SCIENTIFIC REPERTS

Received: 10 June 2016 accepted: 23 August 2016 Published: 19 September 2016

OPEN Exploring the transcriptome of *Staphylococcus aureus* **in its natural niche**

DiegoChaves-Moreno¹, Melissa L.Wos-Oxley¹, Ruy Jáuregui¹,† , Eva Medina², Andrew PAOxley¹,‡ & Dietmar H. Pieper¹

Staphylococcus aureus **is an important human pathogen and commensal, where the human nose is the predominant reservoir. To better understand its behavior in this environmental niche, RNA was extracted from the anterior nares of three documented** *S. aureus* **carriers and the metatranscriptome analyzed by RNAseq. In addition, the** *in vivo* **transcriptomes were compared to previously published transcriptomes of two** *in vitro* **grown** *S. aureus* **strains. None of the** *in vitro* **conditions, even growth in medium resembling the anterior nares environment, mimicked** *in vivo* **conditions. Survival in the nose was strongly controlled by the limitation of iron and evident by the expression of iron acquisition systems.** *S. aureus* **populations in different individuals clearly experience different environmental stresses, which they attempt to overcome by the expression of compatible solute biosynthetic pathways, changes in their cell wall composition and synthesis of general stress proteins. Moreover, the expression of adhesins was also important for colonization of the anterior nares. However, different** *S. aureus* **strains also showed different** *in vivo* **behavior. The assessment of general** *in vivo* **expression patterns and commonalities between different** *S. aureus* **strains will in the future result in new knowledge based strategies for controlling colonization.**

Staphylococcus aureus is recognized as a major human pathogen, but also described as a human commensal. The human nose is its major reservoir and ecological niche where approximately 20–30% of humans are reported to be permanent carriers¹. Even though carriage is usually asymptomatic, nasal carriage has a crucial function as a source of invasive infections in both community and hospital settings^{[2](#page-9-1)}. In recent decades, the prevalence of methicillin-resistant *S. aureus* (MRSA) has increased markedl[y3](#page-9-2)[,4](#page-9-3) and vancomycin resistant clones have also been reporte[d5](#page-9-4) . The reasons for the rapid emergence of MRSA are still unclear and the spread cannot be explained solely be the antibiotic selection pressure^{[6](#page-9-5)}. In how far the natural ecological niche constitutes a selective advantage for MRSA remains to be elucidated. S. aureus carriage is influenced by host and environmental factors⁷ and also by interactions with other community members within the anterior nares^{8,[9](#page-9-8)}. Thus, it is assumed that a better understanding of the ecology of this niche may support strategies for limiting the carriage of *S. aureus*[8,](#page-9-7)[10,](#page-9-9)[11.](#page-9-10)

S. aureus clearly belongs to the most studied bacterial species and its behavior under different *in vitro* conditions has been analyzed in great detail, where virulence factors^{12,13}, global regulation^{14,15}, stress response¹⁶, nutri-ent acquisition¹⁷, immune evasion^{[18](#page-9-17)} and attachment mechanisms^{[12](#page-9-11)}, among others have been described. However, with the emergence of high throughput sequencing methods, the interest to understand the *in vivo* situation and the interactions between the host and the inhabiting bacterial communities has increased significantl[y19](#page-9-18)[,20](#page-9-19) and recent studies using deep sequencing transcriptomic analysis (RNAseq) indicate the behavior of *S. aureus in vivo* to be significantly different from that observed by the classical *in vitro* approach^{20,21}.

Efforts to understand the survival and persistence of *S. aureus* in its ecological niche on the one hand aimed to understand the metabolic challenges. The analysis of nasal secretions resulted in the development of a synthetic nasal medium, which should mimic the nasal environment^{[22](#page-9-21)}. Thereby, iron limiting conditions as well as the absence of distinct amino acids were identified as shaping the transcriptional response. However, even though the

¹Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany. 2Infection and Immunology Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany. [†] Present address: AgResearch, Tennent Drive, Palmerston North 4442, New Zealand. ^{*}Present address: Molecular Sciences Laboratory, SARDI Aquatic Sciences, 2 Hamra Ave, West Beach, South Australia, Australia. Correspondence and requests for materials should be addressed to D.H.P. (email: dpi@helmholtz-hzi.de)

use of such a medium may offer important insights into the global reaction of *S. aureus* to its natural conditions, it evidently cannot simulate the host environment and simulate e.g. adhesion processes^{[19,](#page-9-18)[23](#page-9-22)}. Moreover the anterior nares are a complex ecosystem, which is characterized not only by the interaction of *S. aureus* with the host, but by the presence of a complex microbial community^{[8](#page-9-7),[10](#page-9-9)} which may compete for nasal nutrients and interact with *S. aureus.* All these interactions cannot be easily mimicked *in vitro*.

In the current report, we analyzed the genome-wide transcriptional activity of *S. aureus in vivo* in the anterior nares of 3 volunteers at two different time points by RNAseq and compared the transcriptome profiles to those previously obtained by two distinct *S. aureus* strains under *in vitro* conditions[24](#page-9-23). The results of our study provide the first high-resolution analysis of the transcriptional response of *S. aureus* to its natural environment and will allow an understanding of how *S. aureus* persists in such a hostile environment niche.

Results and Discussion

The bacterial community of three *S. aureus* **carriers.** To gain insights into the behavior of *S. aureus* in its natural ecological niche, three healthy volunteers persistently colonized by *S. aureus* were selected. Volunteer 1 was colonized by a novel strain (novel spa type with repeat succession 15-21-12, *S. aureus* D1), volunteer 2 by a strain typed as spa type t0254 (*S. aureus* O1) and volunteer 3 by a strain typed as spa type t12 (*S. aureus* R1). Spa type t12 is reported to be one of the most abundant types colonizing healthy individuals²⁵, specifically in young adults as is the case here. Multilocus sequence typing identified *S. aureus* D1 and R1 to belong to sequence type ST30 and *S. aureus* O1 to belong to sequence type ST15.

The bacterial communities of the anterior nares of these carriers were sampled during both winter (W) and summer (S) and the composition of the active bacterial community analyzed by deep sequencing of 16S rRNA amplicons following reverse transcription–polymerase chain reaction (RT–PCR) of total RNA extracts [\(Fig. 1,](#page-1-0) right). Analysis revealed a high abundance of *S. aureus* sequence reads in 5 of the 6 samples, and only in volunteer 1 it comprised <1% of sequence reads during summer (Volunteer 1S). A specifically high amount of sequence reads originating from *S. aureus* was observed in volunteer 3 (38–44%) indicating this organism to be specifically active in this person.

Overall, all three volunteers showed the presence of a bacterial community composed of core nasal colonizers such as *Corynebacterium accolens/tuberculostearicum* (19–42% relative abundance), *Staphylococcus epidermidis/ capitis/caprae* (6–23%), *Propionibacterium acnes* (2–15%) or *Peptoniphilus* sp. (3–9%) among others ([Fig. 1](#page-1-0) right and Supplementary Dataset S1). While the composition of the bacterial communities of volunteer 2 and 3 were very similar during both sampling times ([Fig. 1](#page-1-0) right), evident differences were observed for volunteer 1, where the winter sampling showed a mild colonization by *S. aureus* (9%), whereas the summer community was dominated by *Dolosigranulum pigrum* and *Corynebacterium propinquum/ pseudodiphtheriticum.*

Metatranscriptomic analysis of nasal microbial communities. The same six *in vivo* samples described above were subject to a metatranscriptomic analysis by RNAseq. After quality filtering, 9–106 million sequence reads per sample were obtained [\(Table 1\)](#page-2-0). Between 15 and 96% of those reads could be assigned to human RNA and were removed. After removal of 16S rRNA reads between 2 and 8 million of sequence reads remained as potential bacterial mRNA ([Table 1](#page-2-0)).

