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Kitaev exchange and field-induced 
quantum spin-liquid states in 
honeycomb α-RuCl3
Ravi Yadav1, Nikolay A. Bogdanov1,†, Vamshi M. Katukuri1,‡, Satoshi Nishimoto1,2,  
Jeroen van den Brink1,2,3 & Liviu Hozoi1

Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic 
ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin 
liquid, host of remarkable properties such as protection of quantum information and the emergence 
of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d5 honeycomb 
halide α-RuCl3. From advanced electronic-structure calculations, we find that the Kitaev interaction 
is ferromagnetic, as in 5d5 iridium honeycomb oxides, and indeed defines the largest superexchange 
energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-
dependent magnetization. Using exact diagonalization and density-matrix renormalization group 
techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from 
zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on 
recent magnetic and spectroscopic measurements on this material and open new perspectives on the 
prospect of realizing quantum spin liquids in d5 halides and oxides in general.

Quantum spin liquids (SL’s) are states of matter that cannot be described by the broken symmetries associated 
with conventional magnetic ground states1. Whereas there is a rich variety of mathematical models that exhibit 
SL behavior, finding materials in which a quantum SL state is realized is an intensely pursued goal in present day 
experimental condensed-matter physics2–4. Of particular interest is the Kitaev Hamiltonian on the honeycomb 
lattice5, which is a mathematically well-understood two-dimensional model exhibiting various topological SL 
states. Its remarkable properties include protection of quantum information and the emergence of Majorana 
fermions5,6.

The search to realize the Kitaev model of effectively spin-1/2 particles on the honeycomb lattice was cen-
tered until recently mainly on honeycomb iridate materials7,8 of the type A2IrO3, where A is either Na or Li. In 
these systems though long-range magnetic order develops at low temperatures, for all known different crystallo-
graphic phases9–13. The SL regime is most likely preempted in the iridates by the presence of significant residual 
Heisenberg-type J couplings, by longer-range spin interactions, or by having crystallographically distinct Ir-Ir 
bonds with dominant J’s on some of those, if not a combination of these factors14–17.

Also of interest in this context is ruthenium trichloride, RuCl3, in its honeycomb (α) crystalline phase18–26. 
Very recent Raman and neutron scattering measurements suggest that the 4d5 halide honeycomb system is closer 
to the Kitaev limit22,23. But also this material orders antiferromagnetically at low temperatures, as the 5d5 iridium 
oxides do, and precisely how close to the idealized Kitaev model α-RuCl3 is, remains a question to be clarified.

Here we present results of combined quantum chemistry electronic-structure computations and 
exact-diagonalization (ED) calculations for extended Kitaev-Heisenberg spin Hamiltonians using as starting 
point for the ED study the magnetic couplings derived at the quantum chemistry level. Our results for the Ru3+ 
4d-shell electronic structure show sizable trigonal splitting of the 4d t2g levels and therefore a spin-orbit ground 
state that significantly deviates from the jeff =  1/2 picture7. The trigonally distorted environment further gives rise 
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to strong anisotropy of the computed g factors, consistent with experimental observations20,27. Calculating the 
magnetic interactions between two adjacent 1/2-pseudospins, we find that the nearest-neighbor (NN) Kitaev 
exchange K is ferromagnetic (FM), in any of the α-RuCl3 crystalline structures reported so far. It is however 
significantly weaker than in 5d5 Ir oxides and even than in 4d5 Li2RhO3, which points at a rather different balance 
between the various superexchange processes in the halide and in the oxides.

The resulting magnetic phase diagram that we compute as function of longer-range second- and 
third-neighbor magnetic couplings is very rich, due to the comparable size of the various residual interactions. 
While a SL state does show up in this phase diagram, it arises in a setting different from Kitaev’s original SL 
regime, as it emerges from an interplay of Kitaev physics and geometrically frustrated magnetism. We addition-
ally find that applying an external magnetic field whilst the system is in the long-range ordered zigzag ground 
state can induce a phase transition into a quantum SL. In order to make direct contact with experimental obser-
vations, we calculate by ED the field-dependent magnetization in the presence of longer-range magnetic interac-
tions and compare that to the measurements. This comparison makes clear that the ED and experimental data can 
only be matched when J is small and antiferromagnetic (AF) and K significantly stronger and FM, in accordance 
with the results from the ab initio quantum chemistry calculations.

The magnitude of our computed |K| compares well with recent estimates based on neutron scattering23 and 
Raman22 data. However, our finding that K is FM brings into question the interpretation of the neutron scattering 
experiments in terms of a pure Kitaev-Heisenberg model with AF K but without longer-range magnetic couplings 
which we find to be essential for an understanding of the magnetic properties of α-RuCl3.

Spin-orbit ground state and excitations
We start our discussion with the analysis of the Ru3+ 4d-shell electronic structure. As in the 5d5 iridates, the mag-
netic moments in α-RuCl3 are related to the one hole in the transition-metal t2g subshell, described by the effective 
L =  1 angular-momentum and S =  1/2 spin quantum numbers. Even if the spin-orbit coupling (SOC) for 4d elec-
trons is weaker than in the Ir 5d orbitals, it still splits the t g2

5  states into a jeff =  1/2 sector, where the hole resides, 
and a jeff =  3/2 manifold that is filled. But for noncubic environment, these jeff =  1/2 and jeff =  3/2 components may 
display some degree of admixture.

Three different crystallographic structures28–30 have been reported for α-RuCl3, each of those displaying 
finite amount of trigonal compression of the Cl6 octahedra. To shed light on the nature of the 1/2-pseudospin in 
α-RuCl3 we first discuss in this section results of ab initio many-body calculations at the complete-active-space 
self-consistent-field (CASSCF) and multireference configuration-interaction (MRCI) levels of theory31 for 
embedded atomic clusters having one RuCl6 octahedron as reference unit.

As shown in Table 1, the degeneracy of the Ru t2g levels is completely removed, with CASSCF splittings of 69 
and 72 meV when using the RuCl3 C2/m structure determined by Cao et al.28, a minimal active orbital space of 
only three 4d orbitals and no SOC. A “trigonal” orbital basis is used in Table 1 to express the t g2

5  wave functions27, 
in contrast to the Cartesian orbital basis employed for the Rh4+ t g2

5  states in ref. 32, better suited for Li2RhO3 due 
to additional distortions of the ligand cages giving rise in the rhodate to one set of longer ligand-metal-ligand 
links with an angle of nearly 180°.

