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Aboriginal Australian mitochondrial 
genome variation – an increased 
understanding of population 
antiquity and diversity
Nano Nagle1, Mannis van Oven2, Stephen Wilcox3, Sheila van Holst Pellekaan4,5,  
Chris Tyler-Smith6, Yali Xue6, Kaye N. Ballantyne2,7, Leah Wilcox1, Luka Papac1, Karen Cooke1, 
Roland A. H. van Oorschot7, Peter McAllister8, Lesley Williams9, Manfred Kayser2, 
R. John Mitchell1 & The Genographic Consortium#

Aboriginal Australians represent one of the oldest continuous cultures outside Africa, with evidence 
indicating that their ancestors arrived in the ancient landmass of Sahul (present-day New Guinea and 
Australia) ~55 thousand years ago. Genetic studies, though limited, have demonstrated both the 
uniqueness and antiquity of Aboriginal Australian genomes. We have further resolved known Aboriginal 
Australian mitochondrial haplogroups and discovered novel indigenous lineages by sequencing the 
mitogenomes of 127 contemporary Aboriginal Australians. In particular, the more common haplogroups 
observed in our dataset included M42a, M42c, S, P5 and P12, followed by rarer haplogroups M15, M16, 
N13, O, P3, P6 and P8. We propose some major phylogenetic rearrangements, such as in haplogroup 
P where we delinked P4a and P4b and redefined them as P4 (New Guinean) and P11 (Australian), 
respectively. Haplogroup P2b was identified as a novel clade potentially restricted to Torres Strait 
Islanders. Nearly all Aboriginal Australian mitochondrial haplogroups detected appear to be ancient, 
with no evidence of later introgression during the Holocene. Our findings greatly increase knowledge 
about the geographic distribution and phylogenetic structure of mitochondrial lineages that have 
survived in contemporary descendants of Australia’s first settlers.

The human colonisation of Australia occurred relatively soon after the migration of anatomically modern humans 
out of Northeast Africa some 60 to 80 thousand years ago (KYA)1–3. This initial settlement of Australia occurred 
between 47–55 KYA, based on the dating of archaeological sites dispersed throughout the continent3–7, and the 
analysis of contemporary Aboriginal Australian DNA8–18.

Although there is consensus about the time the ancestors of Aboriginal people arrived in the ancient land-
mass of Sahul (which comprised Australia and New Guinea), there is debate over the route(s) taken by them to 
reach Sahul9–11,18–20. This is mainly because the genetic structure of present-day Aboriginal Australians and New 
Guineans is different, implying a long separation that started at least 30 KYA9,15,21. Did the colonisers enter Sahul 
via present-day New Guinea and subsequently spread southwards to Australia, or were there different routes into 
Sahul, such that one or more groups entered Australia via the ancient northwestern coast that is now submerged 
under the Timor and Arafura Seas19? Furthermore, a mix of genetic22–24, archeological25, anthropological26,27 and 
linguistic data28 have suggested later migration(s) to Australia in the Holocene epoch, particularly from the Asian 
sub-continent.
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Although mainly based on small sample sizes and few sampling locations, DNA studies have revealed the 
distinctiveness of Aboriginal Australians. Mitochondrial DNA (mtDNA) lineages of all three major mtDNA 
clades found outside Africa (macrohaplogroups M, N and R- macrohaplogroup R lineages lie within N; see http://
phylotree.org29) are present in Aboriginal Australians. Subsequent to their arrival in Australia, the M founder 
types diversified into the Australian-specific haplogroups present today, including M42a and M15 (and possi-
bly M14), and the N founder types into N13, N14, O and S as reviewed in ref. 30, whilst the one lineage within 
macrohaplogroup R, haplogroup P, most probably evolved either in Sunda (the ancient landmass compris-
ing present-day Island Southeast Asia) just prior to the colonisation of Sahul31–33 or in northern Sahul (New 
Guinea)34. Subsequently, P evolved into sublineages that are unique to New Guinea or to Australia, respectively.

What is apparent from the limited Aboriginal Australian mtDNA data currently available is that it lacks phy-
logenetic resolution and geographic coverage. Specifically, most studies of mtDNA diversity have focused on 
populations of northern Australia9,21,23,35–38. The exceptions are van Holst Pellekaan, et al.39 and Presser, et al.40, 

Figure 1. Phylogeny and geographical distributions of Aboriginal Australian mtDNA lineages and those of 
the surrounding regions of past and present studies. Length of branches indicative of time since divergence. 
Colored squares on map indicate presence of specific haplogroups depicted in phylogeny.
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which analysed samples from New South Wales and Tasmania, respectively. A recent report on the genomic his-
tory of Aboriginal Australians18 included 83 mitogenomes drawn widely from the continent. However, while the 
mitochondrial haplogroup affiliation of the individuals is given, sequence data were not available.

