adolescents and 
young adults reported a decrease in hippocampal volume35. Other investigations, such as ref. 37, have shown 
no significant differences in hippocampal volume between ASD and control subjects. Recent studies on autism 
have focused on finding abnormalities related to brain development. In ref. 38, it was found that pre-adolescent 
children with ASD exhibited a lack of normative age-related cortical thinning, volumetric reduction, and an 
abnormal age-related increase in cortical gyrification. It has been hypothesized that the abnormal trajectories in 
brain growth, observed in children with autism, alters patterns of functional and structural connectivity during 
development39.

Morphological differences between male and female brains have been explored, such differences are of interest 
since the prevalence and symptoms of various disorders are linked with gender40. For instance, autism is diag-
nosed four to five times more frequently in boys than girls41,42, and multiple sclerosis is four times more frequent 
in females than males43. Likewise, anxiety, depression and eating disorders have a markedly higher incidence in 
females than male, especially during adolescence44,45. The incidence of schizophrenia between males and females 
also differs across the lifespan46. In terms of brain development, the growth trajectories of several brain regions 
have been shown to be linked to the sex of a subject, with some regions developing faster in boys and others in 
girls47,48. Various studies have also investigated sexual differences associated with autism. A recent study showed 
that the cortical volume and ventromedial/orbitofrontal prefrontal gyrification of females is greater than males, 
in both the ASD and healthy subject groups49. In another study, the severity of repetitive/restricted behaviors, 
often observed in autism, was found to be associated with sexual differences in the gray matter morphometry of 
motor regions50.

A number of studies have focused on morphometric brain changes associated with aging4. In refs 51–53, 
cross-sectional and longitudinal analyses of brain region volumes revealed that the shrinkage of the hippocam-
pus, the entorhinal cortices, the inferior temporal cortex and the prefrontal white matter increased with age. These 
studies have also highlighted trends towards age-related atrophy in the amygdala and cingulate gyrus of elderly 
individuals. Conversely, other investigations found no significant volumetric changes of the temporolimbic and 
cingulate cortical regions during the aging process54–56. A recent study applied voxel-based morphometry to com-
pare the white matter, grey matter and cerebral spinal fluid volumes of ASD males to control male subjects57. The 
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results of this analysis have demonstrated highly age-dependent atypical brain morphometry in ASD subjects. 
Other investigations have reported that neuroanatomical abnormalities in ASD are highly age-dependent58,59.

The vast majority of morphometric analyses in this review have focused on voxel-wise or volumetric measure-
ments derived from brain MRI data. Texture features provide a complementary basis for analysis by summarizing 
distributions of localized image measurements, e.g. filter responses, within meaningful image regions. Several 
studies have begun to investigate texture in brain MRI, for example to identify differences between Alzheimer’s 
and control groups22, to discriminate between ASD and TDC subjects60, and to evaluate the survival time of 
GBM patients17,61. Texture features can be computed at multiple scales within regions of interest, for example 
multi-scale textures based on the LoG filter have been proposed for grading cerebral gliomas16.

Among the works most closely related to this paper is the approach of Kovalev et al.62, where texture features 
were used to measure the effects of gender and age on structural brain asymmetry. In this work, 3D texture fea-
tures based on extended multi-sort co-occurrence matrices were extracted from rectangular or spherical regions 
in T1-weighted MRI volumes, and compared across left and right hemispheres. This analysis revealed a greater 
asymmetry in male brains, most pronounced in the superior temporal gyrus, Heschl’s gyrus, thalamus, and pos-
terior cingulate. Asymmetry was also found to increase with age in various areas of the brain, such as the inferior 
frontal gyrus, anterior insula, and anterior cingulate. While this work also investigated the link between MRI 
texture, gender and age, it was limited to lateral asymmetry and did not consider textural differences across 
gender and age groups. Moreover, texture features were obtained from arbitrarily defined sub-volumes that do 
not correspond to known neuroanatomical regions. In contrast, our work links texture observations to standard 
neuroanatomical regions obtained from a parcellation atlas, which provide a more physiologically meaningful 
basis for analysis in comparison to arbitrarily defined regions.

To our knowledge, no work has yet investigated MRI texture analysis within neuroanatomical regions, 
obtained from a parcellation atlas, as a basis for studying differences related to autism, sex and age.

Materials and Methods
In this paper, we propose identifying associations between neuroanatomical regions and variables of autism, sex 
and age using texture features derived from brain MRI data. In our method, MRI volumes are first registered to 
an atlas and parcellated into 31 key sub-cortical regions, e.g. via a processing pipeline such as FreeSurfer63. While 
our method could also be used to analyze regions of the cerebral cortex, such regions are typically more prone to 
registration errors64. The thinness of the cortex constitutes another obstacle to our approach, which aggregates 
texture measurements within a 3D volume.

