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Mapping ECoG channel 
contributions to trajectory and 
muscle activity prediction in human 
sensorimotor cortex
Yasuhiko Nakanishi1,*, Takufumi Yanagisawa2,3,4,5,*, Duk Shin6, Hiroyuki Kambara1, 
Natsue Yoshimura1, Masataka Tanaka3, Ryohei Fukuma3,4, Haruhiko Kishima3, 
Masayuki Hirata2,3 & Yasuharu Koike1

Studies on brain-machine interface techniques have shown that electrocorticography (ECoG) is an 
effective modality for predicting limb trajectories and muscle activity in humans. Motor control studies 
have also identified distributions of “extrinsic-like” and “intrinsic-like” neurons in the premotor (PM) 
and primary motor (M1) cortices. Here, we investigated whether trajectories and muscle activity 
predicted from ECoG were obtained based on signals derived from extrinsic-like or intrinsic-like 
neurons. Three participants carried objects of three different masses along the same counterclockwise 
path on a table. Trajectories of the object and upper arm muscle activity were predicted using a sparse 
linear regression. Weight matrices for the predictors were then compared to determine if the ECoG 
channels contributed more information about trajectory or muscle activity. We found that channels over 
both PM and M1 contributed highly to trajectory prediction, while a channel over M1 was the highest 
contributor for muscle activity prediction.

Studies on brain-machine interface (BMI) have demonstrated success using electrocorticography (ECoG) to 
predict hand trajectory in monkeys1–4 and hand5–8 and finger9–14 trajectory in humans, decode joint angle15 
and grasping force16 and estimate muscle activity17,18. Advances in ECoG electrodes have allowed for more 
precise prediction of human hand and finger movements19,20. Control of prosthetic limbs using ECoG has also 
been achieved21–23. Therefore, ECoG offers considerable potential in rehabilitation as a control modality for 
neuro-prostheses.

A topic of debate has arisen, however, on whether activity from the primary motor cortex (M1) and premotor 
cortex (PM) represents “extrinsic” parameters related to the location of a target, or “intrinsic” parameters related 
to a set of muscles24–30. For example, Kakei et al. showed that most neurons in the monkey ventral premotor 
cortex exhibited “extrinsic-like” encoding (~94%), while M1 neurons exhibited both “intrinsic-like” (~32%) and 
“extrinsic-like” (~61%) encoding29.

This disparity gives rise to further questions: When predicting hand and finger trajectories using ECoG, are 
the predictions based on extrinsic or intrinsic information? When estimating arm muscle activity, is only intrinsic 
information exploited? It is unlikely that ECoG activity can be divided into extrinsic and intrinsic components 
based on signal amplitude or other features, because the ECoG signal is a summation of signals from a huge num-
ber of neurons beneath an electrode. We expect that ECoG signals from PM and some parts of M1 would mainly 
result from firing of extrinsic-like neurons, while other signals from M1 would result from both extrinsic-like and 
intrinsic-like neurons firing.
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Seeking answers to the above questions, here we performed trajectory and muscle activity predictions for 
object-carrying tasks designed to vary muscle activity but keep trajectory unchanged. We obtain decoders trained 
with ECoG signals of various object masses and compare spatial distributions of weight matrices for trajectory 
prediction with those for muscle activity prediction. If the predictor is constructed based on ECoG signals derived 
from both extrinsic-like and intrinsic-like neurons, predicted trajectories will stray from actual trajectories given 
objects of different mass. Conversely, if the weight matrix for muscle activity prediction is obtained based on 
signals derived from extrinsic-like neurons, the predicted muscle activity will not change with varying object 
mass. Similar results would be expected if trajectory were varied while muscle activities were kept constant. We 
also trained predictors using task data for a single object mass to observe the effects of object mass on prediction.