A relatively large number of Aboriginal mtDNAs have also been reported as haplogroup M, N or P “unclas-
sified” (also denoted as M*, N* or P*). This has occurred because either only the hypervariable control-region 
segments (HVS-I and HVS-II) were sequenced and/or the mtSNPs genotyped proved insufficient for further 
subhaplogroup assignment8,9,17,35,36,41. The paucity of knowledge is also illustrated by the fact that, to date, there 
are only 39 Aboriginal Australian mitogenomes in GenBank (0.16% of all human mitogenome sequences as of 
June, 2016).

The 127 newly described mitogenome sequences of the present study comprise part of the Genographic 
Project during which samples from Aboriginal Australians were collected for analysis of uniparental DNA 
variation14,17. Participants were drawn especially from those areas of Australia, either previously not sampled 
(Queensland and Victoria), or very poorly represented (Tasmania). These data were used to further clarify the 
phylogenies of Aboriginal Australian mitochondrial haplogroups, their distribution within the continent, and 
potentially make inferences regarding the colonisation and migration routes taken by the maternal ancestors of 
present-day Aboriginal Australians.

Results and Discussion
The samples selected for mitogenome sequencing are a subset within a larger mtDNA sample set described 
in Nagle, et al.17. The haplogroup assignments of the present sample based on initial mtSNP genotyping are 
given in Supplementary Table 1. The frequencies of each haplogroup as well as geographical distributions are 
very similar to those observed in the much larger Aboriginal sample of mtDNAs reported in Nagle, et al.17 
(Supplementary Table 2).

Figure 2. Schematic tree of (a) macrohaplogroup M and (b) macrohaplogroup N lineages including those 
specific to Aboriginal Australians. Diagnostic control-region and coding region positions are as indicated.
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There is uncertainty as to the traditional homeland of many individuals in this study as a result of the great 
dislocation of Aboriginal society since European colonization started in 1788. This disruption included forced 
removal from their homelands into settlements, restrictions on marriage and forced removal of children. 
Accordingly, any attempt at the reconstruction of the historical genetic structure of Aboriginal Australia must be 
mindful of the past treatment over the last 200 years.

Detailed phylogenetic trees using full mitogenome sequences were constructed for the following haplogroups: 
a) M14, M15, M16, M42 and Q b) N13, N14, O and S and c) R12 and P (Supplementary Figures 1–3). In addi-
tion, a simplified tree showing the overall basic phylogeny and diagnostic mtSNPs of the major Australian 
sub-branches of macrohaplogroups M and N (including R) are shown in Fig. 2a and b, respectively. Haplogroup 
nomenclature follows that of PhyloTree Build 17 (van Oven and Kayser, 2009) and logically expands on this 
nomenclature for newly identified (sub)haplogroups.

Phylogeny of lineages within macrohaplogroup M. This tree comprised the 34 haplogroup M mitog-
enomes of this study and the published M14, M15, M42a, M42b, Q1, Q2 and Q3 mitogenomes8,9,37,38,42–44 (pro-
visional diagnostic SNPs are presented in Supplementary Figure 1). Notably, construction of the tree revealed 
a novel subclade within M42 (here labelled M42c) that is, according to available data, unique to Aboriginal 
Australians. In addition to A9156G, which is a definer of haplogroup M42, M42c is defined by nucleotide posi-
tions (np) C64T and T195C, and the absence of G8251A (which is shared by M42b and some M42a mitoge-
nomes). M42c has at least two subtypes, with M42c1 found in Queensland and M42c2 found in Queensland, 
New South Wales and Victoria (Fig. 1). It is unclear whether the haplogroup labelled ‘M42’ in Malaspinas, et al.18  
is identical to M42c because of the lack of sequence data. Distinct subclades were also identified within the 
previously known haplogroup M42a, namely M42a1 which, in turn, is subdivided into M42a1a and M42a1b 
(Supplementary Figure 1).

The existence of a novel branch within the M42 clade was first suggested by Ballantyne, et al.35, in which some 
samples were labelled M42*(xM42a) because they carried the transition at np A9156G (the defining mutation 
of M42) but not G12771A (one of the defining mutations of M42a). Haplogroups M42a and M42c are, by far, 
the major representatives of haplogroup M in Australia and both appear to be widespread across the continent 
(Fig. 1).

