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Complementary Log Regression 
for Sufficient-Cause Modeling of 
Epidemiologic Data
Jui-Hsiang Lin & Wen-Chung Lee

The logistic regression model is the workhorse of epidemiological data analysis. The model helps to 
clarify the relationship between multiple exposures and a binary outcome. Logistic regression analysis 
is readily implemented using existing statistical software, and this has contributed to it becoming 
a routine procedure for epidemiologists. In this paper, the authors focus on a causal model which 
has recently received much attention from the epidemiologic community, namely, the sufficient-
component cause model (causal-pie model). The authors show that the sufficient-component cause 
model is associated with a particular ‘link’ function: the complementary log link. In a complementary 
log regression, the exponentiated coefficient of a main-effect term corresponds to an adjusted ‘peril 
ratio’, and the coefficient of a cross-product term can be used directly to test for causal mechanistic 
interaction (sufficient-cause interaction). The authors provide detailed instructions on how to perform 
a complementary log regression using existing statistical software and use three datasets to illustrate 
the methodology. Complementary log regression is the model of choice for sufficient-cause analysis of 
binary outcomes. Its implementation is as easy as conventional logistic regression.

The logistic regression model is the workhorse of epidemiological data analysis1. The model helps to clarify the 
relationship between multiple exposures and a binary outcome. Researchers can easily adjust for confounding 
factors and assess interactions by entering appropriate covariates into a logistic regression model. An (exponenti-
ated) regression coefficient of a main-effect term in the model is an adjusted odds ratio, and a test of the regression 
coefficient of a cross-product term is a test for multiplicative interaction. Logistic regression analysis is readily 
implemented using existing statistical software, and this has contributed to it becoming a routine procedure for 
epidemiologists.

Logistic regression is a generalized linear model with a ‘logit’ link function2. (A link function specifies how the 
exposure variables are related to the mean response.) Statistics textbooks often describe two other link functions 
for a binary outcome, the ‘probit’ and the ‘complementary log-log’ links, though these two link functions are less 
often used in epidemiology.

In this paper, we focus on a causal model which has recently received much attention from the epidemi-
ologic community, namely, the sufficient-component cause model (causal-pie model)1,3–11. The model is 
mechanism-based, aiming at elucidating the possible mechanisms through which multiple exposures interact in 
causing an outcome. We will show that the sufficient-component cause model can be associated with yet another 
link function, the ‘complementary log’ link, and that in a complementary log regression, the exponentiated coef-
ficient of a main-effect term corresponds to an adjusted ‘peril ratio’ (a recently introduced alternative measure for 
exposure effect9,10), and the coefficient of a cross-product term can be used directly to test for causal mechanistic 
interaction (sufficient-cause interaction). While a number of previous researchers have considered such a link 
function, they were unaware of its correspondence to the sufficient-component cause model12–18. To promote 
complementary log regression for epidemiologic data analysis, we provide detailed instructions on how to per-
form such a regression using existing statistical software and use three datasets to illustrate the methodology.

Methods
We are interested in the relationship of two binary exposures (X and Z) and a binary outcome. We assume that 
in a cohort study of a population in a certain time interval, (0, T), the exposure status is time-invariant, and the 
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follow-up is fully complete, that is, without loss to follow-up and competing death. We assume that there is no 
confounding, selection bias, or measurement error in the study. Therefore, the association between the two expo-
sures and the disease should reflect the genuine causal effects of the exposures on the disease.

For two binary exposures, there is a total of nine classes of sufficient causes, including one ‘all-unknown’ class 
(U1), two X-only classes (U2, U3), two Z-only classes (U4, U5), and four interaction classes (U6-U9) (see Fig. 1)8,9. 
For people in the population with an exposure profile of X =​ x and Z =​ z for each and every x, z ∈​ {0, 1}, let Riskx, z  
denote the cumulative disease risk (probability) in (0, T), and Perilx, z = (1 −​ Riskx, z)−1, the disease peril in (0, T). 
[‘Peril’ is an alternative metric for risk. It is the inverse of a survival (risk complement) and ranges from 1 (no 
peril) to infinity (maximum peril). See ref. 9 for more details].