Materials and Methods
Ethical approval.  The study protocol was approved by the ethics committee of Osaka University Hospital 
(Approval No. 14353, UNIM ID: UMIN000017900) and carried out in accordance with the Declaration of 
Helsinki. The ECoG electrodes in this study were implemented as part of the patients’ treatment. All patients or 
their guardians gave written informed consent before participating in the study.

Participants and electrodes.  Three female patients aged 66, 11 and 23 years, hereinafter referred to as 
patients 1, 2 and 3, respectively, participated in this study. All patients were diagnosed with intractable epilepsy. 
The sensorimotor cortices of patients 1 and 2 were undamaged. Patient 3 had a cerebral congenital lesion on her 
right frontal lobe (green area in Fig. 1C). Subdural planar platinum electrode arrays (Unique Medical Co., Tokyo, 
Japan) covering the precentral and central sulcus were implanted in all patients to localize foci of epilepsy and 
functional mapping (Fig. 1A–C). Each electrode had an exposed surface diameter of 3 mm. Inter-electrode dis-
tance was 10 mm for patients 1 and 3, and 7 mm for patient 2. The electrodes were implanted for 9 days in patient 
1 and 14 days in patients 2 and 3.

Behavioral tasks.  Patients 1, 2 and 3 conducted behavioral tasks 6 days, 13 days and 10 days after implanta-
tion, respectively. Sitting upright on their hospital room beds, the patients performed carrying tasks with a plastic 
bottle on a table (Fig. 1D). Patients 1 and 3 handled the bottle with their right arms, and patient 2 used her left 
arm. Four points were marked on the table with masking tape (red and green rectangles in Fig. 1D). Patients put 
the bottle at a start point (left red marker) and carried it to an end point (right red marker) via a green marker on 
a path denoted as path 1 (blue arc). The X and Y coordinates (mm) of the bottle changed from (200, 0) to (0, 150) 
and then from (0, 150) to (−​200, 0). Carrying height for the bottle was not specified, but patients were required 
to place it firmly on the red markers for an instant. After a brief stop on the end point of path 1, they were to con-
tinue carrying along path 2 (red arc). The path 1 and 2 carrying tasks were alternately repeated about 20 times per 
session. Bottles with three different masses were prepared: an empty bottle (25 g), a half-full bottle (250 g) and a 
full bottle (500 g). Each patient performed three sessions, one with each of the three bottle masses.

ECoG, EMG and motion recordings.  Patient 1 was implanted with a 4 ×​ 5 electrode array on the left 
cerebral hemisphere (Fig. 1A), patient 2 was implanted with a 5 ×​ 6 and a 2 ×​ 5 array on the right hemisphere 
(Fig. 1B) and patient 3 was implanted with a 4 ×​ 5 array and two 2 ×​ 5 arrays on the left hemisphere (Fig. 1C). A 
scalp electrode on the nasion of each patient was used as a reference for all electrodes. EMG signals of biceps and 
triceps brachii and anterior and posterior deltoid were recorded for all patients. ECoG and EMG were synchro-
nously recorded with a 128-channel digital electroencephalography (EEG) system (Neurofax EEG 1200; Nihon 
Koden Corporation, Tokyo, Japan) at a sampling rate of 1000 Hz.

The 3D motion of the bottle was recorded with a Kinect for Windows sensor (Microsoft, Redmond, WA) at 30 
fps, using the bottle’s cap as the reference point (Fig. 1D). Motion recording durations (average across three ses-
sions ±​ standard deviation) and total number of trials across sessions with the 25-g, 250-g and 500-g bottles were 
as follows: 1.72 ±​ 0.17 s (40 trials), 1.53 ±​ 0.09 s (40 trials) and 1.52 ±​ 0.13 s (42 trials) for patient 1; 1.86 ±​ 0.29 s 
(51 trials), 1.99 ±​ 0.31 s (39 trials) and 1.91 ±​ 0.28 s (44 trials) for patient 2; and 2.97 ±​ 0.32 s (42 trials), 3.14 ±​ 0.4 s 
(40 trials) and 2.97 ±​ 0.33 s (42 trials) for patient 3; respectively. There were no significant differences in duration 
among weights (F2,371 =​ 0.25, p =​ 0.779, the two-way ANOVA with unweighted-means analysis).