A crucial step for evaluating the activity of *S. aureus* in its natural niche is the capability to separate sequence reads originating from *S. aureus* and *S. epidermidis*. Using a database of 25 *S. aureus* and 2 *S. epidermidis* genomes to assign reads to these species, between 12,000 and 120,000 reads showed a high similarity of (alignment length) * (% identity/ query length) ≥80% with *S. aureus* genomic sequences. However, of those reads between 35 and 95% could also be assigned to *S. epidermidis,* showing the similarity between the two species and the high level of possible mis-assignment. In contrast, using a similarity ratio ≥90%, the percentage of reads that could not be clearly assigned to one of those species decreased substantially to 9–34%. Only in case of sample 1S, 90% of the reads remained of unclear assignment [\(Table 1](#page-2-0)). This corresponds to the high relative abundance of *S. epidermidis*

Table 1. Bioinformatic processing of the sequence reads generated from the 6 metatranscriptomic libraries. * Similarity of alignment length * % identity/ query length ≥80% or ≥90%.

compared to that of *S. aureus* in this specific sample, as indicated by amplicon sequencing [\(Fig. 1](#page-1-0) right). Thus, assignment of reads to *S. aureus* and *S. epidermidis* was performed using a similarity ratio ≥90% as cut-off, whereas assignment to bacterial genera was performed with a \geq 80% similarity ratio as cut-off [\(Table 2\)](#page-3-0).

In total, between 18,000 and 310,000 reads could be assigned to the different bacterial genera and species, which is only a subset of the metatranscriptomic reads remaining after depletion of human and ribsosomal reads ([Table 2\)](#page-3-0). The remaining unassigned mRNA reads illustrate the complexity of the anterior nare niche, and may represent transcripts pertaining to other community species such as eukaryotic species like fungi and protozoa²⁶, although identifying these taxa was beyond the scope of this work. However, previous experiences also have shown an association between the sample quality and the number of RNAseq mapped reads obtained from it, *i.e.* samples with lower quality, and therefore more degraded RNA molecules, as present in *in vivo* samples yield both lower numbers of reads that can be assigned and reads mapped to genes²⁷ and may explain why only a subset of metatranscriptomic reads could in fact be assigned here.

Comparison of the composition across the six nasal microbial communities under study as deduced by amplicon sequencing [\(Fig. 1](#page-1-0) right) versus the composition as indicated by the relative amounts of transcripts assigned to the different species and genera [\(Fig. 1](#page-1-0) left) indicated similar structures. This in turn indicates that representative amounts of metatranscriptomic reads were sampled in each case.

Potential *S. aureus* reads were then mapped against a database of orthologous groups of proteins previously built on the basis of 25 reference genomes²⁴ and 73–80% of the reads could be successfully mapped to the *S. aureus* gene catalogue [\(Table 1\)](#page-2-0). The remaining reads matched intergenic regions that mainly reflect the sites of transcription initiation and different RNA species. Analysis of the sequence reads that could be mapped to *S. aureus* versus those that could be mapped to both *S. aureus* or *S. epidermidis* considering a ≥90% similarity ratio showed, that for some genes all reads fall into the last category, indicating the presence of highly conserved gene regions, preventing a clear assignment (see Supplementary Dataset S2). As sample 1S mainly contains *Staphylococcus* sequence reads, which could not clearly be assigned, it was excluded from further detailed analysis keeping the samples in which *S. aureus* was shown to be active and abundant.

Functional categorization of transcripts expressed by *S. aureus* **under** *in vivo* **conditions.** Due to the difference in sequencing depth between the samples, random resampling was performed and the expression patterns analyzed on the basis of 5,000 sequence reads each (Supplementary Dataset S2 and Supplementary Fig. S1). These *in vivo* expression patterns were compared to those previously reported for *S. aureus* USA300 LAC and *S. aureus* IPL32 grown *in vitro* in rich medium (BHI) and a synthetic nasal medium (SNM)²⁴ which mimics the nasal conditions²². Cluster analysis was used to determine the similarity between the global transcriptional profiles of *S. aureus* under the different conditions. The dendrogram ([Fig. 2\)](#page-3-1) shows that all 5 *in vivo* transcriptomes differed substantially from those of USA300 LAC and *S. aureus* IPL32 under *in vitro* growth conditions, that is, these two groups of samples were <50% similar, and those of both strains grown in synthetic nasal medium (SNM) were not more similar to the *in vivo* trancriptomes then those obtained in rich medium.

Table 2. Assignment of mRNA reads to the key bacterial species (or genera) within the human anterior nares. * Similarity of alignment length * % identity/ query length ≥ 80% or ≥90%.

Figure 2. Cluster analysis within *in vitro* **and** *in vivo* **conditions.** Dendrogram constructed by agglomerative hierachical clustering (group-average) based on a relative abundance matrix constructed from comparisons of metatransciptomic data between five *in vivo* samples analyzed here (depicted by filled squares) and *in vitro* transcriptomic data generated previously[24](#page-9-23) using *S. aureus* USA300 LAC and *S. aureus* IPL32 growing in BHI

or SNM at different growth phases (exponential - Ex and stationary - St). The percentage similarity between conditions was calculated using the Bray-Curtis similarity algorithm.

It is important to note that the *in vitro* RNAseq libraries had been amplified using Ambion's MessageAmp ki[t24,](#page-9-23) while the *in vivo* libraries in this work were generated using the Epicentre's ScriptSeq Kit, but where isolation of RNA and sequencing were performed in the exact same manner. A comparison between these two methods on *S. aureus* cells grown to mid-log phase revealed only an additional 10% difference in the global expression profile compared to replicates (taking into account standardized read count across 2,582 *S. aureus* genes), where the rank-order of gene expression was mostly retained (Spearman rank correlation of 0.911) (data not shown).

Immense differences were obvious between the 5 *in vivo* transcriptomes sharing only >55% of similarity. Differences were observed not only between *S. aureus* transcriptomes from different individuals but also between transcriptomes obtained from the same volunteer at different timepoints, and thus from the same *S. aureus* strain. This reveals that differences in the transcriptomic profiles are not only due to the colonizing strain, but also to the environment provided by the host.

Gene expression analysis based on the relative abundances of gene transcripts assigned to their respective Clusters of Orthologous Groups (COG) showed no evident difference between *in vivo* and *in vitro* conditions (Supplementary Fig. S2), and mainly differences in the general distribution per categories between growth media were obvious, as previously reported²⁴. However, differences were also visible in the relative transcript abundances of genes involved in inorganic ion transport and metabolism (category P) and secondary metabolites biosynthesis, transport and catabolism (category Q), where levels during growth in complex medium were lower compared to those during growth in either SNM or *in vivo*.