The corrections brought by the MRCI treatment are tiny, smaller than in the 4d oxide32 Li2RhO3 due to less 
metal-d – ligand-p covalency in the halide. The smaller effective ionic charge at the ligand sites in the halide — 
Cl− in RuCl3 vs O2− in Li2RhO3, in a fully ionic picture — further makes that the transition-metal t2g −  eg 
ligand-field splitting is substantially reduced in RuCl3: by MRCI calculations without SOC but with all five Ru 4d 
orbitals active in the reference CASSCF, we see that the lowest t eg g2

4 1 t e( )g g2
3 2  states are at only 1.3 (1.5) eV above the 

low-lying t g2
5  component (see Table 2). Interestingly, for the “older” P3112 crystal structure proposed in ref. 29, we 

find that the t eg g2
3 2 sextet lies even below the lowest t eg g2

4 1 states, see Methods. The smaller effective ligand charge 
might also be the cause for the smaller t2g-shell splittings in the halide: ≈ 70 meV in RuCl3 (see caption of Tables 1 
and 2) vs ≈ 90 meV in Li2RhO3

32 at the MRCI level, in spite of having similar degree of trigonal compression in 
these two materials.

t g2
5  states (CASSCF)

Relative 
energies

Wave-function composition 
(normalized weights, %)

Sans SOC:

 |φ1〉 0 99.75|α〉  +  0.25|β〉 

 |φ2〉 69 100|γ〉 

 |φ3〉 72 0.25|α〉  +  99.75|β〉 

With SOC:

 |ψ1〉 0 55|φ1, ↓ 〉  +  23|φ2, ↑ 〉  +  22|φ3, ↑ 〉 

 |ψ2〉 157 45|φ1, ↑ 〉  +  29|φ2, ↓ 〉  +  26|φ3, ↓ 〉 

 |ψ3〉 198 48|φ2, ↑ 〉  +  52|φ3, ↓ 〉 

Table 1.  Ru3+ t g2
5  wave functions (hole picture) and relative energies (meV). CASSCF results sans and with 

SOC for the crystal structure of ref. 28. Only the 4d t2g orbitals were active in CASSCF; by subsequent MRCI, the 
energies change to 0, 66, 73 sans SOC and to 0, 162, 201 with SOC included. Only one component of the 
Kramers’ doublet is shown for each CASSCF +  SOC relative energy. |α〉  corresponds to the a1g function while 
|β〉 , |γ〉  are ′eg  components27.
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With regard to the split jeff =  3/2-like states that we compute at 195 and 234 meV by MRCI +  SOC calculations 
involving all three t g2

5 , t eg g2
4 1 and t eg g2

3 2 configurations in the spin-orbit treatment (see Table 2), clear excitations 
have been measured in that energy range in Raman scattering experiments with “crossed” polarization geome-
tries22,26 and also in the optical response of α-RuCl3

18,26. The peak observed at 140–150 meV by Raman scatter-
ing26, in particular, may find correspondence in the lowest jeff =  3/2-like component that we compute at 195 meV. 
It is interesting that in Sr2IrO4 the situation seems reversed as there the Raman selection rules appear to favor the 
higher-energy split-off 3/2 states33, which are however shifted to somewhat lower energy as compared to resonant 
inelastic x-ray scattering (RIXS)34. One should note however that in Sr2IrO4 the crystal-field physics is rather 
subtle, as the local tetragonal distortion giving rise to elongated apical bonds is counteracted by interlayer cation 
charge imbalance effects35.

The rather broad feature at 310 meV in the imaginary part of the dielectric function has been assigned to Ru3+ 
t2g-to-eg transitions26. Our ab initio data do not support this interpretation, since the lowest t2g →  eg excitations 
are computed at ≈ 1.3 eV, but rather favor a picture in which the 310 meV peak corresponds to the upper 3/2-like 
component. The latter can become optically active through electron-phonon coupling. The rather large width of 
that excitation has been indeed attributed to electron-phonon interactions in ref. 26.

Comparison between our quantum chemistry results and the optical spectra18,26 further shows that the exper-
imental features at 1.2 and 2 eV, assigned in ref. 26 to intersite d–d transitions, might very well imply on-site Ru 
4d-shell excitations. In particular, we find spin-orbit states of essentially t eg g2

4 1 nature at 1.3–1.5 eV and of both 
t eg g2

4 1 and t eg g2
3 2 character at 1.7–2.2 eV relative energy, see Table 2. Experimentally the situation can be clarified by 

direct RIXS measurements on α-RuCl3, for instance at the Ru M3 edge.
We have also calculated the magnetic g factors in this framework. By spin-orbit MRCI calculations with all five 

Ru 4d orbitals in the reference CASSCF, we obtain for the C2/m structure of ref. 28 gab =  2.51 and gc =  1.09, where 
the crystallographic c axis is perpendicular to the (ab) Ru honeycomb plane. On the experimental side, conflicting 
results are reported for the g factors: while Majumder et al.19 derive from magnetic susceptibility data that both gab 
and gc are >∼2, Kubota et al.20 estimate gab =  2.5 and gc =  0.4. The latter gc value implies a rather large t2g-shell split-
ting δ, with δ/λ >  0.75 (see the analysis in ref. 20). The quantum chemistry g factors are consistent with a ratio 
δ/λ ~ 0.5, i.e., t2g splittings of ≈ 70 meV (see the data in Tables 1 and 2) for a 4d SOC in the range of 120–
150 meV24,27,36. Electron spin resonance measurements of the g factors might provide more detailed experimental 
information that can be directly compared to our calculations.

Intersite exchange for j ≈ 1/2 moments
NN exchange coupling constants were derived from MRCI +  SOC calculations for embedded fragments having 
two edge-sharing RuCl6 octahedra in the active region. As described in earlier work16,17,32,35, the ab initio data for 
the lowest four spin-orbit states describing the magnetic spectrum of two NN octahedra is mapped in our scheme 
onto an effective spin Hamiltonian including both isotropic Heisenberg exchange and symmetric anisotropic 
interactions. Yet the spin-orbit calculations, CASSCF or MRCI, incorporate all nine triplet and nine singlet 
low-energy states of predominant −t tg g2

5
2
5  character. As in earlier studies16,17,32,35, we account in the MRCI treat-

ment for all single and double excitations out of the valence d-metal t2g and bridging-ligand p shells.
For on-site Kramers-doublet states, the effective spin Hamiltonian for a pair of NN ions at sites i and j reads

∑= ⋅ + + Γ +
α β

αβ
α β β α

≠

      J K S S S S S SS S ( ),
(1)

i j i j i
z

j
z

i j i j,

where Si and S j are 1/2-pseudospin operators, J is the isotropic Heisenberg interaction, K the Kitaev coupling and 
the Γ αβ coefficients are off-diagonal elements of the symmetric anisotropic exchange matrix with α, β ∈  {x, y, z}. 
Since the point-group symmetry of the Ru–Ru links is C2h in the C/2m unit cell, the antisymmetric 
Dzyaloshinskii-Moriya exchange is 0. Also, Γ zx =  − Γ yz for C2h bond symmetry. A local (Kitaev) reference frame is 
used here, such that for each Ru-Ru link (see Table 3) the z axis is perpendicular to the Ru2Cl2 plaquette (as also 