To synchronize the Kinect images and ECoG/EMG signals, brief flashes of LED light were displayed at ran-
dom intervals and recorded with the Kinect camera, while trigger signals of the flashes were recorded with the 
EEG system.

ECoG and EMG signal processing.  We applied the following ECoG pre-processing methods, which 
we previously proposed. (1) Raw ECoG signals were re-referenced to a common average reference. (2) The 
re-referenced signals were decomposed into nine frequency bands with fourth-order bandpass Butterworth filters 
(δ​: ~4 Hz, θ​: 4~8 Hz, α​: 8~14 Hz, β​1: 14~20 Hz, β​2: 20~30 Hz, γ​1: 30~60 Hz, γ​2: 60~90 Hz, γ​3: 90~120 Hz and γ​4: 
120~150 Hz). (3) These component signals were full-wave rectified. (4) They were smoothed with a Gaussian win-
dow (cutoff frequency: 3.98 Hz, time constant: 0.04 s). (5) The smoothed signals were down-sampled to 100 Hz. 
(6) Standard z-score zi(t) were obtained by normalization of the signals xi(t) (i =​ 1, 2, …​. n ×​ 9) at time t, such that

µ σ= − = … ×z t x t i n( ) ( ( ) )/ ( 1, 2, , 9) (1)i i i i

where n. μ​i and σ​i denote the number of electrodes, the mean value of xi(t) and the standard deviation of xi(t), 
respectively. We also used this method in our previous studies to predict trajectory2,7, muscle activation17, and 
force18, though not in our 3D motion study14, which used only unrectified ECoG. In the current study, we used 
both rectified and unrectified features in the weight selection.
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EMG signals were band-pass filtered from 30 to 400 Hz and full-wave rectified. The signals were smoothed 
with a second-order low-pass filter with a cut-off frequency of 2.2 Hz31,32 and down-sampled from 1000 Hz to 
100 Hz.

Decoding method.  The bottle position or muscle activity Yp(t) at a time t was predicted with sparse linear 
regression (SLiR)32–35 as follows.

Figure 1.  ECoG electrodes and behavioral tasks. (A–C) Dark blue circles denote platinum planar electrodes 
on the cerebral cortices. Red and cyan blue lines are the central and precentral sulcus, respectively. The 
electrodes were implanted on the left hemisphere of patients 1 and 3, and the right hemisphere of patient 2. 
Patient 3 had a cerebral congenital lesion (green area). The seizure onset zone also marked with red circles in 
the three patients. (D) All participants carried a bottle counterclockwise on a table. First, they placed it firmly 
on the start position (left red marker). Then they carried it along path 1 (blue arc) to the end position (right 
red marker) via a specified point (green marker). They placed the bottle firmly on the end point. They then 
carried the bottle from the along path 2 (red arc) to the end position (left red marker) and placed it firmly on 
the marker. They repeated the carrying task alternately for paths 1 and 2. ECoG and EMG signals were recorded 
with a 128-channel digital EEG system. Trajectories of a bottle cap were also recorded with the Kinect camera.
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where m denotes the number of sampling points for the z-score used for prediction of Yp, and Δ​t represents the 
time interval between sampling points. w0 and wij are a bias term and members belonging to a weight matrix. 
In this study, we assigned m =​ 100 points and Δ​t =​ 0.01 s. We then performed a leave-one-out cross validation 
(LOO-CV) to verify our results. Finally, we obtained root-mean-square error (RMSE) and Pearson’s correlation 
coefficient (CC) by comparing predicted Yp and actual values in LOO-CV.