To obtain a better view on differences in transcriptomes, genes that were expressed to levels exceeding a normalized value of 1000 rpm after resampling were considered in more detail (Supplementary Dataset S2). Of the genes that were expressed in at least one *in vivo* sample at a level exceeding 1000 rpm, 240 genes were indicated to be expressed differently under *in vivo* versus *in vitro* conditions (see Materials and Methods and Supplementary Dataset S3).

Expression of genes encoding surface bound proteins. The adherence to components of the human extracellular matrix is a key step for the persistence of *S. aureus* in the nasal habitat and a total of 35 adhesins have been examined in detail²⁸. Of these, the staphylococcal cell-wall protein clumping factor B (ClfB, USA300HOU_2630) which promotes adhesion to squamous epithelial cells^{[29](#page-9-28)} was indicated as important for nasal colonization[19.](#page-9-18) In fact, read counts indicating transcription of the encoding gene *in vivo* varied from 910–4660 reads per million of total sequence reads (rpm), whereas those from cells grown in SNM (*in vitro*) were only 330–550 rpm ([Fig. 3A](#page-5-0)). Reads assigned to *clf*A (USA300HOU_0819) were similar between *in vivo* and *in vitro* growth in SNM. However, *sdr*C, D and E, all characterized as encoding crucial attachment factors¹³, but yet to be linked with nasal colonization were all expressed to a much higher extent *in vivo* compared to their previously reported *in vitro* expression (e.g. 340–1260rpm *in vivo* versus ≤10 rpm *in vitro* for *sdr*C) ([Fig. 3A](#page-5-0)). This indicated the importance of SdrCDE (USA300HOU_0555-0557) as attachment factors for nasal colonization. Furthermore, the *sas*F gene (USA300HOU_2646) was expressed to a much higher extend *in vivo* compared to *in vitro* (340– 1330 rpm versus 14–120 rpm, [Fig. 3A](#page-5-0)).

The *Staphylococcus* surface proteins can interact with different compounds in the extracellular matrix, and also the elastin-binding protein (*ebp*S, USA300HOU_1419) was expressed to a higher extent *in vivo* compared to its *in vitro* expression (350–1690 rpm *in vivo* versus 210–250 rpm after growth in SNM), whereas the *cna* gene (SAA6008_02751) encoding collagen adhesin was expressed only in two of the three volunteers (samples of volunteer 1 winter, 1W; and of volunteer 3 in summer and winter, 3S and 3W). Most intriguingly was the behavior of sasG (SACOL2505), which has been reported to promote adhesion to nasal epithelial cells^{13[,30](#page-9-29)[,31](#page-9-30)}. This gene was expressed *in vitro* by the two strains previously analyzed only at levels <50 rpm of reads, but reached roughly 10,000 rpm in volunteer 2S ([Fig. 3A\)](#page-5-0). As mentioned above, the majority of transcripts obtained from sample 1S could not clearly be assigned to *S. aureus* or *S. epidermidis*, however, of the 583 reads that were mapped exclusively to *S. aureus,* >50% were due to transcription of *sas*G. Taken collectively, these levels of expression indicate that *S. aureus* uses a whole battery of adhesins to colonize the anterior nares, with the precise nature of the expression of adhesins being seemingly dependent on the colonizing strain and/or the human host.

Expression of genes involved in iron homeostasis. Much of the success of *S. aureus* as a major colonizer across the human body has been attributed to its capacity to retrieve iron from the host^{17,32} and iron limiting conditions as evidenced by the high expression of iron-regulated genes have recently been observed in culture media mimicking the conditions in the anterior nares^{22[,24](#page-9-23)} or human plasma among others¹⁵. In fact, both the genes encoding proteins for the biosynthesis of staphyloferrrin B (*sbn*ABCDEFGHI, USA300HOU_0127-0135) and staphyloferrin A (*sfa*CBAD, USA300HOU_2170-2173) as well as the respective transport systems (*sir*ABC, USA300HOU_0126-0124; *hts*ABC (USA300HOU_2169-2167). Similar to the previously described *in vitro* samples, expression of all four mentioned operons was high in all five *in vivo* samples indicating actual iron limitation governing the performance of *S. aureus in vivo* in the nares (see [Fig. 3B](#page-5-0) and Supplementary Dataset S2).

High amounts of transcripts (up to 7060, 2740 and 5150 rpm, respectively in sample 3S) could be assigned to the *sit*ADB (USA300HOU_0651-0653) iron transporter, however, similar high expression of this transporter has previously been observed during stationary phase of growth²⁴. Transcription of various other transport systems was observed (*fep*ABC, USA300HOU_0364-0366; *fhu*AB, USA300HOU_0668-0669; *sstA*BCD, USA300HOU_0759-0762), however, only in the case of the f*ep*ABC iron transport system, an increased expression *in vivo* compared to *in vitro* exponential growth in complex medium of strains USA300 LAC and ILP32 could be observed (see Supplementary Dataset S2).

Genes of the *isd*BACDEF gene cluster (SACOL1138, USA300HOU_1064-1068) encoding iron regulated surface determinants were also previously reported as being upregulated by *S. aureus* in SN[M22](#page-9-21)[,24](#page-9-23)[,32](#page-9-31). Even higher expression of these genes was observed here *in vivo* and as an example, *isd*B transcripts accounted for 1200– 4160 rpm in *in vivo* transcriptomes and only 60–90 rpm after growth of strains USA300 Lac or IPL32 *in vitro* in SMN [\(Fig. 3B](#page-5-0)).

Expression of genes required for subversion of the host defense. To survive within the host, *S. aureus* has developed various mechanisms to overcome the host immune defenses³³. The staphylococcal complement inhibitor (SCIN), which interferes with all complement activation pathways is recognized as the most efficient complement inhibitor[18](#page-9-17) and the encoding *scn* gene has recently been shown to be highly expressed by *S. aureus* in an *in vivo* mouse model of infection[20](#page-9-19). During *in vitro* growth, its expression was typically relatively low and the level of transcripts never exceeded 1000 rpm²⁴ (see also [Fig. 3B\)](#page-5-0) and low levels were also observed in a study comparing various *in vitro* conditions, where highest levels were observed during growth in human plasm[a15](#page-9-14). Extreme differences were observed in the different volunteers and while in two volunteers expression levels were similar to those previously observed *in vitro*, in volunteer 3 transcript levels reached 22,000 rpm ([Fig. 3B](#page-5-0)). Similarly the *chp* gene encoding chemotaxis inhibitory protein (USA300HOU_1947), where transcripts had been shown not to exceed 300 rpm *in vitro*[24](#page-9-23) was highly expressed in volunteer 3, reaching 13,600 rpm in sample 3W.