Ru3+ 4d5 splittings CASSCF CASSCF + SOC MRCI MRCI + SOC
2T2 t( )g2

5 0 0 0 0

0.066 0.193 0.067 0.195

0.069 0.232 0.071 0.234
4T1 t e( )g g2

4 1 1.08 1.25 1.28 1.33

1.12 | 1.30 |

1.13 1.37 1.31 1.48
4T2 t e( )g g2

4 1 1.76 1.90 1.97 2.09

1.81 | 2.01 |

1.83 1.98 2.03 2.17
6A1 t e( )g g2

3 2 1.01 1.09 (× 6) 1.51 1.74 (× 6)

Table 2.  Ru3+ t eg
m

g
n

2  splittings (eV), with all five 4d orbitals active in CASSCF. Except lowest line, each spin-
orbit relative-energy entry implies a Kramers doublet. Just the lowest and highest components are depicted for 
each group of t eg g2

4 1 spin-orbit states. Only the T and A states shown in the table entered the spin-orbit 
calculations.
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employed in refs 16, 17 and 32). Details of the mapping procedure, ab initio data to effective spin Hamiltonian, are 
described in ref. 35 and Methods.

From the quantum chemistry calculations, we obtain a FM Kitaev coupling K, for all three crystalline struc-
tures reported in the literature (see Table 3). Its strength is reduced as compared to the 4d5 honeycomb oxide 
Li2RhO3

32, with a maximum absolute value of 5.6 meV in the C2/m structure proposed by Cao et al.28. We shall 
discuss and compare our finding of a FM Kitaev coupling to other theoretical and experimental findings in the 
next section. For the structure of Cao et al.28 the bond lengths and angles are very similar for the two types of 
pairs of NN octahedra. As a result, we find identical effective interactions up to the first digit. This is the reason 
we provide in Table 3 only one set of couplings for that particular crystal structure. Anisotropic interactions of 
similar size, i.e., both K and the off-diagonal couplings Γ αβ, are computed for the C2/m configuration of ref. 30, 
characterized by bond lengths and bond angles rather close to the values derived by Cao et al.28. The Heisenberg J, 
on the other hand, changes sign with decreasing Ru-Cl-Ru flexure but for the bond angles reported in refs 28–30 
and explicitly given in Table 3 remains in absolute value significantly smaller than K.

The trends we find with changing the Ru-Cl-Ru bond angle, apparent from Table 3, and earlier results for 
the dependence of K and J on bond angles in oxide honeycomb compounds17,32 motivate a more detailed inves-
tigation over a broader range of Ru-Cl-Ru flexure. The outcome of these additional calculations is illustrated in 
Fig. 1. We fixed in these calculations the Ru-Ru distance to 3.44 Å and varied the Ru-Cl-Ru angle by changing 
the amount of trigonal compression for each of the two NN RuCl6 octahedra. In contrast to the oxides, where |K| 
values in the range of 15–30 meV are computed for large angles of 98–100°, the Kitaev coupling is never as strong 
in RuCl3. |K| shows a maximum of only ≈ 5 meV at 94° in Fig. 1 and its angle dependence is far from the nearly 
linear behavior in 4d5 and 5d5 oxides17,32.

The Heisenberg J, on the other hand, displays a steep upsurge with increasing angle, more pronounced as 
compared to the honeycomb oxides. In other words, for large angles J dominates in RuCl3, in contrast to the 
results found in 4d5 and 5d5 honeycomb oxides in the absence of bridging-ligand displacements parallel to the 
metal-metal axis17,32. These notable differences between the halide and the oxides suggest a somewhat different 
balance between the various superexchange processes in the two types of systems.

Magnetic phase diagram
To assess the consistency of our set of ab initio NN effective couplings with experimental observations, we carried 
out ED calculations for the =S 1/2 honeycomb model described by (1) but including additionally the effect of 
second- and third-neighbor J2 and J3 isotropic exchange. Anisotropic longer-range interactions are however 
neglected since recent phenomenological investigations conclude those are not sizable37. We first considered the 
case without external magnetic field, H =  0, and clusters of 24 =S 1/2 sites with periodic boundary conditions 
(PBC’s). The static spin-structure factor = ∑ 〈 − 〈 〉 ⋅ − 〈 〉 〉 ⋅ −   S iQ S S S S Q r r( ) ( ) ( ) exp[ ( )]ij i i j j i j  was calcu-

Structure ∠Ru-Cl-Ru K = Γzz J Γxy Γzx = −Γyz

C2/m28 94° − 5.6 1.2 − 1.2 − 0.7

C2/m30

Link 1 (× 2) 94° − 5.3 1.2 − 1.1 − 0.7

Link 2 (× 1) 93° − 4.8 − 0.3 − 1.5 − 0.7

P311229 89° − 1.2 − 0.5 − 1.0 − 0.4

Table 3.  MRCI NN magnetic couplings (meV). Three different crystal structures proposed for α-RuCl3 were 
analyzed. For the structure determined in ref. 30, the two crystallographically different NN Ru-Ru links are also 
different magnetically.

Figure 1. Variation of the NN Heisenberg and Kitaev couplings with the Ru-Cl-Ru angle in model C2/m-
type structures. Results of spin-orbit MRCI calculations. The NN Ru-Ru distance is set to 3.44 Å and the Ru-Cl 
bond lengths are for each angle all the same. The variation of the Ru-Cl-Ru angle is the result of gradual trigonal 
compression. Curves are drawn just as a guide for the eye.
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lated as a function of variable J2 and J3 parameters while fixing the NN couplings to the MRCI results computed 
for the crystalline structure of ref. 28 and listed in Table 3.

For a given set of J2 and J3 values, the dominant order is determined according to the propagation vector 
Q =  Qmax providing a maximum value of S(Q). As shown in Fig. 2, the phase diagram contains seven different 
phases: four commensurate phases (FM, Néel, zigzag, stripy), three with incommensurate (IC) order (labelled 
as ICx1, ICx2, ICxy) and a SL phase. The ICx1 and ICx2 configurations have the same periodicities along the b 
direction as the stripy and zigzag states, respectively, and display IC wave numbers along a. The ICxy phase has IC 
propagation vectors along both a and b. The variety of IC phases in the computed phase diagram is related to the 
comparable strength of the NN J and the off-diagonal NN couplings Γ αβ. For example, the system is in the ICxy 
state for J2 =  J3 =  0. From the experimental observations, the low-temperature magnetic structure of α-RuCl3 is 
ab-plane zigzag AF order21,28,30. We find indeed that the zigzag state is stabilized in a wide range of AF J2 and J3 
values in our phase diagram.

