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Adaptive finite difference for 
seismic wavefield modelling in 
acoustic media
Gang Yao1, Di Wu2 & Henry Alexander Debens1

Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging 
techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods 
are perhaps the most widely used numerical approach for forward modelling, and here we introduce 
a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. 
Finite difference coefficients are then computed by minimising the difference between the spatial 
derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since 
the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is 
capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate 
that this method is superior to standard finite difference methods, while comparable to Zhang’s 
optimised finite difference scheme.

The wave equation is a powerful mathematical tool for describing the propagation of seismic waves through the Earth. 
As such, seismic wavefield modelling based on the wave equation has evolved to become an essential component of 
advanced seismic imaging1–5 and model building techniques, such as full waveform inversion6–8. The most popular 
modelling method is finite difference, mainly because it is simple to implement and highly efficient compared to 
other techniques, such as finite element9. A key limitation of finite difference methods however is their susceptibility 
to numerical dispersion, whereby waves of different frequency possess different artificial speeds10. For standard finite 
difference based on Taylor series expansion, the higher the frequency is, the stronger the dispersion it suffers.

To mitigate this numerical dispersion, optimisation strategies are often employed to find improved finite 
difference coefficients (FDCs) that cover a wider frequency bandwidth and wavenumber range, but with lim-
ited errors. One such strategy is to seek optimised FDCs for spatial derivatives that are able to decrease dis-
persion of the spatial terms and compensate somewhat for dispersion of the temporal terms, thereby reducing 
the overall dispersion errors11–15. Whilst optimisations of this nature can achieve excellent compensation for 
one-dimensional (1D) models, the compensation deteriorates in the case of a 2D or 3D model due to the direc-
tional dependence of the apparent wavelength.

Another strategy is to find optimised FDCs that provide more accurate calculations for the spatial deriva-
tives and therefore result in less spatial dispersion. With this strategy, the dispersion of the temporal term must 
be compensated for separately16,17. Windowing of the accurate differential operator in the space domain is one 
method for generating this kind of optimised FDCs which produce less dispersion than those of standard finite 
difference18–20. Optimised coefficients can also be obtained by minimising an objective function that measures the 
misfit between the finite difference operator and the accurate differential operator21–23.

In this paper, we present a means to calculate optimal FDCs that reduce the dispersion of the spatial terms 
while adaptively varying with seismic velocity and wavelet bandwidth. In this manner we can hope to exploit the 
maximum potential of finite difference.

Theory
To demonstrate this method, we use the simple 2D acoustic wave equation with a source wavelet, s(t),
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Solving equation (1) with finite difference methods entails the use of finite difference operators to numerically 
calculate the temporal and spatial second derivatives. Time-recursive schemes are usually employed to calculate 
wavefields explicitly from one time step to the next. In order to save computational memory, 2nd-order finite dif-
ference is commonly adopted for the temporal derivative. As a result, any improvement to accuracy and/or sup-
pression of numerical dispersion relies on the selection of the finite difference operator for the spatial derivatives. 
A sensible choice is high-order finite difference, which can be written as
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where cx and cz are the FDCs for the x and z derivatives, respectively, 2N is the accuracy order of the finite differ-
ence operator, and Δ​x and Δ​z are horizontal and vertical sampling intervals, respectively. For waves propagating 
in any direction, the desired values of cx and cz make the right-hand side of equation (2) approximately equal to 
the terms of the left-hand side. Since the finite difference stencils for the x and z directions share the same form, 
cx and cz can therefore be calculated in the same way; for instance, cx can be found for a waveform travelling in 
any direction by solving
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Since seismic wavefields are band-limited, cx only needs to cover this bandwidth, which can be determined 
from the known source wavelet, s(t). To solve for cx in equation (3), p can be replaced with a waveform deter-
mined by s. For a given velocity, the waveform of a plane wave formed by s(t) can be analytically or numeri-
cally calculated, assuming the form s(x). If considering the direction of propagation, θ, defined clockwise from x 
(Fig. 1), the apparent waveform of the plane wave along x is given by s(x, θ). The wavelength of s(x, θ) is equivalent 
to the wavelength of s(x) multiplied by (cos θ)−1. As a result, the second derivative, b(x, θ), of s(x, θ) can also be 
calculated analytically or numerically. The pseudo-spectral method24 gives a precise numerical solution of b(x, θ)  
up to the Nyquist frequency. Thus the only unknown in equation (3) is cx, which can be found by minimising the 
objective function
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where θ is the wave propagation angle and l′​ is the waveform duration. Since b(x, θ) has a linear relationship with 
cx, the minimisation of equation (4) can be effectively and efficiently achieved with gradient-based optimisation 
methods, for example conjugate gradient25.