Furthermore, let ...Risk , , RiskU U1 9
 denote the cumulative completion risks of the above mentioned nine 

classes of sufficient causes in (0, T), and = − ... = −− −Peril (1 Risk ) , , Peril (1 Risk )U U U U
1 1

1 1 9 9
, the correspond-

ing completion perils, respectively. Under the no redundancy assumption8,19, Lee9 showed that the log disease 
peril for a specific exposure profile is the sum of log completion perils for four classes of sufficient causes, that is,

= + + +logPeril logPeril logPeril logPeril logPeril , (1)U U U U1,1 1 2 4 6

= + + +logPeril logPeril logPeril logPeril logPeril , (2)U U U U1,0 1 2 5 7

= + + +logPeril logPeril logPeril logPeril logPeril , (3)U U U U0,1 1 3 4 8

and

= + + +logPeril logPeril logPeril logPeril logPeril , (4)U U U U0,0 1 3 5 9

respectively.
A log peril is, in fact, a risk in complementary log transform, that is, log Peril =​ −​log(1 −​ Risk). Equations (1–4) 

above therefore suggest a complementary log regression model for disease risks:

β β β β− − = + + + .x z xzlog(1 Risk ) (5)x z, 0 1 2 3

The exponentiated negative beta coefficients of this model, respectively, can be related to disease perils, as 
detailed below:

β− = = −−exp( ) Peril 1 Risk (6)0 0,0
1

0,0

is the inverse of the peril of the reference group, which is also the survival probability of an (X =​ 0, Z =​ 0) person,
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is the inverse of the peril ratio for exposure X, which is also the ratio of the survival probabilities between an 
(X =​ 1, Z =​ 0) person and an (X =​ 0, Z =​ 0) person,
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Figure 1.  All 9 classes of sufficient cause for two binary exposures. 
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is the inverse of the peril ratio for exposure Z, which is also the ratio of the survival probabilities between an 
(X =​ 0, Z =​ 1) person and an (X =​ 0, Z =​ 0) person, and finally,

β− = =

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×

×
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is the inverse of the ‘peril ratio index of synergy based on multiplicativity’ (PRISM) proposed by Lee9.
From Equations (1–4), the PRISM is also related to the completion perils:
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Because PRISM ≠​ 1 in Equation  (10) [or equivalently, PRISM−1 ≠​ 1 in Equation  (9)] forbids 
= = = =Risk Risk Risk Risk 0U U U U6 7 8 9

, a test for the interaction term (H0: β3 =​ 0 against H1: β3 ≠​ 0) in the com-
plementary log regression model [Model (5)] can therefore be taken directly as a test for causal mechanistic 
interactions (sufficient-cause interactions) between X and Z, that is, a test for the presence of at least one of the 
interaction classes (U6-U9). [Model (5) also permits hypothesis testing for specified interaction classes. See S1 
Exhibit for details.] By comparison, to conduct the same PRISM test based on other models (logistic, probit, and 
complementary log-log) requires much more computational effort (S2 Exhibit) than was needed here with com-
plementary log regression.

For the general situation of multiple multi-leveled exposures (two or more exposures, each with two or more 
levels), the above proposed complementary log regression model also applies. The exponentiated negative beta 
coefficient for an exposure level in the model is an estimate of the ratio of the survival probabilities between a 
person with that exposure level and one with the reference level, and a test of the beta coefficients of the kth-order 
interaction terms involving a particular set of a total of k (k ≥​ 2) exposures is a test for the kth-order causal mech-
anistic interactions among this exposure set. As for a continuous exposure, it can be categorized into multiple 
levels and then enter the complementary log regression as a multi-leveled exposure. Alternatively, it can enter the 
regression as it is, if it is reasonable to assume that the fold change in survival probability per unit change in the 
exposure is everywhere the same in its possible levels.