To estimate the strength of J2 and J3 in α-RuCl3, we performed a fitting of the experimental magnetization 
curves30 by ED calculations. The PBC cluster we used is shown in Fig. 3(a). We find that different signs for J and 
K determine qualitatively different shapes for the magnetization curves. In particular, J >  0 and K <  0 values are 
required to reproduce the overall pattern of the measured magnetization, which exhibits a very slow saturation 
with increasing external field (see Methods). Additionally, AF values for J2 and J3 significantly shift the saturation 
to higher field and therefore these longer-range couplings must be small (<



1 meV, see Methods) to reproduce the 
experiment. The observed magnetization curves are set side by side to ED results in Fig. 3(b), for both ⊥ ĉH  and 
 ĉH . We used MRCI g factors (gab =  2.51, gc =  1.09) and MRCI NN interactions (see Table 3) and set J2 =  J3 =  0.25 

meV in Fig. 3(b). It is seen that the overall shapes of the experimental curves are well reproduced in these ED 
calculations. For comparison, additional ED results are provided in Fig. 3(c) with J =  1.0, K =  − 5.0, J2 =  J3 =  0.3, 
gab =  2.4, gc =  0.95 and vanishing off-diagonal NN couplings. It is difficult to extract information on the latter by 
using ED fits to the experimental data because the magnetization is not very sensitive to the strength of these 
off-diagonal NN exchange interactions. The magnetization is very sensitive, on the other hand, to the g factors 
— its strong directional dependence mainly comes from the strongly anisotropic g factors.

Most interestingly, a level crossing between the lowest two states is seen around H =  10 T for H ‖  [001] in all 
periodic clusters we considered. To better understand the nature of the changes at this level crossing, we analyzed 
the spin-spin correlation functions 〈 ⋅ 〉 S Si j . Results in the thermodynamic limit are presented in Fig. 3(d), while 
a detailed finite-size scaling analysis and further discussion on the spin correlations are provided in Methods. 
Below H ≈  10 T the zigzag AF correlations are dominant; only the NN spin-spin correlations being large for fields 
of 10–13 T (magnetization M/Ms ~ 0.25 −  0.45) is indicative of a Kitaev-like SL regime. The level crossing can be 
therefore associated to a transition between AF zigzag order and a SL. Static spin-structure factors for H =  0, 9.5 
and 10.5 T are plotted in Fig. 3(e–g). A featureless static spin-structure factor is obtained for H >  10 T, consistent 
with the spin-spin correlations shown in Fig. 3(d). In other words, we argue that the zigzag AF order is gradually 
weakened with increasing H, destroyed at H =  10 T and instead a SL ground state occurs for H >  10 T.

The MRCI calculations indicate |K|/J ratios in a range of 3 to 5 for the C/2m structures (see Table 3) while a 
commonly used criterion8 for identifying the Kitaev SL is having |K|/J >  7.8, so that the further frustration of 
magnetic interactions is relevant as well. One simple way to rationalize these findings is that an external field 
effectively weakens the effect of the AF NN J due to partial spin polarization and consequently |K|/J is effectively 
enhanced. Another way of qualitatively appreciating this point is that when one looks at the J2–J3 phase diagram 
in Fig. 2, the main features of which are very similar to those16 found for Na2IrO3, a trajectory in the phase 

Figure 2. Phase diagram for the effective spin model of (1) supplemented by second- and third-neighbor 
Heisenberg couplings J2 and J3. MRCI NN interactions as listed on first entry in Table 3 were used: J =  1.2, 
K =  − 5.6, Γ xy =  − 1.2, Γ zx =  − Γ yz =  − 0.7 (meV). Schematic spin configurations for each particular phase are also 
shown. No external field is applied in this set of calculations (H =  0).
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diagram from zigzag order (the low field state) to a saturated ferromagnet (the very high field state) is likely to 
pass through the SL phase. It is interesting that such a field-induced SL state due to frustration has been also pre-
dicted recently for the S =  1/2 AF kagomé lattice38.

In the Kitaev limit, it is confirmed by earlier density-matrix renormalization group (DMRG) calculations that 
topological phases can survive up to M/Ms ≈  0.539, a critical value in agreement with our upper bound of the SL 
phase. It may be that due to the longer-range J2 and J3 couplings the topological phase in the low-field regime of 
the Kitaev limit39 is replaced by the zigzag ground state in our model.

We also analyzed the gap Δ  in the SL state. Due to discrete effects in clusters with PBC’s ∆ ∼ N( 1/ ), this 
analysis was performed using a setup with open boundary conditions (OBC’s). To remove artifacts related to 
individual motions around the open edges, we calculated the excitation spectrum for a spin flip at a site in the 
central region of the cluster,

∑ω ψ ψ δ ω= − +
ν

ν ν
−I S E E( ) ( ),

(2)i 0
2

0

where −Si  is the spin-flip operator at site i and |ψν〉  and Eν are eigenstates and eigenvalues of the system, respec-
tively (ν =  0 corresponds to the ground state). The position of site i and the computed spectrum Eν −  E0 are shown 
in Fig. 4(a). Obviously, a gap linear in H (Δ  ∝  H −  Hs) in high fields (H >  Hs ≈  15 T) indicates a fully polarized FM 
state. But a sizable gap opens as well for fields in the range of 8–15 T, in spite of having no long-range magnetic 
order. This is another result that indicates a gapped SL state.

Furthermore, to check the topological properties of the gapped SL state, we considered the hexagonal 
plaquette operator5

=      O S S S S S S2 , (3)
x y z x y z

h
6

1 2 3 4 5 6

where the labeling of links and sites is illustrated in the inset of Fig. 4(b). The expectation value of Oh was cal-
culated using the 24-site PBC cluster. Results for α-RuCl3 are provided as a function of H in Fig. 4(b). For 
comparison, a plot of 〈 Oh〉  for the plain Kitaev-Heisenberg model is shown in Fig. 4(c) (the definition of the 
Kitaev-Heisenberg Hamiltonian is given in Methods). In the Kitaev limit, the operator (3) commutes with 
the Hamiltonian and the expectation value 〈 Oh〉  is exactly ± 1. On the other hand, it rapidly drops to 〈 Oh〉  ~ 0 
when moving away from the Kitaev SL regime. The expectation value we compute for α-RuCl3 is 〈 Oh〉  ≈  − 0.13 
at H =  0. It monotonously decreases in absolute value with increasing H and displays a steep enhancement at 