A fixed-bandwidth wavelet will propagate with a wavelength that is dependent on the velocity of the media it 
is propagating through; as such the FDCs given by minimising equation (4) accordingly also change with velocity. 
For a heterogeneous velocity model, a lookup table of FDCs for different velocity values can be constructed prior 
to modelling. In practice, the coefficients only need to be calculated with a velocity interval of every few hundred 
metres per second. During modelling, the appropriate coefficients can then be quickly obtained as the table itself 
is small so can be efficiently held in cache. Wavelets with identical amplitude spectra will produce identical FDCs 
from equation (4). In an ideal scenario, the exact wavelet is used when computing FDCs. However, if the wavelet 
is unknown or difficult to determine accurately – for example during back-propagation of the adjoint source 
in full-waveform inversion – then we can measure the data’s frequency bandwidth and instead use a band-pass 
filtered spike as the wavelet in equation (4). Since the spike will have a flat frequency spectrum, the weighting for 
each frequency is equivalent during the minimisation of equation (4). Nonetheless, the frequency spectrum of 
the actual wavelet may not be flat, and as expected use of the actual wavelet produces more accurate modelling 

Figure 1.  Schematic diagram of the mapping of a plane wave s(x), which has a duration of l, to the axis x. 
The waveform propagation direction is θ, defined clockwise from the axis x. The apparent waveform along x is 
given by s(x, θ), where its duration l′​ is equivalent to (cos θ)−1l.
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results. Numerical tests show however that this additional accuracy is relatively minor, and as such either the 
actual source wavelet or a band-limited spike are suitable wavelets for equation (4). Since our FDCs vary adap-
tively with wavelet bandwidth and velocity, this finite difference method is referred to here as adaptive finite 
difference (hereinafter abbreviated to AFD).

Examples
The first example we present here to demonstrate the performance of AFD uses a homogenous velocity model of 
2000 m/s. A 13 Hz Ricker wavelet with 0.5 ms sampling interval is chosen as the source wavelet, which is located at 
the centre of the model. The grid size is 20 m in both the x and z directions. A band-pass filtered version of a spike 
with a bandwidth ranging from 0 to 32 Hz (the same frequency bandwidth as the Ricker wavelet) is chosen as the 
wavelet for equation (4), and hence used to calculate the FDCs. Every 4° of propagation angle – from 1° to 89° – is 
used when minimising equation (4). The FDCs are listed in Table 1. The errors20 of the 12th-order AFD operator, 
the 8th-, 12th-, 24th-, and 36th-order standard finite difference (SFD) operators, and 12th-order Zhang’s optimised 
finite difference21 (OFD) operator are all shown in Fig. 2. Figure 2b demonstrates that, in the region of error less 
than ±​1.5e−4, AFD and Zhang’s OFD both cover a wavenumber range much broader than those of 8th-, 12th-, or 
24th-order SFD, with both providing a good approximation to 36th-order SFD. This demonstrates that optimised 
finite difference methods can employ a much shorter operator than SFD while achieving a similar degree of accu-
racy. The computational cost of optimised finite difference is therefore, in turn, less than its SFD counterparts.

The AFD synthetics have smaller errors at low wavenumbers compared to those of Zhang’s OFD, but 
have slightly larger errors at high wavenumbers. As a result, the AFD method is more accurate for comput-
ing low-wavenumber waves. This is particularly useful for events propagating with a large angle to the x- and 
z-axes. The SFD operator can also achieve good accuracy at low wavenumbers, but has considerable errors at high 
wavenumbers. To achieve their broader wavenumber coverage, OFD operators will often act to shift the large 
errors seen at high wavenumbers in SFD to lower wavenumbers, with the aim of achieving minimal errors in a 
least-squares sense. This is the reason why OFD methods often outperform SFD methods.