The complementary log regression model can be readily implemented using existing statistical software. For 
example in the SAS statistical software package (SAS Institute, Inc., Cary, North Carolina), one can select the 
generalized linear model (GENMOD) procedure, and specify either the link function as g(μ) =​ −​log(1 −​ μ) in the 
FWDLINK statement or the inverse link function as μ =​ 1 −​ exp(−​g(μ)) in the INVLINK statement. S3 Exhibit 
shows how to use the function glm() to fit the complementary log model in the R statistical software package (R 
Foundation for Statistical Computing, Vienna, Austria). For both software package, one also has the option of 
trying different sets of initial values, if an attempt to fit the model fails to converge.

Examples
To illustrate the methodology, we fit the complementary log regression to three datasets.

Example 1: Causal Mechanistic Interaction between Age and BMI on Hypertension.  The first 
example is composed of cohort data taken from Example 3 in Zou’s paper20. A total of 4897 participants were 
followed up to investigate the effects of age (coded as 1 and labeled “old” if ≥​40 years and coded 0 and labe-
led “young” otherwise) and body mass index (BMI, coded as 1 and labeled “high” if ≥​25 kg/m2 and coded 0 
and labeled “low” otherwise) on hypertension (coded as 1 and labeled “hypertensive” if diastolic blood pressure  
≥​90 mmHg and coded 0 and labeled “non-hypertensive” otherwise). During the follow-up, a total of 610 subjects 
were diagnosed to be hypertensive.

The complementary log regression was fit to the data. Table 1 presents the regression coefficients and the 
95% confidence intervals (CIs). The exponentiated negative intercept is exp(−​0.0446) =​ 0.9564 (95% CI: 0.9470–
0.9658). This means that subjects in the reference group (i.e., those who are young and have a low BMI) have a 
95.6% probability of being hypertension-free during the follow-up. The exponentiated negative regression coef-
ficient for age is exp(−​0.1142) =​ 0.8921 (95% CI: 0.8634–0.9217). This is the inverse of the peril ratio for age, 
which implies that the probability of being hypertensive-free for an old person with low-BMI is 0.89-fold that of 
the hypertensive-free probability for a young low-BMI person. Likewise, the inverse of the peril ratio for BMI is 
exp(−​0.0724) =​ 0.9302 (95% CI: 0.9108–0.9499), which implies the hypertensive-free probability for a high-BMI 
young person is 0.93-fold that of the hypertensive-free probability for a low-BMI young person.

Variables
Regression 
coefficients

95% confidence 
interval P (two-sided)

Intercept 0.0446 0.0348, 0.0545 <​0.0001

Age 0.1142 0.0815, 0.1469 <​0.0001

BMI 0.0724 0.0514, 0.0934 <​0.0001

Age ×​ BMI 0.0866 0.0335, 0.1397 0.0014

Table 1.   The results of the complementary log regression for Example 1.
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The exponentiated negative coefficient for the cross-product term is exactly the inverse of PRISM index [9]: 
exp(−​0.0866) =​ 0.9170(95% CI of 0.8696–0.9671). Because the test for this cross-product term is highly signifi-
cant (two-sided P value of 0.0014), we conclude that there is a significant causal mechanistic interaction between 
age and BMI on hypertension. Actually, the inferences are exactly the same as in Lee’s paper9 where the same data 
was also analyzed. However, the approach taken here is simpler since all the computations can be relegated to 
user-friendly statistical software (such as SAS and R).

Example 2: Effects of Age and Tolbutamide Treatment on All-Cause Mortality.  The second exam-
ple considers randomized, controlled trial data taken from Table 15–1 in the textbook Modern Epidemiology1. A 
total of 409 diabetic patients were followed up to compare all-cause mortality (coded as 1 if dead from any cause 
and 0 otherwise) of patients treated with tolbutamide and those given a placebo (coded as 1 if in the tolbutamide 
treatment group and 0 otherwise), stratified by age (coded as 1 if age ≥​55 years and 0 otherwise). A total of 51 
subjects died during the follow-up.