Results
Actual bottle trajectories and muscle activity.  Figure 2 shows actual bottle trajectories by patient 1 
for all trials from the 25-g, 250-g and 500-g sessions (Fig. 2A–C) and averaged across trials after resampling 
each trial period to 200 points (Fig. 2D). Observed differences between sessions were slight, particularly in X 
coordinates. Actual trajectories for patients 2 and 3 are shown in Supplementary Figs S1 and S2, respectively. 
Supplementary Table S1 shows p and F values for a one-way ANOVA comparing coordinates for all trials and 
patients at 0.25 T, 0.5 T and 0.75 T, where T denotes each trial period. Patient 1 had the smallest differences among 
the three patients.

Figure 3 shows actual biceps brachii, triceps brachii and anterior deltoid activity (pre-processed EMG signals) 
for all trials (Fig. 3A,C) and averaged across trials (Fig. 3B,D). Although EMG of the posterior deltoid was also 
measured, the signals were highly uniform across trials and sessions. Among the three muscles, the biceps brachii 
showed the largest difference in activity across sessions. The p and F values for a one-way ANOVA comparing 
actual muscle activity for all trials and patients are shown in Supplementary Table S2.

Predicted bottle trajectories and muscle activity.  Bottle trajectories were predicted for all trials, ses-
sions and patients using sparse linear regression and LOO-CV. Prediction results were evaluated with RMSE 
and CC. We trained decoders based on subsets of ECoG and coordinate data from each session, as well as from 
all three sessions lumped together, and used them to predict X, Y and Z coordinates. Figure 4A shows RMSE 
between predicted and actual trajectories. Note that the proposed method can also estimate the complete opposite 
direction with the same decoders even without all lumped data. Predictions for patient 1 showed relatively low 
RMSE values and were typically the best among the three patients. Patient 1 also showed higher CC values than 
the others (Supplementary Fig. S3A).

Muscle activity was also predicted in the same way as trajectory prediction. Patient 1 showed the lowest RMSE 
values for anterior deltoid activity as well as biceps brachii activity with the 250 g and 500 g bottles (Fig. 4B).

X- and Y-coordinate predictions for patient 1 are shown in Fig. 5. Average predicted trajectories (Fig. 5D, thick 
lines) for the 250 g and 500 g bottles fitted well with actual trajectories (thin lines). Figs. 5E and 5F show spatial 
distributions of normalized weight matrices |wij |/|wmax| for the X- and Y-coordinate predictors, where |wmax| 

X
 (m

m
)

Y
 (m

m
)

Z 
(m

m
)

Time (s) Time (s) Time (s) Normalized time (-)

-200

200

-100

100

250
150

0

-200

200

-100

100
0

0 1 2 0 1 2 0 1 2 0 0.5 1.0

Empty bottle Half-full bottle Full bottle Average of trials
(25g) (250g) (500g) in each session

Cooordinates of empty bottle, Path 1
Coordinates of half-full bottle, Path 1
Coordinates of full bottle, Path 1

Coordinates of empty bottle, Path 2
Coordinates of half-full bottle, Path 2
Coordinates of full bottle, Path 2

(A) (B) (C) (D)

Figure 2.  Actual trajectories for patient 1. (A–C) Coordinates using the 25-g, 250-g and 500-g bottles, 
respectively. (D) Coordinates averaged across trials in each session. The differences between average trajectories 
are small, especially in the X-direction.
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denotes the maximum among absolute values of all members |wij| in matrix [W]. For the X-coordinate predictor, 
channels labeled a, b and c for ECoG without full-wave rectification showed relatively high weight values. Weight 
averages for areas PM and M1 were not significantly different from each other (p =​ 0.829, t-test). Weight matrices 
for the Y-coordinate predictor showed relatively high values at channels c through g, and average weight for PM 
was significantly higher than that for M1 (p =​ 1.15 ×​ 10−23).

Figure 6 shows predicted biceps brachii activity for patient 1. Significant differences between predicted muscle 
activities were observed (thick lines in Fig. 6D). The p and F values for a one-way ANOVA comparing predicted 
muscle activity for all trials and patients are shown in Supplementary Table S3 (cf. Table S2). Muscle activity for 
patient 1 typically showed significant differences according to bottle weight.