Haplogroup M42a has previously provoked interest because its apparent sister clade, M42b, was found in 
tribal group(s) in southern India42,43 as well as in single individuals from Iran45, Saudi-Arabia46 and Mauritius46. 
Time-to-most recent-common-ancestor (TMRCA) estimates of M42a and M42b suggest that they diverged some 
50 KYA, possibly in India42, with the ancestors of Aboriginal Australians continuing southeastward to Sahul47,48. 
However, M42a and M42b are only tenuously linked as they share just two mutations, 9156G and 8251A, with the 
latter being a well-known mutational hotspot with 26 independent occurrences in PhyloTree Build 1729. Indeed, 
two of the published M42a mitogenomes lack the 8251 transition, suggesting back mutations have occurred at 
this position8,42,49. Hence, the sharing of 8251A between M42b and some of the M42a lineages might be coinci-
dental (identical-by-state) rather than indicative of phylogenetic relatedness (identical-by-descent). In contrast, 
the A9156G transition appears is mildly recurrent, with only five occurrences in the entire PhyloTree Build 17. 
Thus, M42a, and M42c are more likely to be identical-by-descent.

Other indigenous M subhaplogroups in Aboriginal Australians, M15 and possibly M149, appear to be much 
less frequent than haplogroups M42a and M42c as we did not find haplogroup M14 in our dataset and hap-
logroup M15 was only observed once. This additional M15 sequence, from Western Australia, together with the 
only other published haplogroup M15 sequence9, helped to refine the diagnostic motif of this haplogroup to nine 
mutations (Supplementary Figure 1). One individual from Queensland had a novel M mitogenome that shared 
individual mutations, with existing haplogroups (i.e., M29, M52, M82, M28, M80, M53, M15, M23, M50), but did 
not show a convincing phylogenetic link to them.

Interestingly, this novel mitogenome shared variant C16193T with haplogroup M15 but there was uncertainty 
as to whether they shared it by descent and, therefore, this mitogenome was tentatively labelled as haplogroup 
M16 (Fig. 2a).

Haplogroup Q is of interest because of its estimated age of at least ~37 KY50 and its relatively high frequency 
in Australia’s nearest neighbours, New Guineans, Timorese and Island Melanesians21,34,51,52. This haplogroup has 
three known subclades; Q1, Q2 and Q3, all of which are found in New Guineans/Island Melanesians, with Q1 and 
Q3 being additionally present in Timorese34. To date, haplogroup Q has been found only in a single Aboriginal 
Australian person and it was a unique variant within haplogroup Q2, labelled Q2b9.

The three haplogroup-Q individuals detected in the current study all belonged to Q1. One of them belonged 
to a newly proposed subhaplogroup, Q1g, shared with an individual from the Solomon Islands53 and the other 
two belonging to haplogroup Q1a (Supplementary Figure 1). While all of them were sampled in Far North 
Queensland, the three Q individuals were aware they had Torres Strait Island maternal ancestry. Some of the 
Torres Strait Islands (which lie between Australia and New Guinea) are an integral part of the nation of Australia, 
with the remainder belonging to Papua New Guinea. Although Aboriginal Australians are culturally and linguis-
tically distinct from Torres Strait Islanders, there are reports of trading and intermarriage54. Any such gene flow, 
however, was not detected in our small sample of mitogenomes.

Phylogenies of lineages within macrohaplogroup N. Haplogroups N13 and O show the most geo-
graphically restricted distribution of the major observed haplogroups in Australia. Haplogroup N13, however, 
has a wider distribution than previously thought, with a presence in Queensland as well as Western Australia. 
One Queensland individual’s mitogenome was similar to a sequence from Western Australia11, whilst the 
other individual was more divergent from other N13 mitogenomes. The increased number of haplogroup-N13 
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mitogenomes has allowed the identification of a novel subclade, N13a, which in turn has a subclade N13a1 
(Fig. 2b).

Although haplogroup O has a wide distribution within Australia, being present in Queensland, Western 
Australia and the Northern Territory, it was not observed in high frequency compared to other widespread 
Australian haplogroups (Fig. 1). The increased number of haplogroup-O mitogenomes resulted in the identifica-
tion of a novel subclade within haplogroup O1a (i.e., O1a1) and the newly defined haplogroup O2. Haplogroup 
O1a was found in all three northern States, while haplogroup O2 was present in the Northern Territory and 
Queensland (Supplementary Figure 2).

Haplogroup S evolved within Australia and has five recognized subtypes, S1 to S5; although, of these, S4 and 
S5 are each represented by only one mitogenome sequence9,37. However, haplogroup S5 has been reported in 
Western Australia18. Our additional haplogroup-S mitogenomes belonged to S1a, to the newly proposed S1b, 
to the tentatively defined S1c and to S2 (Fig. 2b). S1 had a wide distribution, being present in Queensland, New 
South Wales, Western Australia and the Northern Territory. The single S1c subtype was from Queensland, and its 
provisional diagnostic SNPs are provided in Supplementary Figure 2. S2 also had a wide distribution, being found 
in all States, including the island of Tasmania (Fig. 3). Novel subclades within haplogroup S2 were identified, and 
were labelled S2a and S2b (Supplementary Figure 2). Haplogroups S3, S4 and S5 were not observed in our sam-
ple. However, we did detect a novel haplogroup S mitogenome (from New South Wales) which we provisionally 
denoted S6 (Fig. 2b).

