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A scientific report on heat transfer 
analysis in mixed convection flow 
of Maxwell fluid over an oscillating 
vertical plate
Ilyas Khan1, Nehad Ali Shah2 & L. C. C. Dennis3

This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid 
over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms 
of coupled partial differential equations with initial and boundary conditions. Some suitable non-
dimensional variables are introduced in order to transform the governing problem into dimensionless 
form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, 
shear stress and temperature are obtained. These solutions are greatly influenced with the variation of 
embedded parameters which include the Prandtl number and Grashof number for various times. In the 
absence of free convection, the corresponding solutions representing the mechanical part of velocity 
reduced to the well known solutions in the literature. The total velocity is presented as a sum of both 
cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and 
post transient parts. It is found that the post transient parts are independent of time. The solutions 
corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian 
fluid and Maxwell fluid is shown graphically.

Exact solutions for mixed or free convection flow of viscous fluid problems are abundance in literature. However, 
such solutions for non-Newtonian fluids are rare, particularly for Maxwell fluids, such solutions do not exist. 
Generally, in non-Newtonian fluids, the relation which connects shear stress and shear rate is non-linear and the 
constitutive relation forms equations of non-Newtonian fluids which are higher order and complex as compared 
to Navier-Stokes equation governing the flow of viscous fluid. Due to this high nonlinearity, closed form solutions 
for non-Newtonian fluid flows are not possible for the problems with practical interest. More exactly, when such 
fluids problems are tackled via Laplace transform technique, often the inverse Laplace transforms of the trans-
formed functions do not exist. Due to this difficulty, the researchers are usually using numerical procedures for 
finding the inverse Laplace transform. However, those solutions are not purely regarded as exact solutions.

Due to the great diversity in the physical structure of non-Newtonian fluids, researchers have proposed a 
variety of mathematical models to understand the dynamics of such fluids. Mostly, these models fall in the subcat-
egory of differential type fluids or rate types fluids. However, a keen interest of the researchers is seen in studying 
rate types fluids due to the fact that they incorporate both the elastic and memory effects together. The first and 
the simplest viscoelastic rate type model which is still used widely to account for fluid rheological effects is called 
Maxwell model1. This model can be generalized to produce a plethora of models. Initially, the Maxwell fluid 
model was developed to describe the elastic and viscous response of air. However, after that, it was frequently 
used to model the response of various viscoelastic fluids ranging from polymers to the earth’s mantle2–4. After the 
pioneering work of Friedrich5, on fractional derivatives of Maxwell fluid, several other investigations were carried 
out in this direction.

Among them,Haitao and Mingyu6 studied fractional Maxwell model in channel, Jamil et al.7 analyzed 
unsteady flow of generalized Maxwell fluid between two cylinders. In another investigation, Jamil et al.8, 
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examined helices of fractionalized Maxwell fluid whereas Jamil9 analyzed slip effects on oscillating fractionalized 
Maxwell fluid. Corina et al.10 provided a short note on the second problem of Stokes for Maxwell fluids. Zheng 
et al.11, developed exact solutions for generalized Maxwell fluid for oscillatory and constantly accelerating plate 
motions, Zheng et al.12 used the same fluid model for heat transfer study due to a hyperbolic sine accelerating 
plate. Qi and Liu13 studied some duct flows of a fractional Maxwell fluid. Tripathi14 applied fractional Maxwell 
model to study peristaltic transport in uniform tubes.

Fetecau and Fetecau15, established a new exact solution for the flow of a Maxwell fluid past an infinite plate. In 
an other investigation, Fetecau and Fetecau16 determined exact solutions by means of the Fourier sine transforms 
for an incompressible fluid of Maxwellian type subjected to a linear flow on an infinite flat plate and within an 
infinite edge. Jordan et al.17 studied Stokes’s first problem for Maxwell fluids and obtained new exact solutions. 
Zierep and Fetecau18 examined energetic balance for the Rayleigh-Stokes problem of Maxwell fluid. Among some 
other important studies on Maxwell fluids, we mention here the important contributions of Jamil et al.19, Vieru 
and Rauf20, Vieru and Zafar21 and Khan et al.22. However, in all these investigations, heat transfer analysis was not 
considered. More exactly, phenomenon of heat transfer due to mixed convection was not incorporated in all the 
above studies. Therefore, the focal point of this work is to analyze Maxwell fluid over an oscillating vertical plate 
with constant wall temperature and to establish exact solutions using the Laplace transform method. The obtained 
results consideration of heat transfer analysis in Maxwell fluid has industrial importance since many problems of 
physical interest involve heat transfer such as automotive industry (radiator, cooling circuits, lamps), aerospace 
(de-icing system, cooling systems), in chemical process industry (heat recovery systems, heat exchangers), energy 
(kilns, boiler, cross flow heat exchangers, solar panels) and home appliance (ovens, household heaters)23–25.