Distributions for weight matrix [W] are shown in Fig. 6E. Channels a, c, h, i and j for ECoG with full-wave 
rectification had high weights. Average weight for M1 was significantly higher than that for PM (p =​ 0.00916). 
Predicted triceps brachii activity also yielded significantly higher average weights for M1 than PM, but those of 
the anterior deltoid did not (Supplementary Fig. S4). Though it is not clear whether M1 had more information 
than PM, the highest contributor for muscle activity prediction was channel a in M1. This could mean that 
intrinsic-like neurons for generating movement are more prominent than extrinsic-like neurons under the area 
of channel a.

Weights and weight ratios of the frequency bands for XY coordinates and biceps brachii activity predictors are 
shown in Supplementary Fig. S5. Weight values using full-wave rectified ECoG were higher at all frequency bands 
for the muscle activity predictor than the trajectory predictor. This shows that the higher frequency bands had 
slightly more influence on muscle activity prediction than trajectory prediction. The δ​ weights using unrectified 
ECoG and the δ​ and θ​ weights using rectified ECoG were higher than any other band. The ratio of δ​ frequency 
bands (dark blue and blue) notably favored XY coordinates, while ratios for θ​ and γ​ bands favored muscle activity. 
Particularly the γ​ bands, such as those for channels a and h, were greater in the M1 area.

Effect of bottle mass on trajectory and muscle activity predictions.  We trained a decoder with 
complex data involving different masses and opposite trajectories to study its feasibility for neuroprosthetic con-
trol. We compared our decoder with a decoder designed for a single mass by applying weight matrices [W] 
trained using a single bottle mass to predict trajectories for all three masses. Figure 7A shows X and Y coordinates 
predicted using a decoder trained with a data set from patient 1 performing trials with the 25-g bottle (selected 
due to it having the lowest RMSE). Using the 250-g and 500-g decoders (Fig. 7B,C), prediction for 25 g (cyan/
blue lines) showed deficient trajectory compared with actual trajectory. This implies that the weights of the single 
mass decoder included intrinsic information for the given mass. This mass-specific decoder could not generate 
trajectory for other conditions. Figure 7D and E show spatial distributions of weight matrices [W] used in the 
three mass-specific decoders. For the 25-g decoder with full-wave rectification, channel h showed higher weight 
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Figure 3.  Actual biceps, triceps brachii and anterior deltoid activities of patient 1 for all trials (A and C) and 
averaged across all trials in each session (B and D). Biceps brachii activity showed more differences between 
sessions than the other two muscles.



www.nature.com/scientificreports/

6SCIENTIFIC REporTS | 7:45486 | DOI: 10.1038/srep45486

values than those of the 250-g and 500-g decoders. Since many intrinsic- and extrinsic-like neurons exist under 
the area of channel h, intrinsic-like neurons may have influenced the training for trajectory decoding.

Predicted biceps brachii activity for patient 1 using one of the decoders obtained with LOO-CV in each ses-
sion is shown in Supplementary Fig. S6. Although predicted curves slightly differed from each other, they did not 
fit well with actual muscle activity as compared with the decoders in Fig. 6. Triceps brachii and anterior deltoid 
activity of patient 1 predicted with mass-specific decoders are also shown in Supplementary Fig. S7.

We also sought to determine how much channels with high weights contributed to prediction. We predicted 
biceps brachii activity for patient 1 with one of the decoders obtained after LOO-CV using data for all three 
masses and two paths to determine the difference in predicted muscle activity for the 25 g and 500 g bottles 
(Fig. 8A for path 1 and Fig. 8F for path 2). The difference from 0.4 T to 0.6 T was averaged (green area in Fig. 8A 
and F). To evaluate contribution of each channel, we also predicted muscle activity again using ECoG signals 
of only one channel and obtained average differences between predicted muscle activities for the 25 g and 250 g 
bottles at each channel (for example, Fig. 8C–E for path 1, Fig. 8H–J for path 2). Figure 8B and G express percent-
ages of the average difference for each channel compared to those in Fig. 8A and F. Channel h showed the highest 
contribution rate.