Phylogeny of lineages within macrohaplogroup R. Haplogroup P is an ancient haplogroup with ten 
recognized subclades thus far (P1 to P10) (Fig. 2b). The haplogroup is found in Island Southeast Asia (ISEA), in 
particular the Philippines, and also in New Guinea, Island Melanesia and Australia9,18,31,32,34,37,38,51,55.

Although the known two subclades of haplogroup P3 were thought to have separate geographical distribu-
tions, with P3a restricted to Australia and the majority of P3b individuals (2 out of 3) to New Guinea9,37,51, our 
results revealed three P3b individuals, who resided in Queensland or New South Wales, but have known Torres 
Strait Islander maternal ancestry (Supplementary Figure 3).

The subclades of haplogroup P4 have also been thought to show geographical differences, with P4a restricted 
to New Guinea and P4b to Australia8,9,37,51. There was no evidence of P4a in our Aboriginal Australian sample. 
However, after sequencing five haplogroup P4b individuals it was apparent that P4a and P4b shared too few 
mutations for both subtypes to remain within the same clade, P4, and that P4b was more parsimoniously joined 
(through mutation C11288T) with a single haplogroup P lineage from Tasmania, together forming a newly pro-
posed haplogroup, which we designated P11. As a result of this rearrangement, those individuals that were previ-
ously assigned to P4b (Aboriginal Australians) have been allocated to the subclade P11 to reflect its uniqueness. 
Haplogroup P11 has a wide distribution in Australia, with representative mitogenomes from all States where data 
were available (Fig. 1). The eight mitogenomes of P11 can be further classified into subtypes; P11a and P11b, 
with P11a found on mainland Australia and P11b represented in a single individual from Tasmania. This new 
haplogroup assignment also receives support from maximum likelihood analysis (Supplementary Figure 4). As a 
result of this analysis, the New Guinean-specific haplogroup P4a now becomes P4.

In our sample, there were individuals who carried haplogroup P1e, which was previously found in Timor 
and New Guinea34,38, and New Guinean-specific haplogroup P236,37,44,51,55. Notably, these individuals traced their 
maternal ancestry to the Torres Strait Islands, and may therefore have (ultimate) maternal ties to the New Guinea 
mainland. The New Guinean and Torres Strait Islander haplogroup-P1e mitogenomes shared three mutations 
not present in the Timorese P1e lineage and, therefore, the former has been denoted as a novel clade, P1e1. 
Interestingly, within haplogroup P2, our new sequences distinguished two subclades, P2a and P2b, with P2a 
restricted to New Guinea and P2b to the Torres Strait Islanders (Supplementary Figure 3).

This study greatly improved the substructure of haplogroup P5 (previously merely represented by a sin-
gle sequence from the Northern Territory51), with two major subclades which are predominantly found in 
Queensland: P5a and P5b; the first of which appeared to be more common (Supplementary Figure 3). Four 
haplogroup-P6 mitogenomes from Victoria and Queensland indicated that this haplogroup is not restricted to 
the Northern Territory37. Our increased sampling further resolved the haplogroup P6 phylogeny, with two sub-
clades (P6a and P6b) evident. There was no evidence of haplogroup P7 in our sample, previously reported in 
the Northern Territory37. The sequencing of an additional haplogroup P8 mitogenome, together with sequence 
AY289055 previously thought to belong to haplogroup P6, allowed us to propose a basal haplogroup-P8 motif, as 
well as the recognition of a subtype P8a, and a TMRCA estimate of this haplogroup.

The remaining 13 haplogroup-P mitogenomes belonged to a novel clade, which we denoted P12 (Fig. 2b), 
with all these individuals residing in Queensland. Two subhaplogroups, P12a and P12b, could also be identified 
amongst the sequences (Supplementary Figure 3).

In our sample we did not detect haplogroup R12, previously observed in a single individual from the Northern 
Territory44 and recently in three individuals in Western Australia18.

TMRCA estimates. The TMRCA estimates of the Aboriginal Australian haplogroups based on two differ-
ent mutation rates are shown in Table 1. The mutation rate of Soares, et al.56 reflects an estimated ‘evolutionary’ 
mutation rate, whereas that of Fu, et al.57 is calibrated with ancient-DNA samples. The present study’s estimates 
differed from those calculated by Behar, et al.50, Hudjashov, et al.9 and van Holst Pellekaan30 due to a difference in 
methodologies and increased sampling from different regions. Several estimates have large confidence intervals 
due to increased variability of the mitogenomes as well as low numbers.

