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Mapping small-effect and 
linked quantitative trait loci for 
complex traits in backcross or DH 
populations via a multi-locus GWAS 
methodology
Shi-Bo Wang1,2, Yang-Jun Wen2, Wen-Long Ren2, Yuan-Li Ni2, Jin Zhang2, Jian-Ying Feng2 & 
Yuan-Ming Zhang1

Composite interval mapping (CIM) is the most widely-used method in linkage analysis. Its main feature 
is the ability to control genomic background effects via inclusion of co-factors in its genetic model. 
However, the result often depends on how the co-factors are selected, especially for small-effect 
and linked quantitative trait loci (QTL). To address this issue, here we proposed a new method under 
the framework of genome-wide association studies (GWAS). First, a single-locus random-SNP-effect 
mixed linear model method for GWAS was used to scan each putative QTL on the genome in backcross 
or doubled haploid populations. Here, controlling background via selecting markers in the CIM was 
replaced by estimating polygenic variance. Then, all the peaks in the negative logarithm P-value curve 
were selected as the positions of multiple putative QTL to be included in a multi-locus genetic model, 
and true QTL were automatically identified by empirical Bayes. This called genome-wide CIM (GCIM).  
A series of simulated and real datasets was used to validate the new method. As a result, the new 
method had higher power in QTL detection, greater accuracy in QTL effect estimation, and stronger 
robustness under various backgrounds as compared with the CIM and empirical Bayes methods.

Numerous methods and mating designs have been proposed since the first interval mapping procedure was 
developed by Lander & Botstein1. The composite interval mapping (CIM) procedure2,3 remains one of the most 
popular methods for quantitative trait locus (QTL) mapping due to its simplicity of single locus scanning and 
ability to control genetic background information. The inclusive composite interval mapping (ICIM) developed 
by Li et al.4 modified the CIM method by fitting a multiple regression model to estimate the co-factor effects and 
then adjusting the phenotypic value by the estimated effects of the co-factors before performing the usual interval 
mapping. The ICIM method is more robust than the original CIM because a more efficient co-factor selection 
process has been implemented.

Up to now, numerous QTL have been reported for complex traits in animals, plants and humans. Among 
these QTL, most have small effects on complex traits5, and some are closely linked6. Although QTL mapping has 
proven to be useful for detecting major QTL with relatively large effects, it may lack power in accurately modeling 
small-effect QTL7. Meanwhile, closely linked QTL might be mistakenly estimated as a single QTL with a larger 
effect at the wrong position if they have the same direction in effects, or they might be missed if their effects are 
in opposite directions1,8–10. Due to the difficulty in detection of small-effect and closely-linked QTL, the genetic 
foundations of most complex traits are not well understood. To address this issue, it is necessary to reconsider the 
model and improve the way that polygenic background is controlled.

Genome-wide association study (GWAS) has been widely used in human, animal and plant genetics11–19. The 
GWAS data often includes a large number of markers, making co-factor selection infeasible. Thus, polygenic 
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effects are often fitted to a mixed linear model to capture the genomic background information11,12. This treatment 
can help us improve the methods of QTL mapping, and overcome the subjectivity nature of the CIM in co-factor 
selection20,21. However, it is still difficult to detect small-effect and closely-linked QTL.

In the usual GWAS, one marker is tested at a time and the entire genome is then scanned. In QTL mapping, 
each pseudo marker is tested at a time until all putative positions are scanned. The effect of the current marker has 
been treated as a fixed effect. However, treating QTL effect as random may have some advantages over treating it 
as fixed effect21,22. For example, the random effect treatment places a prior variance to shrink the estimated effect 
and such a shrinkage estimate of the QTL effects more stable than the least squares estimate when the genotypes 
are skewly distributed19.

Previous studies showed higher power from multi-locus QTL detection as compared with single-locus link-
age analysis22–24 and the single-marker GWAS analysis19,25,26. To improve the power and accuracy in mapping 
small-effect and closely-linked QTL, the multi-locus model approach should be considered. In this study, there-
fore, a genome-wide composite interval mapping (GCIM) in backcross or DH was proposed under the framework 
of multi-locus GWAS of Wang et al.19. Not only can the new method solve the problem in co-factor selection, 
caused by a large number of markers, but also can overcome the shortcomings of the single-marker analysis. More 
importantly, GCIM can improve the power and accuracy in detection of small-effect and closely-linked QTL.