We also calculated contribution of each channel to trajectory prediction for the 500 g bottle 
(Supplementary Fig. S8). Predicted trajectories for paths 1 and 2 were compared (green area). Channels a and b 
in M1, and c, e and f in PM showed high contribution rates.

Discussion
We used sparse linear regression to predict both bottle trajectory and muscle activity based on ECoG signals. 
To vary intrinsic parameters for muscle activity while keeping extrinsic parameters unchanged, we asked our 
patients to carry bottles of different masses along specified paths. Predicted trajectories and muscle activities were 
evaluated with RMSE and CC. To reduce stress and discomfort, recordings were performed in short durations 
and in their hospital rooms rather than an electromagnetically shielded room. Their postures were also unsta-
ble, because they sat on their beds. In addition, patient 1 had only 20 channels in her electrode array around the 
sensorimotor cortex (Fig. 1A). However, patient 1 typically showed the best RMSE and CC values (Fig. 4 and 
Supplementary Fig. S3) among the three patients. Patient 2 was not always able to keep the bottle along the speci-
fied path (see left three columns in Supplementary Fig. S1) and changed how she supported it in each session. We 
surmise that she was learning to carry it using as little energy as possible during the course of the three sessions. 
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This learning likely made our prediction difficult. Although the results of patient 2 showed similar tendencies to 
those of patient 1, the features were less clear (Supplementary Figs S9 and S10). Patient 3 had the lowest RMSE 
and CC values among the three patients for trajectory prediction. One possible explanation for this is the tra-
jectory patient 3 applied. She tried to pause at the via-points every trial (Supplementary Fig. S2). This complex 
movement may have affected decoding accuracy. Another explanation might be the site of patient 3’s brain lesion. 
Patient 3 had a cerebral congenital lesion near PM and M1, which might have influenced the ECoG. Therefore, 
results for patient 3 were difficult to interpret (Supplementary Figs S11 and S12).

For our decoders, we used both rectified and unrectified features in the weight selection. We found that using 
both provided the highest decoding performance (Supplementary Fig. S5). At the least, all rectified frequency 
bands and unrectified low frequency bands are necessary to obtain satisfactory performance.

Previous studies reported that weight values from δ​ and γ​ bands were effective and informative in trajectory 
decoding36–38. Crone et al. showed that high γ​ activity in response to a wide variety of experimental tasks was 
useful as a general electrophysiological index of cortical processing. Hammer et al. showed that the δ​ and high γ​ 
bands were superior to other bands for the prediction of direction, position, velocity, and acceleration. They fur-
ther proposed the neuronal population activity model and stated that large neuronal population activities such as 
those of local field potential and ECoG provided better prediction performance than single or multi-unit activity. 
Pistohl et al. reported that the accuracy of grasp-type classification using power spectrums in high (75~170 Hz) 
and low (<​4 or 5 Hz) frequency bands was greater than that using intermediate frequency bands (6~15 Hz and 
17~40 Hz). In the current study, weights for the δ​, θ​ and γ​ bands were higher than those of the other bands. This 
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result is consistent with previous studies decoding for arm movement7, finger movement14, velocity37, and grasp 
type38.

Weight values for the γ​ bands tended to influence decoding for muscle activity, while those of the unrec-
tified δ​ band influenced decoding for XY coordinates (Supplementary Fig. S5). In particular, weight values of 
γ​ bands from channels a and h (M1 area) were considerably higher for muscle activity decoding compared 
with XY-coordinate decoding. This finding matches well with previous studies on high δ​ contribution to move-
ment7,14,37 and high γ​ contribution to muscle activity17 and object weight38.