The estimates generated by the two methods were similar for most haplogroups, especially for those repre-
sented by more than four mitogenomes. Haplogroups represented by less than four mitogenomes showed larger 
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Present Study Other Publications

Haplogroup n

Fu et al.57 Soares et al.56 Behar et al.50a Hudjashov et al.9b van Holst Pellekaan30c,d

Median 
(KY) 95% HPD (KY)

Median 
(KY) 95% CI (KY)

TMRCA ± SD 
(KY)

TMRCA ± SD 
(KY)

TMRCA ± SD (KY) – 
Coding region

TMRCA ± SD (KY) – 
Coding region

M15 2 31 19–43 67 46–89 — — — —

M42a 15 36 27–46 39 31–47 — 41 ±  9 34 ±  6 46 ±  9

M42c 19 46 35–58 43 29–58 — — — —

M42b 14 46 35–58 53 34–72 40 ±  7 — — —

M42a'c 34 53 42–66 50 39–62 — — — —

Q 34 44 34–55 53 37–68 37 ±  6 32 ±  6 — —

 Q1 18 23 17–30 24 17–32 18 ±  7 21 ±  6 — —

 Q2 11 34 24–44 27 20–35 29 ±  7 30 ±  9 — —

 Q3 5 31 22–41 35 27–43 31 ±  6 21 ±  5 — —

N13 4 32 22–44 38 26–52 — — — —

O 9 37 25–50 43 28–59 52 ±  6 17 ±  7 — —

 O1 5 25 16–36 20 12–29 17 ±  8 — — —

 O1a 4 12 7–18 19 11–29 — — — —

 O1a1 3 7 3–12 17 10–24 — — — —

 O2 4 24 14–35 22 13–32 — — — —

S 48 51 40–64 49 39–59 53 ±  5 25 ±  5 40 ±  6 54 ±  8

 S1 22 42 32–53 48 35–62 — 22 ±  7 — —

 S1a 8 22 15–29 20 12–29 — — 32 ±  9 44 ±  12

 S1b 13 21 15–28 29 22–37 — — — —

 S1b1 5 16 10–22 20 11–30 — — — —

 S1b2 5 10 5–16 9 2–17 — — — —

 S1b3 3 12 7–17 12 4–20 — — — —

S2 21 32 24–42 34 25–44 39 ±  9 15 ±  5 — —

 S2a 14 25 18–34 29 20–38 — — — —

 S2b 7 26 18–35 30 19–42 — — — —

S3 2 3 1–7 8 0–17 2 ±  2 — — —

P 112 60 50–73 62 54–70 55 ±  2 52 ±  6 — —

 P1 22 38 29–48 39 31–47 33 ±  6 30 ±  6 — —

 P1d 13 32 24–40 36 28–45 30 ±  6 — — —

 P1e 8 26 16–37 30 17–44 — — — —

 P1e1 3 11 5–19 14 6–23 — — — —

 P1e1a 2 3 0.3–7 3 0–6 — — — —

P2 8 39 28–50 29 20–38 — 13 ±  4 — —

 P2a 6 23 15–32 19 12–27 — — — —

 P2b 2 4 1–8 4 0–8 — — — —

P3 10 43 33–54 44 26–62 41 ±  5 39 ±  8 — —

 P3a 4 26 17–35 6 0–13 25 ±  7 — — —

 P3b 6 34 26–44 35 24–45 35 ±  6 — — —

P4 5 18 12–26 22 14–30 53 ±  4 66 ±  13 — —

 P4a 3 13 8–19 20 10–31 19 ±  6 26 ±  7 — —

P5 24 31 23–41 28 18–39 — — — —

 P5a 21 23 16–30 22 13–30 — — — —

 P5a1 18 19 14–25 19 11–27 — — — —

 P5a2 3 17 10–24 20 11–30 — — — —

 P5b 3 19 12–28 21 10–32 — — — —

P6 5 43 32–56 54 38–70 48 ±  7 — — —

 P6a 2 12 5–19 16 7–26 — — — —

 P6b 3 32 22–43 44 26–63 — — — —

P8 3 49 37–61 47 36–59 — — — —

 P8a 2 16 8–25 19 9–30 — — — —

P9 10 40 30–52 59 38–82 — — — —

P10 4 4 1–9 7 2–13 — — — —

P11 8 50 39–62 39 29–48 — — — —

Continued
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differences. Overall, TMRCA estimates using Soares, et al.56 mutation rate were older than those generated using 
that of Fu, et al.57. The TMRCA estimates of all the uniquely Aboriginal haplogroups are consistent with the 
conclusion of the recent review of archaeological evidence that the initial colonisation of Sahul occurred at least 
47 KYA3 with the age estimates using Fu, et al.57 fitting well with this date. The Fu, et al.57 mutation rate may be 
considered the most accurate since it was calibrated using reliably dated ancient DNA samples taken from mod-
ern human remains whose ages span the last 40 KY, and come from different locations throughout the world. 
Colonisation even earlier than these dates, however, cannot be completely rejected since the large expansion 
of land formerly comprising the north western part of Australia has been submerged since ~8 KYA58 and this 
region may well have been colonised earlier than 47 KYA. In addition, there is an inherent difficulty in find-
ing archaeological evidence of human occupation of Australia before 55 KYA due to the continent’s harsh arid 
environment3,7,59,60.