S. aureus can also secrete various exotoxins that damage the host cell plasma membrane, among them α-hemolysin, β-hemolysin, the bi-component leukocidins and γ-hemolysin and the phenol soluble modulins as well as δ-hemolysin[34](#page-9-33). While α- and β-hemolysin encoding genes (*hly*, USA300HOU_1099; *hlb*, SACOL2003) were expressed *in vivo* to a similar extent to previously described *in vitro* conditions, all of the *in vivo* samples (with the exception of 2S) showed a higher expression of *γ*-hemolysin encoding genes (*hlg*ABC, USA300HOU_2402, 2405, 2404) and two of the volunteers (volunteer 2 and 3) showed expression of the δ-hemolysin encoding gene (*hld*, USA300HOU_2031), expression of which was not observed *in vitro* ([Fig. 3C](#page-5-0)[\)24](#page-9-23). δ-Hemolysin is encoded within RNAIII^{[35](#page-9-34)} which is part of the *agr* regulon and belongs to a group of small peptide toxins known to activate, attract and lyse neutrophils, which comprise also the phenol soluble modulins (PSMs). Both volunteers 2 and 3 in

Figure 3. Comparison between the expression of various *S. aureus* **survival factors.** Expression of genes encoding different adhesion factors (**A**), of genes involved in iron homeostasis (**B**), of genes involved in subversion of the host defense (**C**), of stress response genes (**D**), of genes encoding regulators (**E**) and methionine biosynthesis genes (**F**) of colonizing *S. aureus* strains *in vivo* (grey scaled) compared to their expression by *S. aureus* USA300 LAC or IPL32 during exponential growth *in vitro* on BHI or SNM as previously decribed²⁴. Expression levels are given as rpm (reads per million) of total reads.

.

addition to *hld* also expressed the gene encoding cytosolic toxin PSMα1 (see [Fig. 3C](#page-5-0)). However, in contrast to the expression of PSMβ1 and PSMβ2 under *in vitro* conditions in nasal medium²² with amounts of 1550–1610 rpm and 1100–1270 rpm, respectively by *S. aureus* IPL32 and *S. aureus* USA300 LA[C24,](#page-9-23) their expression *in vivo* was only observed in one volunteer at levels not exceeding 370 and 120 rpm, respectively ([Fig. 3C\)](#page-5-0). This observation is in accordance with previous analysis, where expression of PSMβ was observed only *in vitro*[20.](#page-9-19) Among the bi-component toxins not only were *hlg*ABC shown to be expressed *in vivo*, but high expression of a gene encoding a putative leucocydin (lukFS, USA300HOU_2011/USA300HOU_2013) specifically in volunteer 3 was observed, the importance of which remains to be elucidated.

Superantigens are virulent polypeptides that are capable of causing nonspecific T cell activation by circumventing normal antigen processing in the human host. The *tst* gene encoding toxic shock syndrome toxin-1 (TSST-1) has recently been observed in 15% of nasal *S. aureus* isolates from medical students in Poland[36.](#page-9-35) Interestingly, the *tst* gene (SAV2011) was not only present in at least one volunteer, it was also expressed in this volunteer (volunteer 3) at levels reaching 1230 rpm [\(Fig. 3C\)](#page-5-0).

Expression of genes involved in stress response. Reactive oxygen species are produced by bacteria as a by-product of aerobic growth but also by the host, specifically as part of an oxidative killing mechanism³⁷. Protection of *S. aureus* from such oxidative stress is mediated by a battery of enzymes among them KatA catalase and AhpC alkylhydroperoxide reductase, which both have been described as essential for nasal colonization by scavenge exogenously or endogenously produced hydrogen peroxid[e38.](#page-10-1) Both *kat*A (USA300HOU_1277) and *ahp*C (USA300HOU_0404) were expressed at high levels *in vivo* (>930 and >1320 rpm, see [Fig. 3D\)](#page-5-0) of one order of magnitude higher compared to their levels after growth of USA300 LAC or IPL32 in SNM (*katA*<370 rpm, a*hpC* <540 rpm), indicating *S. aureus* to experience oxidative stress in the anterior nares. Another gene highly expressed *in vivo* was *asp*23 (USA300HOU_2175, [Fig. 3C\)](#page-5-0). Asp 23 was initially described as a protein that accu-mulates after alkaline shock^{[39](#page-10-2)} and has recently been identified as a membrane associated protein^{[16](#page-9-15)} which may be important for cell envelope homoeostasis, specifically under adverse environmental conditions. In accordance with the previously observed high abundance of this protein in the complete proteome of *S. aureus*^{[16](#page-9-15)}, a high expression (480–1800 rpm), had been observed *in vitro*[24](#page-9-23), however, even when taking into account that 30–49% of reads could also be mapped to *S. epidermidis* (see Supplementary Dataset S2), higher expression levels were observed *in vivo* indicating Asp23 to be of major importance for survival of *S. aureus* in the host.

S. aureus has been shown to accumulate the compatible solute glycine betaine in response to osmotic stress[40](#page-10-3). A common bioysynthetic pathway for glycine betaine is its formation from choline, which in *S. aureus* is catalyzed by a choline dehydrogenase BetA forming glycine betaine aldehyde and a glycine betaine aldehyde dehydrogenase BetB forming glycine betaine[41](#page-10-4). Both *bet*A and *bet*B genes encoding the biosynthetic enzymes (USA300HOU_2605-2606) as well as *betT* encoding a choline transporter (USA300HOU_2610) were highly expressed *in vivo,* indicating *S. aureus* to experience osmotic stress in the nasal cavity ([Fig. 3D](#page-5-0)).

 $CsbD$ is a bacterial general stress response protein, however, its role in stress response is unclear^{[42](#page-10-5)}. Typically, two *csb*D-like proteins are encoded in the genome of *S. aureus* strains, and both genes (USA300HOU_0868 and 1625) were expressed at levels under *in vivo* conditions two orders of magnitude higher (up to 17,640 and 25,860 rpm, respectively) compared to levels observed *in vitro* (<90 rpm) constituting two of the most abundant transcripts, indicating their importance for nasal colonization [\(Fig. 3D](#page-5-0)). Only 3–12% of the sequence reads attributed to *csbD2* expression in *S. aureus* could not clearly be assigned and may also originate from *S. epidermidis.* Similarly a *dps* family protein (USA300HOU_2128), a family comprising proteins protecting DNA under starved conditions, was expressed to a much higher extent *in vivo* compared to *in vivo* (up to 11,970 rpm).

Evidently, also genes encoding various membrane proteins (SAV0374, SAV0574, SAV1030 and SAV1359) were extremely differently expressed under *in vivo* versus *in vitro*[24](#page-9-23) conditions (Supplementary Dataset S2 and [Fig. 3D\)](#page-5-0). A further protein where the encoding gene showed a 2 order of magnitude difference in expression was VraX [\(Fig. 3D\)](#page-5-0). *vra*X expression was also previously shown to be upregulated by multiple cell wall and/or membrane active compounds[43–45](#page-10-6) indicating that vraX up-regulation follows all forms of cell membrane and/or cell wall metabolism insult and that the anterior nares are a harsh environment for bacteria to survive.

Expression of genes encoding regulatory systems. Regulation in *S. aureus* has been widely described *in vitro*¹⁴ and is performed by two-component regulatory systems (TCRS) and the SarA homologs, that commonly control many virulence factors⁴⁶. Of the regulatory systems, substantial differences between *in vivo* and *in vitro* conditions were observed for the *agr*AC genes (USA300HOU_2035-2034) encoding the two-component AgrAC regulatory system as well as the *sar*A gene. While the *agr*AC genes represented 1070–4500 and 1170– 5260 rpm, respectively, during growth of USA300 LAC and IPL32 strains *in vitro*[24](#page-9-23), they summed up to 510 and 860 rpm, respectively *in vivo* [\(Fig. 3E\)](#page-5-0). Low expression of *agr* genes concomitantly with a high expression of virulence factors *in vivo* has been reported recently[20](#page-9-19) and some of the virulence factors assumed to be upregulated by the Agr or SarA syste[m47](#page-10-8), such as *γ*-hemolysin were in fact upregulated *in vivo* in the nose. Thus, these staphylococcal virulence factors may be under the control of additional regulatory mechanisms *in vivo*.