Multi-scale texture features are then computed from MRI data by applying a Laplacian-of-Gaussian (LoG) 
filter across a range of resolution scales, and the distributions of texture filter responses are summarized by the 
mean, standard deviation and entropy on a per-region basis. Finally, a statistical analysis is performed to identify 
regions exhibiting significant textural differences between discrete subject groups (e.g. ASD vs. TDC, male vs. 
female) using permutation tests and Fisher’s method, and correlations with continuous variables (e.g. age) using 
Spearman rank correlation. An overview of the method is shown in the flowchart of Fig. 1. The following sections 
describe each component of the method in greater detail.

Participants and data. T1-weighted MRI data and demographic information for 573 TDC and 539 ASD 
subjects were obtained from the publicly available ABIDE database (http://fcon_1000.projects.nitrc.org/indi/
abide/), an online consortium of MRI and resting-state fMRI data from 17 international sites. In accordance with 
Health Insurance Portability and Accountability (HIPAA) guidelines, all data are anonymized with no protected 
health information included. All volumetric images were acquired with a resolution of 1 mm3, for a total size of 
256 ×  256 ×  256 voxels.

The demographic and clinical characteristics of subjects in the database are shown in Table 1. A drill-down of 
this information is also given for the TDC group, which is used in our analyses related to sex and age variables. A 
number of confounds exist that complicate analysis. Due to the higher incidence of autism in male subjects, data 
are significantly imbalanced with regard to sex (i.e., 948 males vs. 164 females). Moreover, the database consists 

Figure 1. Schematic diagram of the proposed method for identifying significant texture differences related 
to autism, sex and age, in various brain regions. 

All subjects TDC groups

Group n Male Female Age (Average ± StDev) Group n Age (Average ± StDev)

ASD 539 474 65 17.01 ±  8.36 Male 474 17.42 ±  7.9

TDC 573 474 99 17.08 ±  7.72 Female 99 15.43 ±  6.56

Table 1.  Demographic and clinical characteristics of the study groups.

http://fcon_1000.projects.nitrc.org/indi/abide/
http://fcon_1000.projects.nitrc.org/indi/abide/
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primarily of young subjects with developing brains, and inter-subject variations in the shape and size of neuroan-
atomical regions may impact analysis. Finally, the data is multi-site and thus subject to inter-site variations in MRI 
intensity. Although various pre-processing steps are applied to normalize the data across sites and subjects, these 
confounds could influence our analysis and are dealt by performing two types of analyses: a permutation analysis 
which accounts for inter-subject and inter-site variability in the null distribution, and a bootstrap analysis with 
multiple balanced data subsets. More details about these analyses are provided in the Statistical Analyses section.

Image preprocessing and region labelling. We used a preprocessed version of the ABIDE I database, 
provided by the Preprocessed Connectomes Project (PCP) and publically available for download at http://
preprocessed-connectomes-project.org/abide/. T1-weighted MRI images from this database were preprocessed 
using the recon-all pipeline of the FreeSurfer 5.1 tool (http://surfer.nmr.mgh.harvard.edu/)63, which involves the 
following six steps: (1) small-motion correction by averaging the available volumes of subjects, (2) (non-uniform) 
intensity normalization, (3) affine registration of volumes to the MNI305 atlas, (4) skull-stripping, (5) non-linear 
registration and further normalization using the Gaussian Classifier Atlas (GCA), and (6) brain parcellation and 
subcortical region labelling using the GCA. The outputs of this pipeline used in this work are the skull stripped, 
intensity normalized brain volumes in the subject space (i.e., the brain.mgz file), and the sub-cortical labelling of 
these volumes into 45 hemisphere-distinct regions (i.e., the aseg.mgz file). For our analysis, only 31 of the most 
prominent regions were used. Figure 2 shows an example of brain regions labelled using this pipeline.