The TMRCA for haplogroup S is between 49 and 51 KYA and it may have been one of the first 
Australian-specific haplogroups to diversify after it evolved from its ancestral N type, which is consistent with 
the fact that the root of S is only one mutation step from N. The recent mitogenome sequencing of the skeletal 
remains of WLH4 of Lake Mungo, New South Wales16 has determined that this individual (chronologically dated 
to the late Holocene by Durband, et al.61) belonged to haplogroup S2. Our analysis suggests that she belongs to 
subtype S2a1a, with her closest three maternal living descendants also living in New South Wales, with one indi-
vidual, W26, residing close to Lake Mungo.

The common ancestor of the M42a and M42c evolved 50–53 KYA (Table 1) and this date may serve as an 
upper bound to the date of colonization of Australia. The novel haplogroup M42c is 5–10 KY older than M42a.

Haplogroup P is the oldest and most polytomous of the Australian haplogroups, with a TMRCA estimate 
of 60 KY (Table 1). In the newly reconstructed P phylogeny comprising 112 mitogenomes, we find that the 
Australian-specific haplogroups are as ancient as those found in New Guinea and Philippines, but all estimates 
have large confidence intervals. The ‘novel’ P subtypes identified in this study P11 (including the former P4b) is 
50 KY old and P12 is 46 KY old.

The antiquity of Australian P lineages makes identifying the geographic origin of P more problematic and, 
perhaps, these findings strengthen the hypothesis it evolved within Sahul. Importantly, given that some of the 
Australian-specific P lineages (P8, P11 and P12) are at least 45 KY old, these data support a long separation 
of Australian and New Guinean populations. This deep divergence between New Guineans and Aboriginal 
Australians is also supported by Y-chromosome data suggesting that the two populations may have separated at 
least 48 KY ago14,15.

Recently, it has been argued, based on genome wide analysis of samples from mainly northern and western 
Australia, that first settlement of Australia occurred less than 42 KYA18. However, the authors acknowledged that 
this date was not congruent with current archeological evidence. Our genetic data suggest a much earlier arrival 
of the ancestors (no later than 45 KYA) as does the recent Y-chromosome study15. Further, very recent archeolog-
ical evidence supports occupation of the interior of Australia at least 49 KYA60.

Migrations. While it is presently unknown where P evolved in this region, it is likely that haplogroup P carrying  
females entered Australia from present-day New Guinea, and this haplogroup rapidly diverged into sub hap-
logroups. Today, Australia contains a number of unique P subtypes (P5, P6, P7, P8, P11 and P12), while P2 is 
distantly shared between New Guinea and the Torres Strait Islands and P3 appears in mainland Australia, Torres 
Strait Islands and New Guinea.

If we assume that haplogroup M42b belongs to a separate clade to that comprising M42a’c, then the ancestor 
of the latter most probably evolved in the Near East or South Asia and reached Sahul via the southern route into 
Sunda47,48. Subsequently, the ancestors moved through the string of Indonesian islands, including Nusa Tenggara 
and Timor. It is possible that this M42a’c ancestor arrived in Sahul at least 50 KYA, via the coastline of northwest 
Australia that is now submerged beneath the Timor and Arafura Seas, rather than via New Guinea. Once in the 
continent, their descendants subsequently diverged into M42a and M42c. Importantly, the female descendants 
of M42a’c may never have spread to New Guinea, as the M42 clade has not thus far been detected in present-day 
New Guineans23,62,63.

It is also plausible that the N* ancestors of equally ancient Aboriginal maternal lineages such as N13, S and O 
may have followed a similar route of entry to that of the ancestors of M42a and M42c, as these lineages are also 
not shared, as far as we know, with modern New Guineans23,37,62. Whether or not females carrying ancestral N lin-
eages followed a similar route(s) to that taken by the female M ancestors is unknown, but, clearly the descendant 
haplogroups of both M* and N* are distinct from those observed among modern New Guineans.