Since the predicted results were the sum of the product of the frequency features and their weights for both 
XY-coordinate and muscle activity decoding, components with higher weight values were considered more 
informative for a specific type of decoding. This is consistent with the conceptual schematic model36 and the 
neuronal population activity model37. When neurons in PM and M1 spike for motor planning or motor control, 
diverse changes in neuronal population activities occur, according to the balance of excitatory and inhibitory 
synaptic input. These changes may be represented in the frequency bands of local field potential and ECoG. This 
could be why all frequency bands were needed for effective prediction, and also emphasizes the importance of 
selecting ECoG electrodes of appropriate size.

The decoder weights trained with each path showed similar patterns for X and Y coordinates 
(Supplementary Fig. S13). The highest decoder channels a and b for path 1 were located near each other. Channel 
l decoders for path 2 were located in the same area. However, weights for the decoder trained on all bottle masses 
and paths showed different distributions (Fig. 5E,F). It was for this reason that the high weights in both paths, 
such as channel a, stood out. Other weights, such as those for channel k, were low, as they could not satisfy the 
demand of the different trajectories. Consequently, the decoder weights trained with all data were more useful to 
our analysis than the task-specific weights.

Kakei et al. indicated that (1) neurons in M1 exhibited intrinsic-like properties, and (2) neurons in both the 
ventral PM and M1 exhibited extrinsic-like properties29. We compared products of temporal frequency features 
and weights to evaluate whether channels contributed more to XY-coordinate prediction or muscle activity pre-
diction. Our analysis showed results consistent with those of Kakei et al. For example, the weight at channel h 
(upper part of M1) was much higher in muscle activity prediction (Fig. 6) than in trajectory prediction (Fig. 5). 
This could imply that channel h included a large amount of EMG information. Figures 8J and G showed that 
channel h gave the highest contribution compared to other channels. Therefore, this channel included the most 
information about the difference in muscle activity for the 25-g and 500-g bottles along path 2. Channel a (right 
side of channel h) had high weights for X coordinates in both paths (Supplementary Fig. S13). This channel also 
had high weights for muscle activity (Fig. 6E) along path 2, but not along path 1 (Fig. 8). Therefore, the area of 
channel a area may include strong extrinsic-like neurons for trajectory and intrinsic-like neurons for movement.

The spatial distribution of the weight matrix for X-coordinate prediction was not significantly high in PM 
(Fig. 5E). The differences among channels in contribution for the biceps brachii along path 1 were vague, although 
a few channels along path 2 had high contribution rates (Fig. 8B and G). Natural hand movement has been shown 
to be roughly straight with a gentle convex curve39–41. Uno et al. reported that the speed profile of convex curved 
paths had only one peak, while those of concave curved path had two peaks. They also reported that horizontal 
free movements between two targets were always slightly convex curved, because of the complex kinematics and 
dynamics of the musculoskeletal system. Indeed, the path 1 task was relatively easy for participants, as it involved 
a natural combination of joint movements, such as internal rotation of the shoulder joint, flexion of the elbow 
joint and so forth. To carry the bottle along path 2, patients had to draw the object up toward their chest while 
simultaneously carrying it from their left to right side. This motion is not as common in everyday life and may 
have forced patients to plan directions and routes before movement onset. These differences for paths 1 and 2 may 
have influenced the distributions in Fig. 5E and Fig. 8B.

From the viewpoint of neuroprosthetic control, it is ideal that trajectory and muscle activity prediction are 
based on extrinsic and intrinsic coordinates, respectively. Otherwise, the prosthesis would deviate from the user’s 
intended course when given an object of different mass, as shown in Fig. 7. When predicting muscle activity from 
ECoG, inaccuracies are usually inevitable because ECoG signals are summations of activity from a huge number 
of neurons under each electrode. Accuracy, however, could be improved by training decoders on ECoG recorded 
during manipulation of objects with various masses.
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