Figure 3. Magnetization curves and spin-structure factors for α-RuCl3. (a) 24-site cluster with PBC’s used in 
the ED calculations. (b) Experiment30 vs ED plots using MRCI g factors and NN couplings plus 
J2 =  J3 =  0.25 meV. (c) ED magnetization curves with J =  1.0, K =  − 5.0, J2 =  J3 =  0.3, gab =  2.4, gc =  0.95 and 
vanishing off-diagonal NN couplings. (d) Field dependence of the NN, second- and third-neighbor spin-spin 
correlation functions 〈 ⋅ 〉 S Si j  extrapolated to the thermodynamic limit, using MRCI g factors and NN 
couplings, J2 =  J3 =  0.25 meV and field along the c axis. Static spin-structure factors S(Q) are shown for (e) H =  0, 
(f) H =  9.5, (g) H =  10.5 T.
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Figure 4. Excitation spectrum, plaquette operator and entanglement spectrum for α-RuCl3. (a) Energy 
spectrum Eν −  E0 as a function of H (‖ [001]) using the MRCI g factors and NN couplings plus J2 =  J3 =  0.25 meV. 
Inset: 22-site cluster with OBC’s used in the ED calculations; the square indicates a target site to apply the 
spin-flip operator. (b) Expectation value of Oh as a function of H (‖ [001]). Inset: labeling for the (hexagonal) 
plaquette operator Oh. (c) 〈 Oh〉  vs ϕ plot for the plain NN Kitaev-Heisenberg model. (d) 44-site cylindrical 
cluster used in the DMRG calculation of entanglement spectra, with PBC’s for the vertical direction.  
(e) Resulting entanglement spectrum (H ‖  [001]); the off-diagonal NN couplings are set to 0 in the DMRG 
computations, J2 =  J3 =  0.25.
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H =  12.3 T. The absolute value of 〈 Oh〉  in the SL regime (fields of 12.3–16.1 T) is significantly lower than the limit 
〈 Oh〉  =  ± 1 for the pure Kitaev model, pointing again to the important role of longer-range AF interactions. The 
second-neighbor couplings, in particular, frame a triangular AF Heisenberg net — a well-known playground for 
frustration-induced SL physics.

Finally, for insights into the topological properties of the system, we investigated by DMRG methods the 
field dependence of the entanglement spectrum (ES)40. Using Schmidt decomposition, the ground state can be 
expressed as

∑ φ φΨ = ⊗ξ−e ,
(4)i

i i
/2 A Bi

where the states φi
S  correspond to an orthonormal basis for the subsystem S (either A or B). We studied a cylin-

drical cluster with 44 sites whose subdomains A and B are sketched in Fig. 4(d). In our calculations, the ES {ξi} is 
simply obtained as ξi =  − log λi, where {λi} are the eigenvalues of the reduced density matrices after the bipartite 
splitting. The low-lying ES levels are plotted as function of magnetic field in Fig. 4(e). A relatively large “gap” is 
seen below H =  11.5, since the AF zigzag state is topologically trivial. With increasing H, a crossover is clearly seen 
around H =  11.5 T. Interestingly, there exist many (nearly) degenerate low-lying levels for fields in the interval 
11.5–14 T. This is the window for which a SL ground state is suggested by the behaviour of other quantities and 
parameters discussed above. The low-lying levels are distributed in a rather broad range of the partition spin 
sectors: for example, at H =  13.2 T, ξ1 =  0 =S( 16)z

A , ξ2 =  0.0097 =S( 12)z
A , ξ3 =  0.1697 =S( 14)z

A , ξ4 =  0.4243 
=S( 14)z

A , ξ5 =  0.4823 =S( 10)z
A , ξ6 =  0.5327 =S( 18)z

A , ξ7 =  0.7968 =S( 8)z
A  etc., where Sz

A is the total Sz of subsys-
tem A. This also supports the appearance of the SL state. For higher fields, the ξ2 −  ξ1 gap increases linearly, 
reflecting the field-induced FM state.

Discussion
Our finding of a FM Kitaev interaction can be first compared with the conclusions of other theoretical inves-
tigations. In fact, the analysis of effective superexchange models using hopping matrix elements and effective 
Hubbard-U interactions derived from density-functional (DF) electronic-structure calculations lead to contra-
dictory results: an AF NN Kitaev coupling has been earlier predicted by Kim et al.24 and a FM K has been more 
recently found by Winter et al.37. Our result is qualitatively consistent with the latter. Relevant in this regard is 
further the trends we observe for the effective K by running spin-orbit calculations at different levels of approx-
imation: restricted open-shell Hartree-Fock (ROHF), CASSCF and MRCI. The respective K values are 1.2, − 2.5 
and − 5.6 meV, for the C2/m structure of ref. 28. It is seen that accounting for intersite t2g −  t2g hopping by CASSCF 
changes the sign of K from AF to FM and that by additionally taking into account superexchange paths involving 
the bridging-ligand 3p and metal eg levels by MRCI calculations with single and double excitations only pushes 
K more on the FM side. It is unlikely that additional excitations, “triple” etc., would change the sign of K back to 
the AF ROHF.

To make direct contact with experimental observations, one can compare the measured field-dependent mag-
netization with the theoretical results, as we did above, finding that only J >  0 and K <  0 are consistent with the 
measurements30. This however contradicts the interpretation of recent inelastic neutron scattering data on the 
magnetic excitation spectrum23, according to which K is very similar in magnitude to our finding but AF.

This point remains to be clarified but a possible explanation is related to modeling the experimental mag-
netic excitation spectra in the zigzag ordered state in terms of a pure Kitaev-Heisenberg Hamiltonian without 
longer-range couplings. In such a restricted model, zigzag order can only occur when J <  0 and K >  0, i. e., using 
the zigzag ordered ground state as input for the pure Kitaev-Heisenberg model fixes K >  0 from the beginning 
and a description of the magnetic excitations on top of this ground state in terms of linear spin-wave theory is 
necessarily confined to this boundary condition. We find however that α-RuCl3 is in a parameter regime where 
without longer-range, second-neighbor and third-neighbor, interactions the ordering pattern would be an incom-
mensurate AF state (see Fig. 2) which is close to the stripe-like AF phase. This is the consequence of having J >  0 
and K <  0. A weak AF third-neighbor exchange J3 is essential to stabilize the zigzag order that is experimentally 
observed — this zigzag ground state is driven by the geometric frustration induced by J3 and consistent with K 
being dominant and FM.

For an interpretation of the magnon features in the neutron spectrum ref. 23 employs linear spin-wave theory 
while for resolving the signatures of the fractionalized excitations — the actual fingerprint of the system being 
proximate to a Kitaev SL state — relies on a comparison to a Kitaev-only Hamiltonian. This should provide 
a full quantum description of the relevant physics on energy scales larger than weak interlayer magnetic cou-
plings. The Kitaev point is particularly interesting because exact statements can be made5,41,42. In the honeycomb 
Kitaev model the excitations are exactly fractionalized into localized fluxes and delocalized Majorana modes. 
Its dynamic spin-structure factor, which determines the inelastic neutron scattering response, is dominated by 
a spin excitation creating two fluxes. As the fluxes are localized, the spin-structure factor is rather dispersionless 
and only a weak momentum dependence arises from screening of the fluxes by gapless Majorana modes41. The 
sign of K sets the sign for the dispersion of these Majorana modes that screen the fluxes5. The upshot is that the 
dynamic structure factor in the Kitaev model strongly depends on the magnitude of |K| (which sets the energy 
threshold for flux creation) but only very weakly on its sign — fits to the data with |K| and − |K| then provide very 
similar results.
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Conclusions
In sum, quantum chemistry calculations show that in α-RuCl3 there is sizable trigonal splitting of the Ru 4d5 
levels. This results in splitting of the spin-orbit excitation energies, which can be accurately measured by e.g. res-
onant inelastic x-ray scattering, and in admixture of the jeff =  1/2 and jeff =  3/2 states. The resulting anisotropy of 
the magnetic g factors that we compute is consistent with experimental observations20.