Present Study Other Publications

Haplogroup n

Fu et al.57 Soares et al.56 Behar et al.50a Hudjashov et al.9b van Holst Pellekaan30c,d

Median 
(KY) 95% HPD (KY)

Median 
(KY) 95% CI (KY)

TMRCA ± SD 
(KY)

TMRCA ± SD 
(KY)

TMRCA ± SD (KY) – 
Coding region

TMRCA ± SD (KY) – 
Coding region

P12 12 46 36–57 57 38–77 — — — —

 P12a 3 32 23–42 32 19–45 — — — —

 P12b 9 15 9–22 15 7–24 — — — —

Table 1.  TMRCAs of Aboriginal Australian mitochondrial haplogroups. aOne substitution in 3,624 years 
(Soares et al.56). bOne synonymous substitution in 6,764 years (Kivisild et al.44). cOne substitution in 3,810 years 
(Ingman and Gyllensten37). dOne substitution in 5,140 years (Mishmar et al., 2003).
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It has been argued that the M42a’c and N* ancestral females may have taken a more northerly route (like that 
proposed for the Australian haplogroup P ancestors) through Sunda into Sahul via present day New Guinea, 
and later their descendants extended into Australia, where the M42a, M42c, N13, O, S and Australian-specfic P 
subtypes evolved in situ9,30. Alternatively, those mitochondrial haplogroups presently found only in Aboriginal 
Australians may well have been present in ancient New Guineans but have been lost through genetic drift.

There is also considerable debate over whether Australia received migrants from other populations, particu-
larly from South Asia, during the mid-Holocene. The postulated Indian connection arises from some archaeo-
logical25 and linguistic findings28,64, as well as DNA analyses22–24. In particular, immigrants have been postulated 
as necessary to explain the introduction of the dingo (Australian dog) ~5 KYA, and the microlith tradition25,27. 
Claims of linguistic similarities between Dravidian languages of southern India and the Pama-Nyungan language 
of most of Aboriginal Australia have also been used to suggest a connection between the two regions28. However, 
the hypothesized connection to India has been stongly disputed65.

Redd and Stoneking23 had previously suggested mtDNA lineages of Aboriginal Australians were most closely 
related to those in southern India, and later, Redd, et al.22 claimed that the Y-chromosome haplogroup C-RPS4YT 
indicated a Holocene connection between the males of Southern India/Sri Lanka and Australia, although both 
these studies have relatively low data resolution. More recently, using a genome-wide analysis, Pugach, et al.24, 
calculated that a considerable component (~11%) of the Aboriginal Australian genome could be attributed to 
a South Indian migration to Australia some 4 KYA. By contrast, all studies on mtDNA variation in Aboriginal 
Australians, including the present one, find no evidence of recent gene flow from the Indian sub-continent during 
the Holocene. In fact, the mitogenomes of the current study show no evidence for sharing of Aboriginal hap-
logroups with those found in the Asian sub-continent except for haplogroup M42, although the TMRCA esti-
mates for M42a and M42c (Australia) and M42b (South Asia) suggest these clades split long before the Holocene.

Our findings concur with those of other studies, that there is no evidence of back migration of females into New 
Guinea after novel haplogroups arose in Australia23,30,37,63,66. However, what adds to the complexity of any recon-
struction of the past is the effects of the Austronesian expansion from (probably) Taiwan through Island Southeast 
Asia, then via New Guinea into Oceania, and the Pacific some 4 KYA. However, a recent study67 confirms that this 
expansion was a rapid coastal migration resulting in little admixture with the indigenous populations of New Guinea.

The traditional Aboriginal marriage pattern of patrilocality and the movement of women along ‘Songline’ 
routes over large distances68 for hundreds, if not thousands of generations can explain the wide geographi-
cal spread of indigenous haplogroups M42a, M42c, S, N13, O and P subtypes. The explanation for some very 
low-frequency ancient mitochondrial lineages in Aboriginal Australians remains speculative, but possibly 
involves factors such as marked isolation and limited resource access of some communities over thousands of 
years and the consequently marked effects of random genetic drift in small bands. However, it is possible that 
these low frequencies are due to sample bias and that their frequencies may be higher elsewhere in regions not 
yet sampled.

As all Aboriginal-specific mitochondrial haplogroups are of great antiquity, show considerable substructure, 
and are (mostly) very widely dispersed across the Australian continent while not being present outside Australia, 
it can be inferred that after initial colonisation some 50 KYA there has been a very long period of isolation of 
humans in Australia.