Expression of genes involved in metabolic processes. The regulation of a wide variety of virulence factors its dependent on the nutrient availability^{[48](#page-10-9)} and nasal secretions were analyzed previously with the objective to determine the abundance and limitations of potential nutrients that could be consumed by nasal communities, specifically *S. aureus*[22](#page-9-21). Methionine biosynthesis had been reported to be crucial for *S. aureus* to inhabit the nasal habitat, and genes encoding methionine biosynthetic enzymes such as cystathionine-*γ*-synthase (*met*I) and cystathionine-β-lyase (*met*C), as well as two L-methionine ABC-transport systems were reported to be up-regulated during growth in synthetic nasal medium[22](#page-9-21),[24](#page-9-23) and MetI was even reported to be indispensable for growth in SNM. However, while the USA300HOU_0376-USA300HOU_0380 *met*EHCI methionine biosynthesis operon was highly expressed in SNM, it was only poorly expressed during growth in rich medium as well as *in vivo* [\(Fig. 3F\)](#page-5-0). In addition the strong upregulation of two L-methionine ABC-transport systems (*met*N1P1Q1, SACOL0504-0506 and *met*N2P2Q2 USA300HOU_0847 – 0849) previously observed in SN[M22](#page-9-21)[,24](#page-9-23) did not occur *in vivo* ([Fig. 3F\)](#page-5-0), indicating the strong upregulation of methionine biosynthetic genes and the respective transport systems to be a medium artifact.

Conclusions

Even though the epidemiology and characterization of strains inhabiting the anterior nares as well as the characterization of gene expression profiles under *in vitro* conditions mimicking those *in vivo* have established a sound knowledge base of *S. aureus* colonization strategies, the mechanisms used by *S. aureus in vivo* to survive in the nasal environment are still poorly understood[19,](#page-9-18)[49.](#page-10-10) The comparison between *in vivo* gene expression profiles across different human hosts and then comparing those with published *in vitro* expression profiles has shown that the host environment has a stronger impact on the expression profile than growth phase or medium composition, supporting the notion that understanding colonization by pathogenic or commensal microorganisms as well as of infection processes necessitates *in vivo* studies. The differences in gene expression profiles between samples has revealed diverse mechanisms used by *S. aureus* to persist in the human nose. As previously described[19](#page-9-18),[22](#page-9-21),[32](#page-9-31), survival in the nose is strongly controlled by the limitation of iron and evident by the expression of iron acquisition systems (*fep*ABC, *sir*ABC, *hts*ABC). Besides the need to acquire iron, *S. aureus* cells clearly experience different environmental stresses, which they commonly attempt to overcome by the expression of compatible solute biosynthetic pathways, changes in the cell wall composition and the synthesis of general stress proteins. Moreover, the expression of adhesins is important for colonization of the nares as evident by the consistent expression of *sdr*CDE*, clfB* and *ebpS in vivo*. However, different *S. aureus* strains also showed different *in vivo* behavior, maybe also due to differences in the environment set by the host. This is most evident for adhesins, where *sas*G expression was dominant in only one volunteer. Overall the analysis of general expression patterns and commonalities between different *S. aureus* strains in distinct host environments can provide new knowledge to base strategies to combat colonization by *S. aureus* or other opportunistic pathogens.

Materials and Methods

Confirmation and characterization of persistent *S. aureus* **carriers.** Persistent colonization of putative *S. aureus* carriers was analyzed by inoculation of cotton swabs of the anterior nares of volunteers on selective chromogenic media (CHROMagarTM Staph aureus) and incubation for 48 h at 37 °C in ambient air. Suspicious colonies were confirmed as *S. aureus* by amplification of the *nuc* gene as previously described[50](#page-10-11). Isolated colonies from two nasal swabs from persistent carriers (those where *S. aureus* was observed at least four times in a one year period) were characterized by sequencing of the repeat region of the protein A gene (*spa*[\)51.](#page-10-12) The spa types were assigned through the Ridom web server (<http://www.spaserver.ridom.de/>). As from the different carriers always the same spa type was observed, further identification of a single isolate was performed by Multilocus Sequence Typing (MLST) as previously described⁵² and the sequence type assigned using the MLST database ([http://saureus.mlst.net\)](http://saureus.mlst.net). Three male volunteers aged 30–50 years colonized in their anterior nares by *S. aureus* were thereby selected for the present study. Informed consent was obtained from all three volunteers included in this study for the analyses described. The study was approved by the Ethical Committee of the Medical Faculty of the University of Münster and of the Ärztekammer Westfalen-Lippe (file number 2010-468-f-S) and was carried out in accordance with the relevant guidelines.

Total RNA extraction, purification and mRNA enrichment. Samples for metatranscriptomic analysis were taken at two time points (February and August 2013) using dry sterile cotton swabs. As only small amounts of RNA could be obtained from a single nasal swab, RNA from consecutive swabs was pooled. To verify the stability of the microbial community over short period of times, single swabs were taken daily from both anterior nares of a volunteer and the microbial community structure profiled by T-RFLP (terminal restriction fragment length polymorphism) as previously described^{[53](#page-10-14)}. After confirming the stability of the community over short time frames, swabs were taken from both anterior nares of each volunteers in the morning and evening of five consecutive days. Samples were stored at −⁸⁰ °C after addition of 100^μl of RNA-later®.

Single samples (swabs) were resuspended in 1 ml of cold buffer RLT (Qiagen) supplemented with 1% β-mercaptoethanol (Sigma) and transferred to lysing matrix B tubes (MP Biomedicals) on ice. Samples were disrupted using the FastPrep-24® instrument (MP Biomedicals) at an intensity of 5.5 for 40 s. Samples were returned to ice for 4 min, disrupted further using the same settings and then centrifuged at 13 500 \times *g* for 10 min at 4 °C to remove the cell debris. The supernatant was subsequently transferred to 1.5 ml RNase free Biopur™ centrifuge tubes (Eppendorf) and the RNA extracted using the RNeasy Mini Kit according to the manufacturer's instructions, including optional DNase treatment on the column (Qiagen). RNA was eluted with nuclease-free water (Ambion), pooled and concentrated by ethanol precipitation using standard procedures.

Amplicon library preparation and analyses. An aliquot of each pooled RNA sample was transformed into cDNA using the QuantiTect® reverse Transcription kit (Qiagen) following the manufacturer instructions and 16S rRNA amplicon libraries comprising the V1-V2 variable regions were prepared as previously described⁵⁴. These 6 samples were sequenced on the MiSeq instrument (Illumina) with processing of sequence reads performed as previously described⁵⁴. In brief, quality filtered reads were trimmed conservatively to 80 nt and the paired ends matched to give 160 nt for downstream analysis. Reads were clustered allowing for two mismatches⁵⁵ and the dataset then filtered to consider only those phylotypes that were present in at least one sample at a relative abundance >0.05% of the total sequences of that sample. The mean number of sequences per sample was 11345

+/− 2482 totaling 68072 sequence reads and the taxonomic affiliation of the 142 phylotypes was assigned as previously described⁵⁴.