Table 2 presents the results of the complementary log regression. The exponentiated negative intercept is 
exp(−​0.0426) =​ 0.9583 (95% CI: 0.9232–0.9947). This means that the reference group (a patient <​55 years old) 
has a survival probability of 95.8% during the follow-up. In this example, age is found to be the only significant 
determinant of all-cause mortality for diabetic patients (two-sided P value of 0.0028), upon adjusting for the 
treatment group and the cross-product term. The inverse of the peril ratio for age is exp(−​0.1660) =​ 0.8470 (95% 
CI: 0.7601–0.9446), implying that the survival rate for old patients in the placebo group is 0.85-fold that of the 
survival for young patient in placebo group. Note that the test for the cross-product term here produces the same 
insignificant result (two-sided P value =​ 0.9057) as did the ‘heterogeneity test’ in a previous paper10.

Example 3: Effects of Age and Personality on Coronary Heart Disease Occurrence.  The third 
example considers cohort data taken from Table 7–24 in the textbook Statistical Analysis of Epidemiology Data21. 
A total of 3154 participants were followed up to compare the occurrence of coronary heart disease (CHD, coded 
as 1 if diseased and 0 otherwise) in personality types A and B (coded as 1 if personality type A and 0 otherwise), 
stratified by age (coded as 0, 1, 2, 3, and 4 if age <​40, 40–44, 45–49, 50–55, and ≥​55 years, respectively). During 
the follow-up, a total of 257 subjects acquired CHD.

Table 3 presents the results of the complementary log regression for this example. The likelihood ratio test com-
paring the full model to a reduced model without the interaction term is not significant [two-sided P value =​ 0.1605, 
based on a test statistic of 2 ×​ (854.3623 −​ 851.0780) =​ 6.5686 with a degree of freedom of 9 −​ 5 =​ 4]. We therefore 
conclude that there is no causal mechanistic interaction between personality type and age.

The exponentiated intercept is exp(−​0.0398) =​ 0.9610. This means that participants in the refer-
ence group (those younger than 40 years and of personality type A) have a 96.1% probability of remaining 
CHD-free during the follow-up. The inverse of the age-adjusted peril ratio for personality (type A vs. type B) 

Variables
Regression 
coefficients

95% confidence 
interval P (two-sided)

Intercept 0.0426 0.0053, 0.0799 0.0254

Age 0.1660 0.0570, 0.2743 0.0028

Treatment 0.0359 −​0.0300, 0.1019 0.2859

Age ×​ Treatment 0.0098 −​0.1520, 0.1716 0.9057

Table 2.   The results of the complementary log regression for Example 2.

Variables
Regression 
coefficients

95% confidence 
interval P (two-sided)

Intercept 0.0398 0.0163, 0.0633 0.0009

Age

  <​40 0.0000

  40–44 −​0.0039 −​0.0319, 0.0242 0.7879

  45–49 0.0196 −​0.0150, 0.0543 0.2664

  50–54 0.0486 0.0004, 0.0967 0.0480

  ≥​55 0.0362 −​0.0187, 0.0911 0.1966

Personality Type 0.0399 −​0.0022, 0.0821 0.0631

Age ×​ Personality

  <​40 0.0000

  40–44 −​0.0049 −​0.0557, 0.0459 0.0631

  45–49 0.0364 −​0.0258, 0.0986 0.8514

  50–54 0.0387 −​0.0410, 0.1185 0.2514

  ≥​55 0.0898 −​0.0032, 0.1828 0.3412

Table 3.   The results of the complementary log regression for Example 3.
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is exp(−​0.0399) =​ 0.9609. This is interpreted to mean that an A-type’s probability of remaining CHD-free is 
0.96-fold that of a type B person of the same age.

On the other hand, the personality-adjusted peril ratios for age (using ages <​40 as the reference age range) 
are: exp(0.0039) =​ 1.0039 for ages 40–44, exp(−​0.0196) =​ 0.9806 for ages 45–49, exp(−​0.0486) =​ 0.9526 for ages 
50–54, and exp(−​0.362) =​ 0.9644 for ages ≥​55, respectively. These are to be interpreted as the fold-differences in 
the probability of remaining CHD-free for an older person in the given age range (of a particular personality type) 
as compared to a person in the youngest reference age range (of the same personality type).