Subjects and Methods
Sample collection. Saliva samples were collected using Oragene®  DNA Collection kits (DNA Genotek 
Inc. Ontario, Canada) from 127 self-declared Aboriginal Australians who had volunteered to participate in 
the “Genographic Project”. Informed consent was obtained by all participants of the “Genographic Project”. 
Further information on sample characteristics and treatment is given in Supplementary Document. Individuals 
were previously genotyped for selected mtSNPs to assign them to the major mitochondrial haplogroups17. 
Individuals resided in the States of Queensland (n =  103), New South Wales (n =  14), Victoria (n =  6), Tasmania 
(n =  2) and Western Australia (n =  2), with the majority of participants from the Eastern States of Australia 
(Supplementary Table 2). Although the majority of samples were collected in Queensland, a number of individ-
uals indicated that their maternal ancestry lay in other regions or States. In particular, participants had maternal 
ties to Torres Strait Islands, Tasmania and New South Wales. It is important to note that Aboriginal Australian 
affiliation is culturally based, and not defined by a person’s genetic composition. This study was approved by the 
Human Ethics Committee of La Trobe University. All methods were carried out in accordance with the relevant 
guidelines and regulations. All experimental protocols were approved by the Human Ethics Committee of La 
Trobe University.

Whole mitogenome sequencing. An input of 100 ng of genomic DNA extracted from Oragene®  collec-
tion kits (as per the manufacturer’s recommendations) was prepared and indexed for Illumina sequencing using 
the TruSeq DNA Sample Prep Kit (Illumina) as per manufacturer’s instruction. The library was quantified using 
the Agilent TapeStation and the Qubit™  RNA assay kit for Qubit 2.0®  Fluorometer (Life Technologies). The 
indexed libraries were then enriched for mtDNA and prepared for paired-end sequencing on a HiSeq instrument 
using the v3 100 cycle kit (Illumina) as per manufacturer’s instructions. For more detailed descriptions of the 
mitogenome data processing, genotyping and filtering, see the Supplemental Experimental Procedures.

Data Analysis. The 127 mitogenomes were aligned to the revised Cambridge Reference Sequence (rCRS)69,70. 
Two different mutation rates were utilized to calculate TMRCA estimates. The mutation rate of Soares, et al.56 
is based on the analysis of over 2,000 modern human mitogenomes whereas that of Fu, et al.57 is based on the 
analysis of ten mitogenomes of skeletal remains of ancient Eurasians spanning the last 40 KY. These mutation 
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rates are based on the recalibration of the molecular clock of modern human and ancient human mitochondrial 
genomes, respectively.

Phylogenies of the haplogroups were constructed using the Network 5.0 software with the reduced median 
algorithm71. TMRCA estimates of haplogroups were also calculated using the rho (ρ ) statistic72 based on phyloge-
netic rate of one mutation every 3624 years56. The mtDNA clock provided by Soares, et al.56 was subsequently 
used to correct for purification selection.

Bayesian inferences of the TMRCAs of haplogroups were calculated using BEAST73. The software jMod-
eltest274 was used to identify the best-fitting nucleotide substitution model, which was GTR+ I+ G. For each 
inference, three independent MCMC runs of 20,000,000 iterations each were performed and combined using 
LogCombiner v1.8.2 (included in BEAST package). We used one prior distribution for complete mitochondrial 
genomes incorporating Fu, et al.57 priors, 2.67 ×  10−8 (2.16–3.16 ×  10−8, 95% HPD). TRACER75 was employed to 
estimate the TMRCAs, to check convergence of the two BEAST runs of 60 million iterations and to compute the 
effective sample size (ESS) and the 95% confidence intervals for all parameters.

The 127 mitogenome sequences, together with all previously published mitogenome sequences from relevant 
haplogroups, were analyzed in a phylogenetic context by drawing maximum-parsimony trees using PhyloTree 
Build 17 (van Oven and Kayser, 2009) as reference. This allowed several phylogenetic improvements to be 
made and novel (sub)haplogroups identified in the process were given new haplogroup labels. Phylogenetic 
trees were constructed with the program mtPhyl (http://eltsov.org) and PhyloTree (Build 17)29. Thirteen of the 
127 mitogenomes have also been subject to whole-genome sequencing at the Sanger Institute, using the pro-
tocols as described in Bergstrom, et al.15. These data confirmed the haplogroup assignments of these samples. 
Aboriginal Australian mitogenome sequences in GenBank that were included in the analysis were from Ingman, 
et al.38, Ingman and Gyllensten37, Kivisild, et al.44, van Holst Pellekaan, et al.8, Friedlaender, et al.51, Hudjashov, 
et al.9, Rasmussen, et al.11 and Heupink, et al.16. The sequence data for the 83 Aboriginal Australian mitoge-
nomes reported in Malaspinas et al.18 were not available. Mitogenomes from other populations (non-Australians) 
were taken from Ingman, et al.38, Redd, et al.22, Ingman and Gyllensten37, Pierson, et al.55, Friedlaender, et al.51, 
Hudjashov, et al.9, Tabbada, et al.31, Delfin, et al.32 and Gomes, et al.34. A Maximum-Likelihood tree was con-
structed using MEGA v6.076 with the GTR+ I+ G nucleotide model and 1000 bootstraps.
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