Transcript library construction and sequencing. mRNA was enriched from each of the 6 samples using Terminator™ 5′-Phosphate-Dependent Exonuclease (Epicentre) according to the manufacturer's instructions. Samples were further concentrated by ethanol precipitation and re-eluted in nuclease-free water (Ambion). RNA integrity and quantity was measured using the Agilent 2100 Bioanalyzer (Agilent Technologies) and NanoDrop 1000spectrophotometer (Thermo Scientific). Libraries were generated using the ScriptSeq™ v2 RNA-Seq Library Preparation Kit (Epicentre). For each library, 50ng of enriched mRNA was used in each reaction according to the manufacturer's instructions and the libraries purified using the Minelute PCR Purification Kit (Qiagen). The libraries were further purified for removal of potentially contaminating primer dimers by agarose gel electrophoresis and excision and purification of the 250–650bp fragments by the QIAquick Gel extraction Kit (Qiagen). Libraries were assessed for quality using the Agilent 2100 Bioanalyzer (Agilent Technologies) and were sequenced on the Illumina HiSeq 2500 platform using the TruSeq SR Cluster Kit v3-cBot-HS (Illumina). Four libraries were multiplexed per lane (12pM/library) and sequenced to 200 cycles in both directions.

RNA-Seq data processing. Each library produced between 50 and 105 million reads, which were pre-processed for quality and trimmed using a combination of in-house Ruby scripts and open source tools (<http://bioinformatics.ucdavis.edu/index.php/Trim.pl> and [http://www.mothur.org/\)](http://www.mothur.org/)[56](#page-10-17). Reads were collapsed into representative reads using FASTX toolkit V. 0.0.13.2 collapser [\(http://hannonlab.cshl.edu/fastx_toolkit/\)](http://hannonlab.cshl.edu/fastx_toolkit/).

Human associated RNAs were identified and removed from the *in vivo* sample using BLAT searches⁵⁷ of an in-house database of the human genome repository (human RefSeq, chromosome records with gap adjusted concatenated NT_contigs) downloaded from the NCBI ftp site, blastdb (March 2013). Reads with alignment coverage (on the query) \geq 30% were removed from the dataset. Ribosomal sequences contained within the datasets were detected with HMMER (version 3.0⁵⁸) using models based on multiple sequence alignments of the 5S, 16S and 23S rRNA[s59](#page-10-20) and by the use of riboPicker (version 0.4.3). Results of the two methods were compiled and used to depurate datasets.

Seven nucleotide sequence databases were constructed and used to assign metatranscriptomic reads. These databases comprised the complete genomes from 1) the 25*S. aureus* strain[s24,](#page-9-23) 2) *S. epidermidis* strains ATCC12228 and RP62A, 3) *F. magna* (ATCC29328), 4) *M. catarrhalis* RH4, 5) *P. acnes* SK137, 6) *D. pigrum* ATCC51524, 7) *Corynebacterium accolens* ATCC49725 and *Corynebacterium variabile* DSM44702 and 8) *Peptoniphilus duerdenii* (ATCCBAA164). The metatranscriptomic datasets devoid of human and ribsosomal reads were individually analyzed using this set of blast databases. Reads were assigned to a genus, if the ratio (alignment length * % identity)/ query length) exceeds 80%. As a reasonable number of reads could not clearly be assigned to either *S. aureus* or *S. epidermidis*, a ratio (alignment length * % identity)/ query length) >90% was used to assign reads to these species (see [Table 1](#page-2-0)).

Presumptive *S. aureus* reads were mapped against a previously described *S. aureus* OG/Position Specific Scoring Matrix (PSSM) database²⁴ using rpstblastn. An alignment ratio of \geq 60% (alignment length * % identity/ query length) was used for the positive assignment of sequences to the orthologous groups. Reads that mapped to *S. aureus* were further blasted (blastn) against two genomes of *S. epidermidis* (*S. epidermidis* strains ATCC12228 and RP62A). Reads that showed an alignment ratio ≥90% were aggregated and assigned as reads that could originate from either S. aureus or S. epidermidis (Supplementary Dataset S2).

As the number of *S. aureus* sequence reads varied between libraries (see [Table 2\)](#page-3-0) and then to compare with recently published *in vitro* data that comprised orders of magnitude more sequence reads²⁴, mapped read counts were re-randomized to the smallest library size of 5000 reads using an in-house Perl script²⁰. Finally all read count data were normalized to reads per million (rpm).

Clusters of Orthologous Groups (COGs) were assigned to the probable *S. aureus* reads by querying the COG profiles deposited in the Conserve Domain Database (CDD) database⁶⁰ (downloaded from the NCBI ftp site/ little endian) using rpsblast (version 2.2.25). The results were parsed using an in-house Perl script.

Data analysis and interpretation. In order to compare the different *in vivo S. aureus* transcriptomic libraries with each other and then also with other published datasets (i.e. the *in vitro* libraries from Chaves-Moreno *et al.*^{[24](#page-9-23)}), a sample-similarity matrix was generated using the Bray–Curtis coefficient⁶¹ and gene-expression profiles compared using group-average agglomerative hierarchical clustering using PRIMER (v.6.1.6, PRIMER-E, Plymouth Marine Laboratory, Plymouth, UK)⁶².
Previous analysis of S. *aureus* 6850²⁰ and S. *aureus* SH1000 global transcriptomic profiles using the ScriptSeqTM

v2 RNA-Seq Library Preparation Kit (as performed here), showed similarities of 80-85% between replicates. Then, a direct comparison between the global transcriptomic profiles obtained from *S. aureus* SH1000 cells grown to mid-log phase in BHI using the MessageAmp™ II-Bacteria RNA amplification kit (Ambion) with a T7 primer modified to include a BpmI restriction site for removal of poly-A tails prior to sequencing as described by Chaves-Moreno *et al.*[24](#page-9-23) or the ScriptSeq™ v2 RNA-Seq Library Preparation Kit (Epicentre) (like the *in vivo* samples of this work) revealed global expression profiles of 75% similarity (using the Bray-Curtis algorithm) with a Spearman rank correlation of 0.911 (based on the read counts of the 2,582*S. aureus* genes). So we can deduce that the choice of RNAseq library preparation method may contribute to an additional 10% difference in the global expression profile while retaining the rank-order of gene expression.

As the *in vivo* transcriptomes were very different and cannot be regarded as replicates, a detailed comparison with previous *in vitro* data²⁴ was based on those genes that were expressed in at least one *in vivo* sample at a level exceeding 1000 rpm (Supplementary Fig. S1). Only genes where the expression level under at least one *in vitro* condition differed to that of the mean *in vitro* expression level of *S. aureus* USA300 strain LAC and *S. aureus* IPL32 growing in SNM or BHI, respectively, by at least one order of magnitude were considered for discussion in this paper (see Supplementary Dataset S3). Genes where the % of reads that also map to *S. epidermidis* exceeded 50% under any condition were not considered. Overall 240 genes were further compared.