The nearest-neighbor Heisenberg interaction J is found to be weak and antiferromagnetic in the ab initio com-
putations while the Kitaev K is 3–5 times larger and ferromagnetic. Using these magnetic couplings as a basis for 
effective-model exact-diagonalization calculations of the magnetic phase diagram, we show that J >  0 and K <  0 
values are required to reproduce the shape of the observed magnetization. The latter exhibits a very slow satura-
tion with increasing the external field. As residual longer-range magnetic interactions would significantly shift 
the saturation to higher field, these couplings must be small. At the same time, however, we find the longer-range 
couplings are essential in producing the experimentally observed zigzag magnetic order in α-RuCl3.

We also determine by quantum chemistry calculations the dependence of the NN K and J interactions on the 
angle defined by two adjacent metal sites and a bridging ligand. Along with similar curves we have computed for 
the “213” honeycomb compounds17,32 — Na2IrO3, Li2IrO3 and Li2RhO3 — these results provide theoretical bench-
marks for strain and pressure experiments on 4d5/5d5 honeycomb halides and oxides.

In our numerical investigations, a level crossing between the lowest two states is seen for field along the [001] 
direction around H =  10 T, i. e., a transition from AF zigzag order to a gapped spin-liquid state. We note that qual-
itatively similar features are also found for other field directions. Our calculations suggest that not only α-RuCl3 
but also Na2IrO3 is a candidate material to observe such a transition, either at low-temperature ambient condi-
tions or under external pressure.

Methods
Ru3+ 4d-shell electronic structure. Ab initio many-body quantum chemistry calculations were first car-
ried out to establish the nature of the Ru3+ 4d5 ground state and lowest Ru 4d-shell excitations in RuCl3. An 
embedded cluster having as central region one [RuCl6]3− octahedron was used. To describe the finite charge dis-
tribution in the immediate neighborhood, the three adjacent RuCl6 octahedra were also explicitly included in the 
quantum chemistry computations while the remaining part of the extended solid-state matrix was modeled as a 
finite array of point charges fitted to reproduce the ionic Madelung field in the cluster region43. Energy-consistent 
relativistic pseudopotentials were used for the central Ru ion, along with valence basis sets of quadruple-zeta 
quality augmented with two f polarization functions44. For the Cl ligands of the central RuCl6 octahedron, we 
employed all-electron valence triple-zeta basis sets45. For straightforward and transparent analysis of the on-site 
multiplet physics (see Table 2 in main text and Table 4 in this section), the adjacent Ru3+ sites were described as 
closed-shell Rh3+ t g2

6  ions, using relativistic pseudopotentials and valence triple-zeta basis functions44. Ligands of 
these adjacent octahedra that are not shared with the central octahedron were modeled with all-electron minimal 
atomic-natural-orbital basis sets46. Results in excellent agreement with the experiment were found by using such 
a procedure in, e.g., Sr2IrO4

35 and CaIrO3
47.

All computations were performed with the Molpro quantum chemistry package48. To access the Ru on-site 
excitations, we used active spaces of either three (see Table 1 in main text) or five (Table 2 in main text and Table 4 
in this section) orbitals in CASSCF. In the subsequent MRCI49,50, the Ru t2g and Cl 3p electrons at the central octa-
hedron were correlated. The Pipek-Mezey localization module51 available in  Molpro was employed for separating 
the metal 4d and Cl 3p valence orbitals into different groups, i. e., centered at sites of either the central octahedron 
or of the adjacent octahedra. The spin-orbit treatment was carried out as described in ref. 52.

One important finding in our quantum chemistry investigation is that compared to the 4d and 5d oxide hon-
eycomb systems — Li2RhO3, Li2IrO3, Na2IrO3 — the smaller ligand ionic charge in the halide gives rise to signif-
icantly weaker t2g −  eg splittings. This is apparent in Table 2 in the main text: for the C2/m crystalline structure of 
Cao et al.28, we compute excitation energies of only ≈ 1.3 eV for the lowest t eg g2

4 1 states. Even more suggestive in 
this regard is the energy-level diagram we compute for the P3112 crystalline structure of ref. 29. For the latter, the 

Ru3+ 4d5 splittings CASSCF CASSCF + SOC MRCI MRCI + SOC
2T2 t( )g2

5 0 0 0 0

0.04 0.16 0.05 0.19

0.05 0.16 0.06 0.23
6A1 t e( )g g2

3 2 0.07 0.21 (× 6) 0.92 0.92 (× 6)
4T1 t e( )g g2

4 1 0.62 0.78 0.94 1.10

0.66 | 0.97 |

0.66 0.85 0.98 1.23
4T2 t e( )g g2

4 1 1.27 1.42 1.52 1.65

1.33 | 1.56 |

1.38 1.55 1.63 1.77

Table 4.  Ru3+ t eg
m

g
n

2  splittings (eV) in the crystalline structure of ref. 29. Except the t eg g2
3 2 states, each spin-

orbit relative-energy entry implies a Kramers doublet. Just the lowest and highest components are depicted for 
each group of t eg g2

4 1 spin-orbit states. Only the T and A states shown in the table entered the spin-orbit 
calculations.
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sequence of Ru3+ t eg
m

g
n

2  levels is shown in Table 4: it is seen that the 6A1 t e( )g g2
3 2  state is even lower in energy than 4T1 

t e( )g g2
4 1 . Such low-lying t eg

m
g
n

2  excited states may obviously play a more important role than in the oxides in intersite 
superexchange.

Ru 4d5 g factors were computed following the procedure described in ref. 35. The values provided in the main 
text, gab =  2.51 and gc =  1.09, were obtained by including the 2T2 t( )g2

5 , 4T1 t e( )g g2
4 1 , 4T2 t e( )g g2

4 1 , and 6A1 t e( )g g2
3 2  states 

in the spin-orbit treatment. The orbitals were optimized for an average of all these states. The strength of the cou-
pling to external magnetic field can also be extracted from more involved calculations as described in the next 
subsection.