Figure 3 shows greyscale wavefield snapshots at 2.3 and 9.5 s, while Fig. 4 shows a profile through the 9.5 s 
snapshot of Fig. 3b. As can be seen in these Figs, SFD incurs much stronger numerical dispersion than either AFD 
or Zhang’s OFD. The pseudo-spectral method achieves the least dispersion, because it calculates precise spatial 
derivatives up to the Nyquist wavenumber. By using the pseudo-spectral result as a reference, the AFD produces 
the lowest total root mean square (RMS) error, which is a measure of the degree of deviation from the reference 
wavefield. Furthermore, since AFD calculates FDCs by minimising equation (4) for a range of propagation angles, 
AFD can achieve a more balanced distribution of dispersion error across these angles. To demonstrate this, the 
ℓ2-norm (square root of the sum of the squares) error for the wavefield at 2.3 s at different angles of propagation 

Method

Coefficients of finite difference

c(0) c(1) c(2) c(3) c(4) c(5) c(6)

SFD −​2.98277778 1.71428571 −​0.26785714 0.05291005 −​0.00892857 0.00103896 −​0.00006013

Zhang’s OFD −​3.12108522 1.83730507 −​0.35408741 0.09988277 −​0.02817135 0.00653900 −​0.00092547

AFD −​3.11194944 1.82888126 −​0.34750265 0.09559446 −​0.02594817 0.00568842 −​0.00073863

Table 1.   The coefficients of finite difference for example 1. Note that only c(0) to c(6) are shown because 
c(−​i) =​ c(i).

Figure 2.  (a) Error as a function of wavenumber content for the SFD, Zhang’s OFD, and AFD operators, and 
(b) zoomed window of (a). The model has a constant velocity of 2000 m/s; the source is a 13 Hz Ricker wavelet; 
and the temporal and spatial sampling intervals are 0.5 ms and 20 m, respectively. The red, blue and green curves 
represent the SFD, 12th-order AFD and 12th-order Zhang’s OFD operators, respectively. The solid and dashed 
magenta curves represent the spectra of the Ricker wavelet and the band-limited wavelet used for the AFD 
operator calculation, respectively, both of which have been mapped into the wavenumber domain.
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is plotted in Fig. 5. As can be seen, the errors for AFD oscillate less than those for Zhang’s OFD. By contrast, SFD 
has much larger errors along the axes (0°/180° and 90°) than both AFD and Zhang’s OFD, but similar errors to 
AFD at intermediate orientations between the two axes (around 45° and 135°). This occurs because the apparent 
wavenumbers are highest along the direction of the axes, and SFD suffers from large errors at high wavenumbers 
(Fig. 2a).

The second example seeks to apply the same four modelling techniques to the Marmousi model (Fig. 6), dis-
cretised over a 15 m grid in both the x and z directions. A 13 Hz Ricker wavelet with 0.5 ms sampling interval is 
again used as the source wavelet. Different from the previous example, the Ricker wavelet, which has a frequency 
bandwidth of 0 to approximately 32 Hz, is used to calculate the adaptive FDCs for velocities ranging from 1500 
to 4700 m/s over increments of 100 m/s. As a result, 33 sets of FDCs (Table 2) for 33 respective velocities are gen-
erated for use during modelling. Prior to modelling, an index for the FDC lookup table is pre-computed at each 
element of the model using the velocity of that element. Numerical tests suggest that using the velocity of each ele-
ment results in less error than if taking an average velocity of neighbouring elements, even when at or in the close 
vicinity of velocity interfaces. The indices are stored in a single-byte array, meaning that the additional memory 
footprint of AFD is one quarter the size of the array that holds the model (assuming its format is single-precision 
floating point). The index array size is in this instance is about 288.4 kilobytes, where this extra memory cost is 
trivial for modern computers. By allowing the coefficients to vary with velocity in this manner, we can hope to 

Figure 3.  Wavefield snapshots at (a) 2.3 and (b) 9.5 s. As previously, the model has a constant velocity of 
2000 m/s; the source is a 13 Hz Ricker wavelet; and the temporal and spatial sampling intervals are 0.5 ms and 
20 m, respectively. The top-left quadrant is generated by the 12th-order SFD method; the bottom-left quadrant 
is given by 12th-order Zhang’s OFD method; the bottom-right quadrant is produced by the 12th-order AFD 
method; and the top-right quadrant is generated by the pseudo-spectral method. The displays are clipped to 3% 
of the maximum amplitude. In both (a,b) the SFD operator can be seen to produce more pronounced dispersion 
than the other three methods.