Lee10 previously analyzed the same data and reached the same conclusion of no causal mechanistic interaction 
between personality type and age. But the method he used requires computationally challenging matrix calcu-
lations. Using a stratified analysis method, Lee10 also calculated the age-adjusted peril ratio for personality type 
(a binary exposure variable). But a stratified analysis method for the adjusted peril ratios for a polychotomous 
exposure variable (e.g., the personality-adjusted peril ratios for different age groups) is currently lacking.

Discussion
In this paper, we show that complementary log regression analysis is tantamount to sufficient-component cause 
modeling. Under such a regression framework, an exponentiated main-effect coefficient is an adjusted peril ratio, 
and a test for an interaction coefficient is itself a test for causal mechanistic interaction. This should greatly facili-
tate our elucidation of how complex interactions between multiple risk factors bring about an outcome. Caution 
should be exercised when using the model to make predictions, though, as the link function does not guarantee 
the predicted risk for a new subject to fall between 0 and 1, if he/she is too ‘dissimilar’ to those subjects used for 
building the model. (By too dissimilar, we mean that the new data point is not in the convex set constructed by the 
data used for building the model.) To prevent this from happening, we can modify the model for risk prediction 
as β β β= − − + + + ...� � �� x xRisk 1 exp[ max(0, )],h h h0 1 ,1 2 ,2  where Riskh is the predicted risk, and xh,1, xh,2, …​ are 
the covariates (possibly including interaction terms) for the new subject, and β β β ...  , , ,0 1 2  are the estimated 
regression coefficients of the complementary log regression. By contrast, the logistic, the probit, and the comple-
mentary log-log regressions do not suffer from this problem, because their link functions map the unit interval 
(for a risk) onto the real line (for a linear combination of multiple exposures).

We have focused here on a cohort population with a fixed time interval over which the exposure status is 
time-invariant and the follow-up is fully complete. Under this setting, the conventional ‘relative excess risk due 
to interaction’ (RERI) index22–26 can be used to assess causal mechanistic interactions. A RERI test (H0: RERI ≤​ 1 
against H1: RERI >​ 1) is a specific test for the (X =​ 1, Z =​ 1) interaction class22–26. However, Lee9 has pointed out 
that the RERI test uses a more stringent threshold (and hence has a lower power) to detect causal mechanistic 
interactions than does the PRISM test or, equivalently, a test based on the coefficient of a cross-product term in a 
complementary log regression (β3 in Model (5)). S4 Exhibit further shows that the complementary log regression 
also applies to a ‘sub-cohort study’ which randomly selects study subjects at one point in time from a source pop-
ulation for cross-sectional survey and subsequent follow-up.

When the outcome is rare, risk ratios can be approximated by odds ratios, which in turn can be estimated from 
a case-control study. Therefore, a RERI test (in terms of odds ratios) can be a valid test (or approximately so) for 
causal mechanistic interactions in case-control studies for rare diseases22–26. Similarly, we have that for rare dis-
eases, log Peril =​ −​log(1 −​ Risk) ≈​ Risk ≈​ Odds. Our Model (5) thus becomes a linear model for the odds:  
Oddsx ,z = ​ β0 + ​ β1x  + ​ β2z  + ​ β3xz ,  or alternatively, a linear model for the odds ratios (ORs): 

γ γ γ= = + + +x z xzOR 1 ,x z,
Odds
Odds 1 2 3

x z,

0,0
 where γ1 =​ β1/β0, γ2 =​ β2/β0 and γ3 =​ β3/β0. Therefore, the comple-

mentary log model also applies to case-control studies for rare diseases. In this model, the main-effect coefficient, 
γ1 (γ2), is the excess odds ratio (OR −​ 1) for the X(Z) variable27, and the interaction coefficient, γ3, is 
OR1,1 −​ OR1,0 −​ OR0,1 +​ 1, which is the RERI index (in terms of the odds ratios for the interaction effects). For 
case-control studies of common diseases, however, neither the proposed complementary log model nor a linear 
risk model (for the RERI test) applies [See S5 Exhibit for details].

In summary, complementary log regression is the model of choice for sufficient-cause analysis of binary out-
comes. Its implementation is as easy as conventional logistic regression. However, complementary log regression 
assumes a complete follow-up. Further studies are warranted to develop sufficient-cause modeling methods for 
censored data28.
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