Data accessibility. Sequences generated from these 6 *in vivo* samples were deposited in the NCBI Gene Expression Omnibus (GEO) repository under the accession number GSE73485.

Nucleotide sequences of all 142 phylotypes determined using Illumina-based amplicon deep-sequencing, their relative abundance (in%) and their phylogenetic assignment, an overview of the expression of *S. aureus* genes under *in vivo* conditions analyzed here compared to previously described *in vitro* conditions and an overview of genes where the expression level under at least one *in vitro* condition differed to that previously described *in vitro* are provided as Supplementary Dataset S1–S2.

References

- 1. van Belkum, A. *et al.* Co-evolutionary aspects of human colonisation and infection by *Staphylococcus aureus*. *Infect Genet Evol* **9,** 32–47 (2009).
- 2. von Eiff, C., Becker, K., Machka, K., Stammer, H. & Peters, G. Nasal carriage as a source of *Staphylococcus aureus* bacteremia. *N Engl J Med* **344,** 11–16 (2001).
- 3. Rasigade, J.-P. *et al.* Global distribution and evolution of Panton-Valentine leukocidin-positive methicillin-susceptible *Staphylococcus aureus*, 1981–2007. *J Infect Dis* **201,** 1589–1597 (2010).
- 4. Pfingsten-Würzburg, S., Pieper, D. H., Bautsch, W. & Probst-Kepper, M. Prevalence and molecular epidemiology of meticillinresistant *Staphylococcus aureus* in nursing home residents in northern Germany. *J Hosp Infect* **78,** 108–112 (2011).
- 5. Melo-Cristino, J., Resina, C., Manuel, V., Lito, L. & Ramirez, M. First case of infection with vancomycin-resistant *Staphylococcus aureus* in Europe. *Lancet* **382,** 205 (2013).
- 6. Rasigade, J.-P. & Vandenesch, F. *Staphylococcus aureus*: A pathogen with still unresolved issues. *Infect Genet Evol* **21,** 510–514 (2014). 7. Kluytmans, J., van Belkum, A. & Verbrugh, H. Nasal carriage of *Staphylococcus aureus*: epidemiology, underlying mechanisms, and
- associated risks. *Clin Microbiol Rev* **10,** 505–520, (1997). 8. Yan, M. *et al.* Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and *S. aureus* carriage. *Cell Host Microbe* **14,** 631–640 (2013).
- 9. Zipperer, A. *et al.* Human commensals producing a novel antibiotic impair pathogen colonization. *Nature* **535,** 511–516 (2016).
- 10. Wos-Oxley, M. L. *et al.* A poke into the diversity and associations within human anterior nare microbial communities. *ISME J* **4,** 839–851 (2010).
- 11. Faust, K. *et al.* Microbial co-occurrence relationships in the human microbiome. *PLoS Comput Biol* **8,** e1002606 (2012).
- 12. Corrigan, R. M., Miajlovic, H. & Foster, T. J. Surface proteins that promote adherence of *Staphylococcus aureus* to human desquamated nasal epithelial cells. *BMC Microbiol* **9,** 22 (2009).
- 13. Foster, T. J., Geoghegan, J. A., Ganesh, V. K. & Höök, M. Adhesion, invasion and evasion: the many functions of the surface proteins of *Staphylococcus aureus*. *Nature Rev Microbiol* **12,** 49–62, (2014).
- 14. Ibarra, J. A., Pérez-Rueda, E., Carroll, R. K. & Shaw, L. N. Global analysis of transcriptional regulators in *Staphylococcus aureus*. *BMC Genomics* **14,** 126 (2013).
- 15. Mader, U. *et al. Staphylococcus aureus* transcriptome architecture: from laboratory to infection-mimicking conditions. *PLoS Genet* **12,** e1005962 (2016).
- 16. Müller, M. *et al.* Deletion of membrane-associated Asp23 leads to upregulation of cell wall stress genes in *Staphylococcus aureus*. *Mol Microbiol* **93,** 1259–1268, (2014).
- 17. Hammer, N. D. & Skaar, E. P. Molecular mechanisms of *Staphylococcus aureus* iron acquisition. *Annu Rev Microbiol* **65** (2011).
- 18. Rooijakkers, S. H. M. *et al.* Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. *Nature Immunol* **6,** 920–927 (2005).
- 19. Burian, M., Wolz, C. & Goerke, C. Regulatory adaptation of S*taphylococcus aureus* during nasal colonization of humans. *PLoS One* **5,** e10040 (2010).
- 20. Szafranska, A. K. *et al.* High-resolution transcriptomic analysis of the adaptive response of *Staphylococcus aureus* during acute and chronic phases of osteomyelitis. *mBio* **5,** e01775–01714 (2014).
- 21. Cheung, A. L., Yang, S.-J., Bayer, A. S. & Xiong, Y. Q. Disparity in the *in vitro* versus *in vivo* regulation of fibronectin-binding proteins by 2 global egulators, saeRS and sigB, in *Staphylococcus aureus*. *J Infect Dis* **200,** 1371 (2009).
- 22. Krismer, B. *et al.* Nutrient limitation governs *Staphylococcus aureus* metabolism and niche adaptation in the human nose. *PLoS Pathog* **10,** e1003862 (2014).
- 23. Burian, M. *et al.* Temporal expression of adhesion factors and activity of global regulators during establishment of *Staphylococcus aureus* nasal colonization. *J Infect Dis* **201,** 1414–1421 (2010).
- 24. Chaves-Moreno, D. *et al.* Application of a novel "pan-genome"-based strategy for assigning RNAseq transcript reads to *Staphylococcus aureus* strains. *PLoS ONE* **10,** e0145861 (2015).
- 25. Sangvik, M. *et al.* Age- and gender-associated *Staphylococcus aureus* spa types found among nasal carriers in a general population: the Tromsø Staph and skin study. *J Clin Microbiol* **49,** 4213–4218 (2011).
- 26. Rivera, F. *et al.* Pathogenic and free-living protozoa cultured from the nasopharyngeal and oral regions of dental patients. *Environ Res* **33,** 428–440 (1984).
- 27. Gallego Romero, I., Pai, A. A., Tung, J. & Gilad, Y. RNA-seq: impact of RNA degradation on transcript quantification. *BMC biology* **12,** 42 (2014).
- 28. Clarke, S. R. & Foster, S. J. Surface adhesins of *Staphylococcus aureus*. *Adv Microb Physiol* **51,** 187–224 (2006).
- 29. O'Brien, L. M., Walsh, E. J., Massey, R. C., Peacock, S. J. & Foster, T. J. *Staphylococcus aureus* clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. *Cell Microbiol* **4,** 759–770 (2002).
- 30. Roche, F. M., Meehan, M. & Foster, T. J. The *Staphylococcus aureus* surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. *Microbiology* **149,** 2759–2767 (2003).
- 31. Corrigan, R. M., Rigby, D., Handley, P. & Foster, T. J. The role of *Staphylococcus aureus* surface protein SasG in adherence and biofilm formation. *Microbiology* **153,** 2435–2446 (2007).
- 32. Friedman, D. B. *et al. Staphylococcus aureus* redirects central metabolism to increase iron availability. *PLoS Pathog* **2,** e87 (2006).
- 33. Foster, T. J. Immune evasion by staphylococci. *Nature Rev Microbiol* **3,** 948–958 (2005). 34. Vandenesch, F., Lina, G. & Henry, T. *Staphylococcus aureus* hemolysins, bi-component leukocidins, and cytolytic peptides: a