Figure 4.  (a) Comparison of the waveforms in Fig. 3b along the two vertical dotted red lines and (b) zoomed 
window of (a) indicated by the dotted box. The black curve represents the result of the pseudo-spectral method, 
while the other colours match those of the methods presented in Fig. 2. As can be seen, the AFD and Zhang’s 
OFD methods produce waveforms with a closer match to the pseudo-spectral method than the SFD method.
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exploit the maximum potential of the finite difference method when calculating the spatial derivatives of the wave 
equation.

In order to simulate fully a marine environment, a free surface is used during modelling and the source and 
receivers are positioned at 30 m below the free surface. Fig. 7 shows the synthetic shot record calculated using the 
AFD method. At this scale, synthetic shot records generated using the other two finite difference methods appear 
identical to Fig. 7. In order to examine the subtleties of these synthetics, we instead choose to compare individual 
traces. Figure 8a,b show two time windows of the trace located at a horizontal distance of 3.75 km in each syn-
thetic gather. For comparison, we also show the synthetic record calculated using the pseudo-spectral method. In 
general the differences between the four synthetic records are minimal, in both the main arrival window (Fig. 8a) 
and the later arrival window (Fig. 8b).

Figure 5.  Error as a function of propagation direction for the wavefield at 2.3 s shown in Fig. 3a. The 
horizontal axis is propagation angle θ, which is defined graphically in Fig. 1. The angle has its origin at the 
shot position, which in this case is in the centre of the model. The vertical axis is error, determined for a single 
propagation angle using the ℓ2-norm of the wavefields produced from each finite difference method and the 
pseudo-spectral method. The red curve represents the 12th-order SFD method, the green curve 12th-order 
Zhang’s OFD method, and the blue curve the 12th-order AFD method. The errors of the SFD method are scaled 
by a factor of 0.5 for convenience.

Figure 6.  The Marmousi model. The red star indicates the location of the source, while the dotted red line 
represents the receiver positions.
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Figure 8c,d highlight the differences between the synthetic records computed using the three finite-difference 
methods (SFD, Zhang’s OFD and our AFD) and the pseudo-spectral method. It is now apparent that the SFD 
result (red) has large errors at around 1.8 s. The data in this region are dominated by shallow refracted arrivals, 
which have propagated through areas of low velocity. Low velocities correspond to high wavenumbers and, as 
demonstrated in Fig. 2b, the SFD method suffers from substantial error at large wavenumbers; consequently, the 
SFD result contains inaccuracies. In contrast, both the AFD and Zhang’s OFD results have much-reduced errors 
for these arrivals (Fig. 8c). In areas of high velocity, however, the AFD result proves more accurate than Zhang’s 
OFD result. This is because as the wavenumber content of the wavefield decreases in these areas, AFD modifies 
the FDCs such that they cover a narrower wavenumber range than those of Zhang’s OFD, which in turn results 
in reduced numerical dispersion. This is most noticeable for the later arrivals (Fig. 8d), which travel deeper and 
through regions of higher velocity.

Figure 9 shows a greyscale snapshot of the AFD wavefield at 1.45 s. As before, the wavefields calculated using 
the other two finite difference methods look very similar to this, and as such are not shown. There is noticeable 
difference between these synthetic wavefields when inspected in fine detail however. Figure 10 shows a compar-
ison of the wavefields generated by the three finite difference methods and the pseudo-spectral method along a 
vertical profile located at a horizontal distance of 5.6 km. Figure 10b displays clearly that the AFD wavefield (blue) 
provides the closest match to the pseudo-spectral benchmark. Compared to that of SFD, the RMS error for AFD 
is 61% lower for this profile and 66% lower for the whole snapshot. Compared to the RMS error for Zhang’s OFD, 
the improvement provided by AFD is 42% for both this trace and the whole snapshot.