A subset of ABIDE preprocessed anatomical volumes are manually labeled as quality assessment (QA) failure 
cases by two raters (rater 2: 52 volumes, rater 3: 108 volumes). While some of these cases correspond to impor-
tant motion artifacts or segmentation errors, a visual inspection reveals that most of these failures are due to 
factors that do not affect the subcortical segmentations used in our method (e.g., erroneous segmentation of the 
cortex or spinal cord). Our primary analysis is thus performed on all but a subset of 8 volumes where QA failures 
result in noticeable subcortical segmentation errors (e.g., see Fig. 3). These volumes correspond to the follow-
ing subject IDs: UM_1_0050288, UM_1_0050309, UCLA_1_0051244, UCLA_1_0051245, UCLA_1_0051246, 
UCLA_1_0051270, UCLA_2_0051296 and UCLA_2_0051310. To assess the impact of excluding larger sets of 
subjects on our results, we additionally evaluate our method excluding entire sets of volumes flagged as “fail” or 
“not assessed” by ABIDE raters. We note that virtually identical sets of significant features are identified, however, 

Figure 2. Labeling example of brain regions. (A) Axial, (B) Sagittal, (C) Coronal. Each color represents a 
different region label. Non-brain tissues (e.g., skull) are shown here for visualization purposes.

Figure 3. Examples of excluded data. 

http://preprocessed-connectomes-project.org/abide/
http://preprocessed-connectomes-project.org/abide/
http://surfer.nmr.mgh.harvard.edu/
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at higher corrected p-values due to fewer data samples. Figures 11 and 12 show results following exclusion of 52 
subjects flagged by rater 2.

Texture feature extraction. Once the subject volumes have been segmented into a set of common regions, 
we then extract texture features from each of these regions. Although various texture descriptors have been pro-
posed in the literature, in this work, we adopt texture features based on the multi-scale Laplacian-of-Gaussian 
(LoG) filter65, which has been used successfully in various medical imaging applications13,16,66. Texture feature 
extraction is a two-step process, involving (1) filtering the image over a range of spatial resolutions, and (2) using 
a set of quantifier functions to summarize filter responses within regions. We applied the LoG filter at three dif-
ferent scales σ, on the intensity normalized T1-weighted images of each subject. The LoG filter is a symmetric 2nd 
order spatial derivative filter resulting from a Gaussian smoothing operation with a kernel of standard deviation 
σ followed by the Laplacian operator. In this context of this work, it serves as a generic differential operator that 
responds to local image variations such as edges or blobs within a volume. We hypothesize that filtered volumes 
encode properties of tissue heterogeneity and local structure that may be connected to the development abnor-
malities of ASD. Moreover, by varying the scale parameter σ, the LoG filter can capture textural image variations 
potentially arising from tissues and structures across a range of spatial resolutions. In this study, we considered 
three different scales: (1) σ =  0.5 mm (fine texture), (2) σ =  1.5 mm (medium texture), and 3) σ =  2 mm (coarse 
texture). Figure 4 shows an example of an image texturized using the LoG filter. The next step of the feature 
extraction process is to encode texture filter responses within each region. This is done by summarizing distribu-
tions of filter responses using three quantifier functions: the average (A) and standard deviation (SD) representing 
the 1st and 2nd order moments and the entropy (E) representing the distribution uncertainty. Let fσ(x, y, z) be the 
LoG filter response at voxel (x, y, z) with scale parameter σ ∈  {0.5, 1.5, 2}, and denote as denote as i the set of voxels 
in region i ∈  {1, … , 31}. The quantifier functions are defined as follows:

∑=
Ωσ σA f x y z1 ( , , )

(1)
i

i
,

=
∑ −

Ω −σ
σ σSD

f x y z A( ( , , ) )
1 (2)

i
i

i
,

,
2

∑= −
Ω
Ω

Ω
ΩσE log

(3)
i

k

i
k

i

i
k

i
,

where Ωi
k is the subset of voxels within the k-th interval of values using a uniform discretization into 256 intervals. 

In the context of this work, each neuroanatomical region i is thus represented by a vector xi of 9 texture features:

Figure 4. Example of multiscale texture. First row: Texturized T1-WI brain image (a) by LoG filter. The 
corresponding images selectively display, (b) fine, (c) medium and (d) coarse textures. Second row: zoom image 
illustrates the texture type within an ROI (blue color).
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Although the standard deviation and entropy both measure the homogeneity/heterogeneity of filter response, 
entropy is typically less sensitive to outliers in a region (i.e., voxels with a response significantly different from the 
region mean) than standard deviation. This is due to the fact that it uses the distribution of voxels within different 
intervals of filter responses, but not the actual filter response values. Therefore, it may be more robust to errors in 
the parcellation step than standard deviation.