- redundant arsenal of membrane-damaging virulence factors? *Front Cell Infect Microbiol* **2,** 12 (2012). 35. Benito, Y. *et al.* Probing the structure of RNAIII, the *Staphylococcus aureus* agr regulatory RNA, and identification of the RNA domain involved in repression of protein A expression. *RNA* **6,** 668–679 (2000).
- 36. Piechowicz, L., Garbacz, K., Wiśniewska, K. & Dąbrowska-Szponar, M. Screening of *Staphylococcus aureus* nasal strains isolated from medical students for toxin genes. *Folia Microbiol* **56,** 225–229 (2011).
- 37. Hampton, M. B., Kettle, A. J. & Winterbourn, C. C. Involvement of superoxide and myeloperoxidase in oxygen-dependent killing of *Staphylococcus aureus* by neutrophils. *Infect Immun* **64,** 3512–3517 (1996).
- 38. Cosgrove, K. *et al.* Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistence, and nasal colonization in *Staphylococcus aureus*. *J Bacteriol* **189,** 1025–1035 (2007).
- 39. Kuroda, M., Ohta, T. & Hayashi, H. Isolation and the gene cloning of an alkaline shock protein in methicillin resistant *Staphylococcus aureus*. *Biochem Biophys Res Commun* **207,** 978–984 (1995).
- 40. Graham, J. E. & Wilkinson, B. J. *Staphylococcus aureus* osmoregulation: roles for choline, glycine betaine, proline, and taurine. *J Bacteriol* **174,** 2711–2716 (1992).
- 41. Chen, C. *et al.* Structure-based mutational studies of substrate inhibition of betaine aldehyde dehydrogenase BetB from *Staphylococcus aureus*. *Appl Environ Microbiol* **80,** 3992–4002 (2014).
- 42. Prágai, Z. & Harwood, C. R. Regulatory interactions between the Pho and σB-dependent general stress regulons of *Bacillus subtilis*. *Microbiology* **148,** 1593–1602 (2002).
- 43. Utaida, S. *et al.* Genome-wide transcriptional profiling of the response of *Staphylococcus aureus* to cell-wall-active antibiotics reveals a cell-wall-stress stimulon. *Microbiology* **149,** 2719–2732 (2003).
- 44. Pietiäinen, M. *et al.* Transcriptome analysis of the responses of *Staphylococcus aureus* to antimicrobial peptides and characterization of the roles of *vra*DE and *vra*SR in antimicrobial resistance. *BMC Genomics* **10,** 429 (2009).
- 45. Dengler, V., Meier, P. S., Heusser, R., Berger-Bächi, B. & McCallum, N. Induction kinetics of the *Staphylococcus aureus* cell wall stress stimulon in response to different cell wall active antibiotics. *BMC Microbiol* **11,** 16 (2011).
- 46. Cheung, A. L., Bayer, A. S., Zhang, G., Gresham, H. & Xiong, Y.-Q. Regulation of virulence determinants *in vitro* and *in vivo* in *Staphylococcus aureus*. *FEMS Immunol Med Mic* **40,** 1–9 (2004).
- 47. Novick, R. P. Autoinduction and signal transduction in the regulation of staphylococcal virulence. *Mol Microbiol* **48,** 1429–1449 (2003).
- 48. Somerville, G. A. & Proctor, R. A. At the crossroads of bacterial metabolism and virulence factor synthesis in staphylococci. *Microbiol Mol Biol Rev* **73,** 233–248 (2009).
- 49. Muthukrishnan, G. *et al.* Exoproteome of *Staphylococcus aureus* reveals putative determinants of nasal carriage. *J Proteome Res* **10,** 2064–2078 (2011).
- 50. Brakstad, O. G., Aasbakk, K. & Maeland, J. A. Detection of *Staphylococcus aureus* by polymerase chain reaction amplification of the nuc gene. *J Clin Microbiol* **30,** 1654–1660 (1992).
- 51. Shopsin, B. *et al.* Evaluation of protein A gene polymorphic region DNA sequencing for typing of *Staphylococcus aureus* strains. *J Clin Microbiol* **37,** 3556–3563 (1999).
- 52. Enright, M. C., Day, N. P., Davies, C. E., Peacock, S. J. & Spratt, B. G. Multilocus sequence typing for characterization of methicillinresistant and methicillin-susceptible clones of *Staphylococcus aureus*. *J Clin Microbiol* **38,** 1008–1015 (2000).
- 53. Camarinha-Silva, A., Wos-Oxley, M. L., Jauregui, R., Becker, K. & Pieper, D. H. Validating T-RFLP as a sensitive and highthroughput approach to assess bacterial diversity patterns in human anterior nares. *FEMS microbiology ecology* **79,** 98–108 (2012).
- 54. Camarinha-Silva, A. *et al.* Comparing the anterior nare bacterial community of two discrete human populations using Illumina amplicon sequencing. *Environ Microbiol* **16,** 2939–2952 (2014).
- 55. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics* **26,** 2460–2461 (2010).
- 56. Schloss, P. D. *et al.* Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. *Appl Environ Microbiol* **75,** 7537–7541 (2009).
- 57. Kent, W. J. BLAT–the BLAST-like alignment tool. *Genome Res* **12,** 656–664 (2002).
- 58. Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. *Nucleic Acids Res* **41,** e121–e121 (2013).
- 59. Huang, Y., Gilna, P. & Li, W. Identification of ribosomal RNA genes in metagenomic fragments. *Bioinformatics* **25,** 1338–1340 (2009) .
- 60. Koonin, E. V. *et al.* A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. *Genome Biol* **5,** R7 (2004).
- 61. Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. *Ecol Monogr* **27,** 325–349 (1957).
- 62. Clarke, K. R., Warwick, R. M. R. M. & Laboratory, P. M. *Change in marine communities : an approach to statistical analysis and interpretation*. 2nd ed edn, (Plymouth, U.K.: PRIMER-E Ltd, 2001).

Acknowledgements

The authors would like to thank Karsten Becker from the University Hospital Münster for collaboration in sampling, Robert Geffers and Michael Jarek from the Helmholtz Centre for Infection Research (HZI, Braunschweig) for sequencing support and Iris Plumeier (HZI, Braunschweig) for technical assistance. Financial support was provided by the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung-BMBF) "Medizinische Infektionsgenomik" (grant 0315832B.).

Author Contributions

D.C.-M., A.P.A.O., E.M. and D.H.P. conceived and designed the experiments, D.C.-M. and A.P.A.O. performed the experiments, D.C.-M., M.L.W.-O., R.J. and D.H.P. performed the bioinformatic and statistical analyses, D.C.-M., M.L.W.-O. and D.H.P. wrote the manuscript. All the authors read and approved the final manuscript.

Additional Information

Supplementary information accompanies this paper at <http://www.nature.com/srep>

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Chaves-Moreno, D. *et al.* Exploring the transcriptome of *Staphylococcus aureus* in its natural niche. *Sci. Rep.* **6**, 33174; doi: 10.1038/srep33174 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images \odot or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit <http://creativecommons.org/licenses/by/4.0/>

© The Author(s) 2016