The effect of on-site − −t t eg g
n

g
n

2
5

2
5  mixing on the computed g factors appears to be modest — by spin-orbit 

CASSCF calculations based on a minimal orbital active space (three Ru t2g orbitals), gab =  2.63 and gc =  1.03; if 
−t eg

n
g
n

2
5  states are also considered by CASSCF (as described above), gab =  2.59 and gc =  1.18.

Intersite exchange. NN magnetic coupling constants were derived from CASSCF +  MRCI spin-orbit calcu-
lations on units of two edge-sharing [RuCl6]3− octahedra. Similar to the computations for the on-site excitations, 
the four octahedra adjacent to the reference [Ru2Cl10]4− entity were also included in the actual (embedded) clus-
ter. We used energy-consistent relativistic pseudopotentials along with valence basis sets of quadruple-zeta qual-
ity for the two Ru cations in the reference unit44. All-electron basis sets of quintuple-zeta quality were employed 
for the bridging ligands and triple-zeta basis functions for the remaining chlorine anions of the reference octa-
hedra45. We further utilized two f polarization functions44 for each Ru ion of the central, reference unit and four 
d polarization functions45 at each of the two bridging ligand sites. Ru3+ ions of the four adjacent octahedra were 
modeled as closed-shell Rh3+ species, following a strategy similar to the calculations for the on-site 4d-shell 
transitions. The same computational scheme yields magnetic coupling constants in very good agreement with 
experimental estimates in CaIrO3

47, Ba2IrO4
53, and Sr2IrO4

35,54.
The mapping of the ab initio quantum chemistry data onto the effective spin model defined by (1) implies the 

lowest four spin-orbit states associated with the different possible couplings of two NN 1/2 pseudospins. The 
other 32 spin-orbit states within the −t tg g2

5
2
5  manifold16,32 involve jeff ≈  3/2 to jeff ≈  1/2 charge excitations7,32 and 

lie at >∼ 150 meV higher energy (see Tables 1 and 2 and refs 32 and 36), an energy scale much larger than the 
strength of intersite exchange. To derive numerical values for all effective spin interactions allowed by symmetry 
in (1), we additionally consider the Zeeman coupling

 ∑ µ= + ⋅
=

ˆ gL S H( ) ,
(5)

i j
Z

q i j
B q e q,

,

where Lq and Sq are angular-momentum and spin operators at a given Ru site while ge and μB stand for the 
free-electron Landé factor and Bohr magneton, respectively (see also ref. 35). Each of the resulting matrix ele-
ments Hab initio

kl  computed at the quantum chemistry level, see Table 5, is assimilated to the corresponding matrix 
element Hkl

eff  of the effective spin Hamiltonian, see Table 6. This one-to-one correspondence between ab initio and 
effective-model matrix elements enable an assessment of all coupling constants in (1).

For C2h symmetry of the [Ru2Cl10] unit28, it is convenient to choose a reference frame with one of the axes 
along the Ru-Ru link. The data collected in Tables 5 and 6 are expressed by using such a coordinate system, with 
the x axis along the Ru-Ru segment and z perpendicular to the Ru2Cl2 plaquette. The Γ tensor reads then

Hab initio
kl | 〉t̃ y |tx〉 |s〉 t̃ z

 〈 |t̃ y 0 0.804iμBHy +  2.720iμBHz 0 − 1.826iμBHx

 〈 tx| − 0.804iμBHy −  2.720iμBHz 1.189 0 − 1.130iμBHy −  0.280iμBHz

 〈 s| 0 0 2.187 0

 t̃ z 1.826iμBHx 1.130iμBHy +  0.280iμBHz 0 3.475

Table 5.  Matrix elements of the ab initio model Hamiltonian (meV), as obtained by spin-orbit MRCI. The 
two-site singlet and (split) triplet states are labeled |s〉  and | 〉 | 〉 | 〉˜ ˜t t t{ , , }x y z , respectively. | 〉t̃ y  and t̃ z  are 
admixtures of ‘pure’ |1, − 1〉  and |1, 0〉  spin functions.

H kl
eff | 〉t̃ y |tx〉 |s〉 t̃ z

〈 |t̃ y 0 iHyΔ y +  iHzΔ z 0 igxxHx

〈 tx| − iHyΔ y −  iHzΔ z Γ + Γ′ + Γ + Γ′− −(3 4 ( ) 6 )yz zz
1
4

2 2 0 iHyΩy +  iHzΩz

〈 s| 0 0 Γ + Γ′ + Γ + Γ′ − ′− − J( 4 ( ) 2 4 )yz zz
1
4

2 2 0

t̃ z − igxxHx − iHyΩy −  iHzΩz 0 Γ′ + Γ−4 ( )yz
1
2

2 2

Table 6.  Matrix form of the effective spin Hamiltonian in the basis of zero-field eigenstates. Γ − stands for 
Γ′ − Γ′yy zz; expressions for the Δ  and Ω terms are provided in text.
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Γ =







Γ′

Γ′ Γ′

Γ′ Γ′







0 0
0

0
,

(6)

xx

yy yz

yz zz

where Γ′ = − Γ′ − Γ′xx yy zz and the “prime” notation refers to this particular coordinate system. The Kitaev-like 
reference frame within which the data in Table 3 are expressed implies a rotation by 45° about the z axis16,17,32. The 
connection between the parameters of Table 3, corresponding to the Kitaev-like axes, and the “prime” quantities 
in Tables 5 and 6 is given by the following relations16,17,32:

= ′ +
Γ′ + Γ′

= −
Γ′ + Γ′

Γ =
Γ′ − Γ′

Γ = −Γ = −
Γ′
.

J J K
2

,
3( )

2

2
,

2 (7)

xx yy xx yy

xy
xx yy

zx yz
yz

The terms Δ n and Ωn in Table 6 (where n ∈  {y, z}) stand for:

∆ =
Γ′ + −Γ′ + Γ′ − Γ′ + Γ′ − Γ′

Γ′ + Γ′ − Γ′ + Γ′ + Γ′ − Γ′

( )
( )

g g2 4 ( )

4 4 ( )
,

(8)

n
yz yn yy zz yz yy zz nz

yz yy zz yz yy zz

2 2

2 2 2
2

Figure 5. Magnetization curves of the pure Kitaev-Heisenberg model. (a) J <  0, K >  0. (b) J >  0, K >  0. 
(c) J <  0, K <  0. (d) J >  0, K <  0. The magnetic field is applied along the c direction and the saturation of the 
magnetization is set to be M =  Ms.
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Ω =
Γ′ + −Γ′ + Γ′ + Γ′ + Γ′ − Γ′

Γ′ + Γ′ − Γ′ − Γ′ + Γ′ − Γ′

.
( )
( )

g g2 4 ( )

4 4 ( )
(9)

n
yz yn yy zz yz yy zz nz

yz yy zz yz yy zz

2 2

2 2 2
2

The g factors are here expressed in the local coordinate frame related to the Ru2Cl2 plaquette, different from 
the values provided in Sec. 2.