Statistical analyses. We performed three statistical analyses to identify brain regions where texture features 
are informative regarding differences between discrete subject groups (i.e. autism and sex labels) or correlated 

Figure 5. Region-wise texture feature differences between ASD and TDC subjects. (A) Heatmap of 
uncorrected p-values (− log10 space), based on 100,000 permutations of diagnosis group labels. Green-black 
circles indicate region-scale values with significant p-values following Holm-Bonferroni correction. (B) 
Heatmap of Fisher’s method p-values (− log10 space), based on 100 bootstrap samples of 100 ASD vs 100 TDC 
subjects. (C) Regions showing significant texture differences with corrected p <  0.05.
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with continuous variables (i.e. age). To account for multiple comparisons (i.e., 31 sub-cortical regions × 3 filter 
scales × 3 texture features =  279 tests), all p-values obtained from significance testing were simultaneously cor-
rected according to the Holm-Bonferroni method67. A threshold of p <  0.05 on corrected p-values was used to 
identify statistically significant regions.

Texture differences related to autism. A major consideration is to account for differences in imag-
ing protocols and demographics across sites. To avoid this problem, we could perform a similar hypothesis test 
independently for each site and then combine the obtained p-values using a standard approach such as Fisher’s 
method68. However, such approach is not feasible due to the data paucity and variability: the number of subjects 
per site is small and the range of inter-site subject demographic variability is high. Instead, we obtained robust 
p-value estimates using a two-sided permutation test. In this test, we generated 100,000 samples from the null 
distribution (i.e., same median feature) by randomly permuting the diagnosis group labels of all subjects, and 
measuring for each sample the absolute difference of median (ABM) between permuted ASD and TDC subjects. 
We then computed a p-value, for each feature, filter scale and region, as the percentage of permutations for which 
the ABM is greater than the ABM obtained using the true diagnosis group labels. As mentioned above, the 279 
p-values obtained in this way were corrected using the Holm-Bonferroni procedure. Although the Wilcoxon 
rank-sum test could also have been used for this analysis, such approach is typically less informative because it 
measures differences based solely on rank. Moreover, the choice of using the median instead of the mean is justi-
fied by the fact that texture features are not necessarily normal distributed.

For the sake of completeness, we also generated 100 balanced bootstrap samples using the true group diag-
nosis labels, each one containing 100 ASD and 100 TDC subjects. We then obtained a p-value for each sample 
by applying a Wilcoxon rank-sum test, and used Fisher’s method to combine them in a single aggregate p-value. 
Since the p-values of different bootstrap samples are correlated, the aggregate values obtained with Fisher’s 
method are overly optimistic (high chance of false positives) and cannot be used directly. However, these values 
can be compared relative to one another to identify potential regions of interest.

Texture differences related to sex. A similar analysis was conducted to identify brain regions exhibiting 
significant texture differences between healthy (i.e., TDC) male and female subjects. A permutation test was first 
employed to compare the absolute difference of median feature values between male and female subject groups, 
with those obtained from 100,000 random permutations of sex labels (i.e., null distribution). Once again, p-values 
were estimated as the ratio of permutations leading to a higher absolute difference of median than those obtained 
with the true sex labels, and were corrected using the Holm-Bonferroni method. Moreover, a probability test 
based on Fisher’s method was used to combine the p-values of 100 balanced bootstrap samples of 50 TDC males 
and 50 TDC females into a single aggregate p-value.

Texture differences related to age. Finally, the last analysis identified brain regions for which textures are 
significantly correlated with age. For this analysis, we first computed the Spearman rank correlation coefficient 
(SRCC) between the age of TDC subjects and their texture features of each brain region, and considered brain 
regions having a moderate to high correlation value, i.e. ρ >  0.4. To further validate the results of this analysis, we 
also conducted two additional tests. In the first test, we generated 100,000 samples from the null distribution (i.e., 
features and age are uncorrelated) by randomly permuting the subjects’ age values, and computing the SRCC of 
these permutations. We obtained p-value as the percentage of permutations having an absolute correlation greater 
than the true absolute correlation. Once more, these p-values were then corrected using the Holm-Bonferroni 
procedure. In the second test, we generated 100 bootstrap samples of 100 TDC subjects (both male and female) 
and computed the SRCC for each of these samples. We then obtained a lower-bound on the 95% confidence inter-
val (i.e., the highest SRCC value, smaller than 95% of sampled SRCC values), which we use to further validate the 
significance of correlation values.

Results
In this section, we present the results for three proposed analyses: texture differences between subject groups (i.e. 
autism and sex), and texture correlations with continuous variables (i.e. age).