We repeated the Marmousi experiment using SFD of varying order. The RMS errors for shot records (Fig. 7) 
produced using SFD, Zhang’s OFD, and AFD are plotted in Fig. 11a, while the RMS errors for wavefield snap-
shots at 1.45 s (Fig. 9) are illustrated in Fig. 11b. As can be seen in Fig. 11, the errors decrease gradually and 

Velocity 
(m/s)

Coefficients of adaptive finite difference

c(0) c(1) c(2) c(3) c(4) c(5) c(6)

1500 −​3.14027977 1.85480309 −​0.36721504 0.10776075 −​0.03174054 0.00760250 −​0.00107088

1600 −​3.12468100 1.84038305 −​0.35590670 0.10041162 −​0.02797630 0.00623104 −​0.00080215

1700 −​3.11107063 1.82789338 −​0.34632555 0.09441188 −​0.02506017 0.00523960 −​0.00062373

1800 −​3.09916759 1.81704044 −​0.33815917 0.08946136 −​0.02276183 0.00450384 −​0.00050080

1900 −​3.08873391 1.80758047 −​0.33116040 0.08533747 −​0.02092257 0.00394515 −​0.00041330

2000 −​3.07956100 1.79930496 −​0.32512820 0.08187064 −​0.01942982 0.00351206 −​0.00034921

2100 −​3.07147026 1.79203749 −​0.31989959 0.07893087 −​0.01820260 0.00317008 −​0.00030105

2200 −​3.06430912 1.78562963 −​0.31534258 0.07641786 −​0.01718182 0.00289556 −​0.00026405

2300 −​3.05794859 1.77995741 −​0.31134990 0.07425356 −​0.01632371 0.00267192 −​0.00023506

2400 −​3.05227900 1.77491689 −​0.30783409 0.07237665 −​0.01559539 0.00248733 −​0.00021193

2500 −​3.04720807 1.77042091 −​0.30472350 0.07073855 −​0.01497182 0.00233318 −​0.00019321

2600 −​3.04265761 1.76639593 −​0.30195910 0.06930043 −​0.01443371 0.00220307 −​0.00017783

2700 −​3.03856087 1.76278019 −​0.29949203 0.06803100 −​0.01396598 0.00209223 −​0.00016504

2800 −​3.03486109 1.75952148 −​0.29728159 0.06690481 −​0.01355677 0.00199698 −​0.00015430

2900 −​3.03151011 1.75657499 −​0.29529375 0.06590103 −​0.01319659 0.00191449 −​0.00014517

3000 −​3.02846646 1.75390315 −​0.29349977 0.06500247 −​0.01287783 0.00184255 −​0.00013736

3100 −​3.02569413 1.75147319 −​0.29187545 0.06419487 −​0.01259428 0.00177942 −​0.00013062

3200 −​3.02316284 1.74925733 −​0.29040018 0.06346629 −​0.01234088 0.00172368 −​0.00012475

3300 −​3.02084565 1.74723136 −​0.28905636 0.06280669 −​0.01211344 0.00167420 −​0.00011962

3400 −​3.01871967 1.74537468 −​0.28782889 0.06220758 −​0.01190849 0.00163007 −​0.00011509

3500 −​3.01676464 1.74366903 −​0.28670478 0.06166175 −​0.01172312 0.00159053 −​0.00011108

3600 −​3.01496291 1.74209869 −​0.28567278 0.06116303 −​0.01155487 0.00155495 −​0.00010752

3700 −​3.01329923 1.74064982 −​0.28472313 0.06070611 −​0.01140167 0.00152280 −​0.00010432

3800 −​3.01175976 1.73931038 −​0.28384730 0.06028642 −​0.01126175 0.00149366 −​0.00010146

3900 −​3.01033282 1.73806965 −​0.28303790 0.05990000 −​0.01113360 0.00146715 −​0.00009887

4000 −​3.00900769 1.73691833 −​0.28228834 0.05954341 −​0.01101592 0.00144296 −​0.00009653

4100 −​3.00777507 1.73584795 −​0.28159288 0.05921363 −​0.01090758 0.00142082 −​0.00009440

4200 −​3.00662661 1.73485136 −​0.28094649 0.05890803 −​0.01080761 0.00140050 −​0.00009246

4300 −​3.00555491 1.73392189 −​0.28034464 0.05862428 −​0.01071515 0.00138180 −​0.00009068

4400 −​3.00455332 1.73305357 −​0.27978331 0.05836034 −​0.01062946 0.00136456 −​0.00008905

4500 −​3.00361586 1.73224139 −​0.27925897 0.05811441 −​0.01054989 0.00134861 −​0.00008756