Magnetization curves for the Kitaev-Heisenberg model. Magnetization curves of the pure 
Kitaev-Heisenberg model, calculated by ED on a 24-site cluster, are plotted in Fig. 5. The overall shapes are 
qualitatively well determined once the signs of J and K are fixed. For J >  0 and K >  0 [Fig. 5(b)], the magnet-
ization increases linearly at low field and more steeply at higher field. This behavior is similar to that of the 
two-dimensional (2D) bipartite Heisenberg systems; the main difference is the existence of a kink near the satura-
tion, due to local AF interactions and the mixing of different Sz-sectors. Below the kink, the NN spin correlations 
remain AF. For J <  0 and K <  0 [Fig. 5(c)], the magnetization “jumps” to finite values at H =  0+ and gradually 
saturates with increasing field. This gradual saturation is the result of local FM interactions SxSx and SySy. For J <  0 
and K >  0 [Fig. 5(a)], the magnetization increases linearly at low field, reflecting the AF J, smoothly connects to 
the higher-field curve and then saturates gradually with increasing field, similar to the case of J <  0 and K <  0. 
This qualitative behavior is basically the result of competing FM J and AF K. When K is small, the magnetization 
saturates rapidly with increasing field due to the FM J; as the AF K increases, the saturation is shifted to higher 
field. The shape of the magnetization curve itself is almost unchanged with changing K and the magnetic field can 
be simply rescaled by K · H. Typically, the effect of a FM K on the magnetization curve is small but the saturation 
becomes slower for larger K. A linear increase in weak fields and very slow saturation at higher fields was exper-
imentally observed for α-RuCl3. Such behavior is found in the calculations only for J >  0 and K <  0 [Fig. 5(d)].

Generally, the magnetization curve of the Heisenberg model is a step function in calculations on finite-size 
systems, due to discrete effects. However, in the Kitaev-Heisenberg model, the total Sz is no longer conserved due 
to terms such as S+S+ and S−S−. The magnetization curve can be then a smooth function. In our results, small 
steps are still visible in the magnetization curve for the case of J >  0 and K >  0. There, since the Néel (or zigzag) 
fluctuations are strong, the mixing of different Sz-sectors is not sufficient to mask discrete effects.

Magnetization curves with longer-range interactions. We find that J >  0 and K <  0 values are required 
to reproduce the experimental magnetization curves. Looking in more detail to the dependence on longer-range 
interactions J2 and J3 is also instructive. Magnetization curves at J =  1, K =  − 5 and J =  1, K =  − 8 are shown in 

Figure 6. Magnetization curves of the extended Kitaev-Heisenberg model. Results with J =  1, K =  − 5 (top) 
and J =  1, K =  − 8 (bottom) are provided, for several values J2 =  J3. For each set J2 =  J3, the dominant state at 
H =  0 is indicated within parentheses. The magnetic field is applied along the c direction.
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Fig. 6 for several J2 =  J3 values. The effect of longer-range interactions seems to be even quantitatively similar for 
the two different K values. As long as J2 and J3 are much smaller than |J| (J2, J3 <  0.2 |J|), the saturation is simply 
shifted to higher field but the overall shape of the magnetization curve is conserved. On the other hand, for J2, 
J3 >  0.3 |J|, the overall shape changes somewhat, approaching that for the case of J >  0 and K >  0. We thus infer that 
J2 and J3 must be smaller than 0.3 |J| to reproduce the experimental magnetization curves. Only results for the case 
of J2 =  J3 are shown here for simplicity, since we find that J2 and J3 have similar effect on the magnetization curves 
and affect those almost independently.

Spin-spin correlations in the spin-liquid phase. To describe in more detail the Kitaev SL phase in the 
intermediate-field region, we calculated the field-dependent spin-spin correlation functions 〈 ⋅ 〉 S Si j  and com-
pared them to those of the zero-field Kitaev SL phase of the 2D Kitaev-Heisenberg model on the honeycomb lat-
tice8. The NN interactions of the Kitaev-Heisenberg model can be written as

 = + ⋅γ γ γ
   K S S J S S2 ,i j i j i j,

( )

where γ(= x, y, z) labels the three distinct types of NN bonds in the “regular” honeycomb plane. Following the 
notation of ref. 8, we define the effective parameter = +A K J2 2  and an angle ϕ via ϕ=K A sin  and 

ϕ=J A cos . In Fig. 7(a), spin-spin correlations near the FM Kitaev limit (ϕ =  1.5) of the Kitaev-Heisenberg 
model are plotted, for a 24-site cluster with PBC’s. The Kitaev SL state is characterized by a rapid decay of the 
spin-spin correlations: in the Kitaev limit, only the NN correlations are finite and longer-range ones are zero; that 
is faithfully reproduced by the 24-site calculations. Even away from the Kitaev limit, the longer-range (not NN) 
spin-spin correlations fall within a narrow range − . < 〈 ⋅ 〉 < . 

 

S S0 03 0 1i j  in the Kitaev SL phase (1.40 <  ϕ <  1.58). 
As seen in Fig. 7(b), using the same 24-site cluster, our field-induced SL state exhibits similar features; the values 

Figure 7. Spin-spin correlation functions 〈 ⋅ 〉 S Si j . (a) ED results for the NN Kitaev-Heisenberg model.  
(b–e) ED results for our extended spin model, using MRCI g factors and NN couplings plus J2 =  J3 =  0.25 meV. 
The clusters used in the ED calculations are also sketched. The reference site is indicated by a square and the 
numbers labeling various other sites are in direct correspondence with the numbered curves in the plots of 
〈 ⋅ 〉 S Si j . Yellow windows indicate the Kitaev SL region. (f ) Finite-size scaling analysis for the NN, second- and 
third-neighbor spin-spin correlation functions at H =  13.2 T.
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of longer-range correlations are distributed within a narrow range − . < 〈 ⋅ 〉 < . 

 

S S0 02 0 1i j  in the SL phase 
(10.8 T <  H <  14.2 T). In other words, a rapid decay of the spin-spin correlations is seen in our field-induced SL 
state, at the same level as in the FM Kitaev SL phase of the 2D Kitaev-Heisenberg model. We also found that the 
zigzag-SL level crossing and the associated rapid decay of the spin-spin correlations occur for any cluster which 
can stabilize a zigzag-ordered ground state at low or no field [see Fig. 7(c–e)]. On the other hand, there is no level 
crossing for clusters geometrically inconsistent with zigzag order, e.g., the clusters depicted in Fig. 8. Finite-size 
scaling analysis of the NN, second-neighbor and third-neighbor spin-spin correlation functions within the SL 
phase (H =  13.2 T) is shown in Fig. 7(f). The rather small dependence on cluster size is a natural consequence of 
having no finite-size effects in the Kitaev limit.
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