Texture differences related to autism. The heatmap of uncorrected p-values (in -log10 space) obtained 
from the permutation test is depicted in Fig. 5A. Regions that are significant after Holm-Bonferroni correction, 
with a confidence level of 0.05, are identified with a green-black circle. We notice several brain regions with 
significant differences in texture features between ASD and TDC subjects: left and right cerebellar white matter, 

Texture scale Fine Medium Coarse

Brain regions Average StDev Entropy Average StDev Entropy Average StDev Entropy

Left
Cerebellum-WM 0.278 1 0.027* 0.006* 0.067 0.008* 1 1 0.176

Choroid-plexus 1 1 1 0.059 0.522 0.030* 0.014* 0.979 0.566

Right

Cerebellum-WM 0.761 1 0.540 0.014* 0.014* 0.024* 1 1 0.077

Hippocampus 1 1 0.014* 0.321 1 1 0.006* 1 1

CC Posterior 1 1 1 1 1 1 0.498 1 0.04*

Table 2.  Summary of corrected permutation test p-values for regions with highest texture differences 
between ASD and TDC subjects. Significant features (p <  0.05) are represented by a ‘*’ symbol.
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Figure 6. Region-wise texture feature differences between male and female TDC subjects. (A) Heatmap of 
uncorrected p-values (−log10 space) based on 100,000 permutations of sex labels. Green-black circles indicate 
region-scale values with significant p-values following Holm-Bonferroni correction. (B) Heatmap of Fisher’s 
method p-values (− log10 space), based on 100 bootstrap samples of 50 males vs 50 females. (C) Regions 
showing significant texture differences with corrected p <  0.05.

Texture scale Fine Medium Coarse

Brain regions Average StDev Entropy Average StDev Entropy Average StDev Entropy

Left Amygdala 1 1 0.394 1 1 1 0.006* 0.008* 1

Right
Cerebellum-WM 1 1 1 1 1 1 0.047* 1 1

Brain-Stem 1 1 1 1 1 1 1 0.022* 1

Table 3.  Summary of corrected permutation test p-values for regions with highest texture differences 
between male and female TDC subjects. Significant features (p <  0.05) are represented by a ‘*’ symbol.
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left choroid-plexus, right hippocampus and posterior of corpus callosum. Table 2 gives the detailed corrected 
p-values of these regions, which are depicted in Fig. 5C. To analyze properties related to symmetry and scale, 
p-values are reported for both brain hemisphere, when applicable, as well as all three texture scales (i.e., fine, 
medium, coarse).

We observe a pronounced bilateral asymmetry for the choroid plexus and hippocampus regions, as well as 
a notable symmetry for the cerebellar white matter. Moreover, we see that the scale of significant features varies 
from one region to another, here with fine-scale features being more relevant for small or narrow regions like 
the hippocampus, and coarser ones for larger regions like the corpus callosum. This indicates the usefulness of 
multi-scale features in our analysis. With respect to quantifier functions, the average and entropy functions are 
more relevant than the standard deviation. As previously mentioned, this could be due to the higher sensitivity of 
the standard deviation to region boundaries obtained from parcellation.

The p-values obtained via Fisher’s method are shown in Fig. 5B. We observe the highest p-values for left and 
right cerebellar white matter, left choroid-plexus, right hippocampus and right pallidum. These results further 

Figure 7. Region-wise correlation between texture features and age in TDC subjects. (A) Heatmap of 
Spearman rank correlation coefficients. (B) Heatmap of uncorrected p-values (−log10 space), based on 
100,000 permutations of age labels. Green-black circles indicate region-scale values with significant p-values 
following Holm-Bonferroni correction. (C) Lower bound of the 95% confidence interval of absolute correlation 
coefficients, based on 100 bootstrap samples of 100 TDC subjects. (D) Regions showing significant (moderate 
or high) correlation between texture and age, with corrected p <  0.05.
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validate the set of significant regions identified on the permutation test, in addition to their patterns of bilateral 
symmetry and texture scale.

Texture differences related to sex. As in the previous analysis, we summarize the results of the permu-
tation test on sex-related texture differences using a heatmap of uncorrected p-values (Fig. 6A). Three regions, 
namely, brain-stem, left amygdala, and right cerebellar white matter (Fig. 6C), exhibit significant texture differ-
ences, with p <  0.05 following Holm-Bonferroni correction (see detailed corrected p-values in Table 3). The link 
between these regions’ texture and sex is further demonstrated by the results of Fisher’s method (Fig. 6B). Based 
on these results, we see a skew toward coarse texture features in regions exhibiting the strongest differences, 
suggesting that texture differences between male and female subjects occur at a greater structural scale. We also 
observe that differences are more pronounced in the left hemisphere, in particular for the amygdala. Although not 
fully understood, these structures are known to exhibit functional lateralization (see the Discussion for details).