Mathematical formulation of the problem
Let us consider unsteady mixed convection flow of an incompressible Maxwell fluid over an oscillating vertical 
flat plate moving with oscillating velocity in its own plane. Initially, at time t =​ 0, both the fluid and the plate are at 
rest with constant temperature T∞. At time t =​ 0+ the plate is subjected to sinusoidal oscillations so that the veloc-
ity on the wall is given by V =​ U0H(t)cos(ω​t), resulting in the induced Maxwell fluid flow. More exactly, the plate 
begins to oscillate in its plane (y =​ 0) according to V =​ U0H(t)cos(ω​t)i; where the constant U0 is the amplitude of 
the motion, H(t) is the unit step function, i is the unit vector in the vertical flow direction and ω is the frequency 
of oscillation of the plate. At the same time t =​ 0+, the temperature of the plate is raised or lowered to a constant 
value Tw. The velocity decays to zero and temperature approaches to a constant value T∞, also known as free 
stream temperature. The equations governing the Maxwell fluid flow related with shear stress and heat transfer 
due to mixed convection are given by the following partial differential equations:
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with the corresponding initial and boundary conditions:
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Solution of the problem
Temperature.  Taking Laplace transform of Eqs (8), (10)2, (11)2 and using initial condition (9)2, we obtain
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θ = − .y q
q

y q( , ) 1 exp( Pr )
(14)

Taking the inverse Laplace transform and using (A1), we obtain:

θ =









.y t erfc y

t
( , ) Pr

2 (15)

Velocity field.  Taking the Laplace transform of Eqs (6), (10)1, (11)1 and using initial conditions, we obtain
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Figure 1.  Velocity and temperature profiles for mixed convection flow over a hot vertical plate at Tw 
exposed to plate at T∞. 

Figure 2.  Profiles of temperature for Prandtl number Pr variation for different time t. 
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Taking the inverse Laplace transform of Eq. (21), we obtain:

Figure 3.  Profiles of velocity for Grashof number Gr variation for different time t. 
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Figure 4.  Profiles of velocity for Prandtl number Pr variation for different time t. 
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where δ ⋅( ) being Dirac distribution.
Applying inverse Laplace transform to Eq. (20) and using convolution product, we obtain
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Shear stress.  Applying Laplace transform to Eq. (7), we obtain
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Differentiate Eq. (19) with respect to spatial variable y, we obtain

Figure 5.  Profiles of shear stress for Grashof number Gr variation for different time t. 
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Applying the inverse Laplace transform to Eqs (31), (32), (33) and (34), we obtain

Figure 6.  Profiles of shear stress for Prandtl number Pr variation for different time t. 
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where ∗ represents convolution product and ⋅k ( ) is defined in Appendix (A3).

Solutions in the absence of Buoyancy force (limiting case)
In this case, when Gr =​ 0 the solution corresponding to oscillating boundary motion can easily be obtained from 
Eqs. (28) and (35). Such solutions are already obtained by Corina et al.10.
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Figure 7.  Profiles of velocities and shear stress for Maxwell fluid and Newtonian fluid. 
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Shear stress. 
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Numerical results and discussions
The geometry of the problem is given in Fig. 1. In order to get some physical insight of the results corresponding 
to oscillating velocity on the boundary, some numerical calculations have been carried out for different values of 
pertinent parameters that describe the flow characteristics. All physical quantities and profiles are dimensionless. 
Also all profiles are plotted versus y. Figure 2 presents the temperature profiles for different values of time t and 
Prandtl number Pr variation. The fluid temperature is a decreasing function with respect to Prandtl number Pr 
and tends to a steady state slowly as the time t increases. Figure 3 presents the velocity profiles for different values 
of time t and Grashof number Gr variation. For other constant we have λ =​ 0.7, ω​ =​ 2, Pr =​ 5. It is observed that 
the fluid velocity is increased by increasing the Grashof number Gr. By increasing the time t the difference 
between the velocities as well as the steady state increases. Figure 4 presents the velocity profiles for different 
values of time t and Prandtl number Pr variation. For other constants, we have λ =​ 0.7, ω​ =​ 2, Gr =​ 5. It is observed 
that the fluid velocity decreases by increasing the Prandtl number Pr. By increasing the time t, the difference 
between the velocities as well as the steady state increases. Figure 5 presents the shear stress profiles for different 
values of time t and Grashof number Gr variation. For other constants, we have λ ω= . = = .0 5, 2, Pr 0 3. It is 
observed that near the boundary the shear stress increases by increasing the Grashof number Gr but after some 
critical value of y the shear stress is decreased by increasing Gr. By increasing the time t the critical value of y is 
increased it means that the critical point is far from the boundary. Figure 4 presents the shear stress profiles for 
different values of time and Prandtl number Pr variation. For other constants we have λ =​ 0.3, ω​ =​ 2, Gr =​ 10. It is 
observed that the region near the boundary, the shear stress is decreased by increasing the Prandtl number Pr. By 
increasing the time t, Fig. 6 has the same behavior like Fig. 4. A comparison between Maxwell fluid and 
Newtonian fluid is shown graphically in Fig. 7.

Conclusions
This study reports the first exact solution for unsteady mixed convection problem of Maxwell fluid via Laplace 
transform method. Expressions of velocity, shear stress and temperature are obtained and then plotted graphi-
cally for various embedded parameters. The solution corresponding to Newtonian fluid problem is recovered as a 
special case. Moreover, it is found that in the absence of free convection term, the already published results can be 
recovered as a special case. From the plotted results, it is found that temperature decreases with increasing Prandtl 
number; however, for large timethe temperature decays later. Velocity decreases with increasing Prandtl number 
whereas an oscillating behavior is observed for Grashof number.
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