4600 −​3.0027373 1.7314805 −​0.2787685 0.0578849 −​0.0104759 0.0013338 −​0.0000862

4700 −​3.0019126 1.7307667 −​0.2783089 0.0576703 −​0.0104069 0.0013201 −​0.0000849

Table 2.   The coefficients of adaptive finite difference for example 2. Note that only c(0) to c(6) are shown 
because c(−​i) =​ c(i).
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monotonically with increasing finite difference order. Zhang’s OFD achieves almost the same accuracy as 
22nd-order SFD for the shot record and 18th-order SFD for the wavefield snapshot. By contrast, AFD achieves 
almost the same accuracy as 28th-order SFD for the shot record and 26th-order SFD for the wavefield snapshot.

Figure 12 shows the run times for this experiment. As expected, the run times of the finite difference methods 
increase linearly with finite difference order. The run time of AFD was in this case approximately 8% longer than 
that of 12th-order SFD and Zhang’s OFD, but shorter than that of 14th-order SFD. This extra computational cost 
associated with AFD is incurred when accessing the FDC lookup table. Interestingly, thanks to the efficiency of 
the fast discrete Fourier transform, the pseudo-spectral method had a shorter run time than 64th-order SFD in 
this case. However, the cost of the pseudo-spectral method is proportional to n·log n, where n is the linear model 

Figure 7.  Shot record generated from the Marmousi model using the 12th-order AFD method. The source is 
located at a horizontal distance of 6.25 km and a depth of 30 m below a free surface. The receivers are positioned 
at the same depth as the source and distributed horizontally across the entire model.

Figure 8.  Comparison between individual traces located at a horizontal distance of 3.75 km. Panels (a,b) 
window the main (1.5–4.0 s) and later (4.0–6.5 s) arrivals of each synthetic seismograms, respectively. The 
seismograms are computed using the 12th-order SFD, Zhang’s OFD, and AFD methods as well as the pseudo-
spectral method, and are plotted in red, green, blue, and black, respectively. Panels (c,d) contain the difference 
between the trace of each finite difference method and that of the pseudo-spectral method; these are plotted 
using the same colour scheme as in (a,b).
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Figure 9.  Snapshot of the AFD wavefield at 1.45 s. 

Figure 10.  Comparison between the wavefields of Fig. 9 along a vertical profile located at a horizontal 
distance of 5.6 km. Panel (a) contains the actual wavefields, produced by the 12th-order SFD, Zhang’s OFD, and 
AFD methods along with the pseudo-spectral method. Panel (b) contains the difference between the record 
of each finite difference method and that of the pseudo-spectral method. Note that the colours used in each 
subfigure relate to those of Fig. 8.

Figure 11.  Quantification of the errors of (a) the shot records shown in Fig. 7 and (b) the wavefields at 1.45 s 
shown in Fig. 9. The horizontal axis is the order of finite difference, while the vertical axis is error, in this case 
RMS error/misfit between each finite difference result and the pseudo-spectral result. The red dots represent the 
RMS errors for SFD of varying order. The green and blue crosses represent 12th-order Zhang’s OFD and 12th-
order AFD, respectively, where each is plotted at the corresponding order of SFD with equivalent RMS error.
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dimension, whereas the cost for finite difference methods is proportional to n. As such, use of the pseudo-spectral 
method often becomes computationally unappealing as the size of the model increases.

We have conducted further numerical experiments to those presented here, and just as in the examples 
described above, the AFD synthetics always appear to have improved accuracy over those calculated with the two 
other operators. This is because AFD attempts to exploit the maximum potential of finite difference by adapting 
the coefficients to variations in velocity.

Discussion and conclusion.  We have presented here an improved method for calculating finite difference 
coefficients. Since this new technique generates the coefficients in the space domain and in an adaptive manner 
relative to the medium velocity and bandwidth of the source wavelet, it can maximise the accuracy of a finite dif-
ference operator of given order. We have shown two examples that demonstrate that this method is a significant 
improvement over SFD methods, and is superior also to Zhang’s OFD method in certain circumstances. This 
approach to calculating finite difference coefficients can be easily applied to any order of derivative, including 
fractional orders, and used with irregularly spaced stencils. It is also possible to extend this technique to elastic 
media and to consider time-space dispersion.
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