Texture correlations with age. The Spearman rank correlation coefficients between the texture features 
extracted in each brain region and the age of all 573 healthy control subjects are presented in Fig. 7A and Table 4. 
These results show a moderate negative correlation (i.e. − 0.3 to − 0.5) in the thalamus, caudate and pallidum 
regions, as well as a moderate positive moderate correlation (i.e., 0.3 to 0.5) in the vessel region. Moreover, a 
high negative correlation (i.e., above 0.5) is observed for the coarse entropy feature of the thalamus and pallidum 
regions. Figure 8 shows a scatter plot of texture entropy vs. age, for the thalamus and pallidum regions. Unlike in 

Figure 8. Scatter plots of the Entropy (coarse texture) feature derived from thalamus and pallidum versus 
age, with Spearman rank correlation coefficients (ρ) shown above each panel. Note the degree of bilateral 
symmetry.
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the case of autism, a general pattern of bilateral symmetry is observed, suggesting similar correlations between 
regional textures and age in both right and left hemispheres.

Figure 7B provides the uncorrected p-values heatmap obtained from the permutation test. These results con-
firm the statistical significance of correlated regions in Table 4, i.e. the hypothesis of no correlation can be rejected 

Figure 9. Significance of ASD vs TDC (uncorrected p-values, −log10 scale) in selected regions, for various 
filter scales (sigma). Green-black circles indicate region-scale values with significant p-values following Holm-
Bonferroni correction.

Figure 10. Significance of male vs female (p-values, −log10 scale) in selected regions, for various filter 
scales (sigma). Green-black circles indicate region-scale values with significant p-values following Holm-
Bonferroni correction.
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with a confidence level of 0.05. The relationship between the regions’ texture and age is also supported by the 
results of Fig. 7C, which shows the lower bound of the 95% confidence interval on correlation values, computed 
via the bootstrap analysis.

Discussion
We extracted multi-scale texture features from 31 prominent sub-cortical brain regions, and performed a statis-
tical analysis to identify significant region-wise texture differences between healthy (TDC) and autism spectral 
disorder (ASD) subjects. Similar analyses were also conducted to identify regions exhibiting sex-related texture 
differences between males and age-related texture correlations in healthy subjects.

For the autism-related analysis, we identified five regions exhibiting significant textural differences between 
ASD and TDC groups at a significance level of corrected p <  0.05, namely the left and right cerebellar white 
matter, right hippocampus, left choroid-plexus, and posterior corpus callosum. The amygdala and pallidum 
also exhibit differences, although these regions are not significant following Holm-Bonferroni correction. These 
results are generally consistent with previous studies on autism, showing statistically significant volume differ-
ences in the cerebellum6,31, hippocampus8, amygdala10, and corpus callosum11. Differences observed in the cer-
ebellum could also be linked to the higher curvature and sharpened folds of cerebral white matter exhibited in 
ASD69. Although volumetric differences have previously been reported for the putamen5, we did not observe 
significant texture differences for this region. To our knowledge, the choroid-plexus has not been linked to autism 
so far in the literature. However, ASD may be connected to excessive subarachnoid cerebrospinal fluid (CSF), 
which is mainly produced in this brain region70.

The analysis of autism-related differences has also underlined the importance of using a multi-scale approach 
while comparing features in different brain regions. We investigate the effect of filter scale by computing p-values 
for regional feature significance across a dense sampling of the LoG scale parameter (sigma) using the same pro-
cedure as in Fig. 5. The result is shown in Fig. 9, where the scale at which peak significance values are observed 
varies according to the region as well as the quantifier function (i.e., average, standard deviation or entropy). 
Similarly, in Fig. 11, we achieve similar significance results (i.e. right CWM and hippocampus) after excluding 
additional patients (i.e. 52 ABIDE volumes flagged as QA failures).

Note that the LoG filter response is strongest when the scale parameter matches the spatial extent of local 
heterogeneity patterns in the image. Observe also that differential filters such as the LoG operator integrate image 
information across a finite spatial extent as specified by the scale parameter, and filter responses along region 
boundaries generally combine intensity information from multiple neuroanatomical regions. Thus although tex-
ture features are due primarily to region-specific image content, they may generally include content from neigh-
bouring regions. For instance, while the choroid plexus is a relatively small and narrow structure (see Fig. 5), 
group differences for this structure are more prominent for larger filter scales. This suggests that filter responses 
from surrounding regions such as the CSF may explain part of these differences.

Finally, our results pertaining to ASD show average and entropy to be well suited to identifying texture differ-
ences in various regions and scales. While both standard deviation and entropy measure feature heterogeneity, 
which is linked to tissue microstructures, entropy is potentially robust than standard deviation to outlier filter 
responses, e.g. along tissue boundaries.

For sex-related texture differences in TDC subjects, we identified three regions which exhibit significance at 
the corrected p <  0.05: left amygdala, right cerebellar white matter and brain-stem. Mild differences were also 
found for the vessel, accumbens area, hippocampus, and corpus callosum (mid anterior sub-region) regions, 
which are significant prior to correction. While we used a very different methodology, our results on the amyg-
dala may be linked to previous studies that showed a varying pattern of neural connectivity between males and 
females in this region71, as well as sex-related differences in amygdala activity during emotionally influenced 
memory storage72. Likewise, results on the vessel region could be related to previous findings in the literature, 
showing that cerebral arteries in female brains are significantly less responsive to certain vasoconstrictors than 
for males73. Previous studies have also shown sex differences associated with the hippocampus74 and corpus cal-
losum75, in particular with respect to brain aging. However, this is the first study to investigate sex-related texture 
differences in these regions.

Texture scale Fine Medium Coarse

Brain regions Average StDev Entropy Average StDev Entropy Average StDev Entropy

Left

Thalamus − 0.20 (1) − 0.04 (1) −0.47 (0.003)* − 0.36 (0.068) − 0.27 (1) − 0.39 (0.022)* −0.48 (0.005)* − 0.38 (0.043)* −0.51 (0.003)*

Caudate − 0.21 (1) − 0.18 (1) 0.12 (1) −0.42 (0.005)* − 0.37 (0.043)* −0.43 (0.008)* −0.47 (0.003)* −0.46 (0.005)* −0.45 (0.003)*

Pallidum − 0.39 (0.041)* − 0.26 (1) −0.47 (0.003)* −0.43 (0.005)* − 0.39 (0.015)* −0.45 (0.005)* −0.50 (0.003)* −0.46 (0.003)* −0.51 (0.003)*

Vessel 0.38 (0.030)* 0.26 (1) − 0.30 (0.51) 0.45 (0.003)* 0.15 (1) −0.46 (0.003)* 0.29 (0.679) 0.14 (1) − 0.26 (1)

Right

Thalamus − 0.18 (1) 0.03 (1) −0.49 (0.003)* − 0.35 (0.066) − 0.25 (1) − 0.38 (0.034)* − 0.39 (0.010)* − 0.06 (1) −0.51 (0.003)*

Caudate − 0.25 (1) − 0.22 (1) 0.16 (1) −0.42 (0.008)* − 0.37 (0.036)* −0.42 (0.010)* −0.42 (0.003)* − 0.36 (0.047)* − 0.04 (1)

Pallidum − 0.37 (0.041)* − 0.25 (1) −0.45 (0.003)* −0.41 (0.015)* − 0.36 (0.041)* −0.43 (0.005)* − 0.39 (0.013)* − 0.36 (0.045)* −0.41 (0.015)*

Vessel 0.40 (0.017)* 0.32 (0.221) − 0.12 (1) 0.42 (0.003)* 0.25 (1) − 0.27 (1) 0.25 (1) 0.19 (1) − 0.15 (1)

Table 4.  Summary of Spearman rank correlation coefficients and corrected permutation test p-values (in 
parenthesis) for regions with the highest correlation between texture and age in TDC subjects. Significant 
features (p <  0.05) are represented by a ‘*’ symbol. Correlation coefficients with absolute ρ >  0.4 are highlighted 
using bold font.
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The analysis of sex-related texture differences also indicates that these differences occur mostly at a coarse 
texture scale and are more pronounced in the left hemisphere. This can be observed in Fig. 10, showing the sig-
nificance of male vs. female differences in selected regions across a dense sampling of sigma values. Again, results 
for sex differences, computed following exclusion of 52 subjects flagged as QA failures in the ABIDE dataset, are 

Figure 11. Significance of ASD vs TDC (p-values, −log10 scale) in selected regions, for various filter scales 
(sigma), following exclusion of 52 volumes based on ABIDE QA. Green-black circles indicate region-scale 
values with significant p-values following Holm-Bonferroni correction.

Figure 12. Significance of male vs female (uncorrected p-values, −log10 scale) in selected regions, for 
various filter scales (sigma), following exclusion of 52 volumes based on ABIDE QA. Green-black circles 
indicate region-scale values with significant p-values following Holm-Bonferroni correction.
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highly similar in terms of peak significance values (see Fig. 12). This observation may suggest that differences 
between male and female brains are mostly structural, and not based on fine-grained tissue properties. Moreover, 
such differences could be linked to the lateralization of function in brain structures such as the accumbens area 
and hippocampus. For instance, brain activation in males is lateralized to the left inferior frontal gyrus regions 
while the pattern of activation is very different in female, engaging more diffuse neural systems that involve 
both the left and right inferior frontal gyrus76. Another study showed that the right hippocampus is believed to 
be responsible of encoding spatial relationships, while the left has the altered function of storing relationships 
between linguistic entities77. Moreover, females have been shown to make greater bilateral use of the posterior 
temporal lobes than males during linguistic processing of global structures in a narrative78.

Finally, our analysis of age-related differences reveals moderate to high correlations (with corrected p <  0.05) 
between the subjects’ age and textures in the thalamus, caudate, pallidum and vessel regions. These results are 
consistent with previous studies on the anatomy of aging brains. For instance, changes in thalamus shape and vol-
ume have been associated with age79, and the volume of the caudate region has been linked to associative memory 
decline80. Another study found a negative correlation between age and the volume of the caudate nucleus, pal-
lidum, amygdala and hippocampus81. While our study has shown a link between age and the texture of various 
brain regions, further investigation is required to fully understand the physiological process responsible for this 
connection.

In summary, our analysis has highlighted significant texture differences between ASD and TDC, sex dif-
ferences, and age correlations in key sub-cortical regions. Several results of this analysis are consistent with 
previous neuroanatomical studies pertaining to autism, sex and age. However, this analysis has also found pre-
viously unknown connections between specific regions and autism, sex and age, which offer avenues of further 
exploration.

Finally, our study has several limitations that merit discussion. First, texture features may be more sensitive 
to the imaging protocol, noise, and post-processing steps than simple morphological features like volume. In 
particular, segmentation errors in small and hard to delineate regions could explain some of the significance 
observed in these regions. Segmentation accuracy is generally worse a priori for regions that are either small or 
thin, or that exhibit weak intensity contrast along their boundaries. In this work, we used the atlas-based segmen-
tation method of FreeSurfer. While no large-scale study of segmentation accuracy exists for this method, to our 
knowledge, recent work on sub-cortical parcellation using manually-labelled data have found it to be relatively 
accurate, with an average Dice coefficient of 78.8% (highest accuracy of 86% in the thalamus, and lowest of accu-
racy 71% in the pallidum)82. Studies have also shown FreeSurfer’s registration and segmentation steps to be robust 
to age-associated bias83, a useful property for our work which uses the data of both preteen and adult subjects. 
The impact of segmentation errors is also mitigated by the large cohort of subjects used in our study (over 1000) 
and by our permutation analysis, which offers robust estimates of p-values considering the variance introduced 
by such errors.

Another potential confound is the small number of female subjects in the ABIDE dataset, due to the higher 
incidence of autism in male subjects. This sex imbalance may introduce a bias when comparing textures across 
the entire population of subjects. Although we considered this factor by performing permutations tests and deriv-
ing confidence intervals via a bootstrap analysis, additional steps could further validate our results. For example, 
our results could be cross-validated using a different database of subjects, such as the ABIDE II dataset (http://
fcon_1000.projects.nitrc.org/indi/abide/abide_II.html). Note that this dataset, containing over 1000 additional 
subjects (both control and ASD), was not used in our study since a preprocessed version of this database is not 
currently available. In future work, we plan on extending our study by applying the same preprocessing pipeline 
to this additional database. Another limitation of our study is the lack of longitudinal data, which would allow 
us to discover neurodevelopmental patterns related to texture. The ABIDE II dataset contains longitudinal data 
related to autism, and could be used for such analysis.

Conclusions
We proposed a region-wise analysis of the brain using multi-scale texture features, and demonstrated its use in 
identifying regional differences between subject groups (i.e. ASD vs. TDC, male vs. female) and correlations with 
continuous variables (i.e. age). Findings are generally consistent with results in the literature, with several novel 
group-related regions identified. To our knowledge, this is the first reported analysis of autism based on MRI 
texture features.

We conclude that the texture features extracted from hippocampus and cerebellar white matter regions exhibit 
the most significant differences between ASD and TDC subjects. The choroid-plexus is also identified, to our 
knowledge this is the first study reporting a potential link between the choroid-plexus and ASD. The signifi-
cant difference of texture feature between healthy male and female subjects is identified in the amygdala, brain 
stem and cerebellar white matter regions. Finally, moderate correlations between texture features and the age 
of healthy subjects are identified in the thalamus, caudate, and pallidum, which are also significant following 
Holm-Bonferroni correction for multiple comparisons.

These findings suggest that texture features can be a useful representation for characterizing differences in 
brain structure, that is complementary to traditional voxel-wise or volumetric analysis. Moreover, since texture 
features can be acquired from arbitrary imaging modalities, the usefulness of our texture-based analysis approach 
could also tested on modalities other than T1-WI, including other MR modalities or CT scans.

http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
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