Results
Comparison of the GCIM under various QTL-effect models and K matrices.  To optimize the 
GCIM, random- and fixed-effect models and the K matrices calculated respectively from whole and part mark-
ers were considered in this study. In the part-marker case, only the markers flanked by QTL under study were 
deleted. Thus, the performances for the above four GCIM methods were investigated. In other words, each sample 
in all the simulation experiments was analyzed by all the four methods. Results from the comparison of K matri-
ces from the whole and part markers under random effect model showed that the higher power in QTL detection 
and greater accuracy in QTL effect estimation were observed from the whole-marker-derived K matrix than from 
the part-marker-derived K matrix (Tables 1 and S1 to S6). The above differences for power and accuracy under 
random effect model were slightly better than those under fixed effect model, which was further confirmed from 
the comparison between random- and fixed-QTL-effect models under K matrix from whole markers, although 
most of them were not significant (Table 1). Therefore, in the new GCIM method, QTL effect was viewed as ran-
dom and K matrix was calculated from the whole markers.

Power in QTL detection and accuracy in QTL-effect estimation for all the simulated QTL.  To 
validate the new GCIM, a series of Monte Carlo simulation studies was carried out. In the first simulation exper-
iment, only 20 QTL were simulated. Each sample was analyzed by the GCIM, CIM and empirical Bayes methods. 
As a result, the new method and empirical Bayes had 25.20% and 25.80% higher average power in the detection 
of QTL than the CIM, respectively (P-values: 2.09E-4 and 1.60E-4, respectively), while there was no significant 
difference between the new method and empirical Bayes (P-value =​ 0.4790) (Tables S4 and S8). When polygenic 
background = .h( 0 088)pg

2  was added to the first simulation experiment and the polygenic background was 
changed into epistatic background = .h( 0 105)epi

2 , similar trends were observed (Tables S5, S6 and S8), although 
various P-values were observed.

We also used mean absolute deviation (MAD) to validate the new method. The new method and empirical 
Bayes had 0.44 and 0.49 lower average MAD in the estimation of QTL effect than the CIM, respectively (P-values: 
0.0253 and 0.0162, respectively). When polygenic background = .h( 0 088)pg

2  was added to the first simulation 

Simulation 
experiment

K matrices from whole (A) and part 
(B) markers under random-QTL-

effect model

K matrices from whole (A) and part 
(B) markers under fixed-QTL-effect 

model

Random- (A) and fixed-QTL-effect 
(B) models under K matrix from 

whole markers

Random- (A) and fixed-QTL-effect 
(B) models under K matrix from part 

markers

Power (%) MAD Power (%) MAD Power (%) MAD Power (%) MAD

All the 20 QTL

  I 1.53 (0.0004)* −​0.025 (0.0069) 0.90 (0.0628) −​0.024 (0.0057) 0.30 (0.1747) −​0.007 (0.1533) −​0.33 (0.1586) −​0.005 (0.0084)

  II 1.40 (0.0243) −​0.015 (0.0995) 0.60 (0.4523) −​0.011 (0.3354) 0.38 (0.3139) −​0.002 (0.6966) −​0.43 (0.1445) 0.003 (0.3433)

  III 1.13 (0.0559) −​0.007 (0.4645) 1.00 (0.2039) 0.003 (0.8539) 0.33 (0.1424) −​0.007 (0.1488) 0.20 (0.4831) 0.003 (0.5821)

All the small-effect QTL (The 9th, 14th, 19th and 20th QTL)

  I 2.88 (0.0250) −​0.008 (0.2152) 2.75 (0.0792) −​0.008 (0.2152) −​0.25 (0.7027) 0.000 (1.000) −​0.38 (0.6084) 0.000 (1.0000)

  II 3.38 (0.0265) −​0.013 (0.1942) 2.13 (0.0653) −​0.018 (0.1881) 1.00 (0.4228) 0.005 (0.4950) −​0.25 (0.7177) 0.000 (1.0000)

  III 2.75 (0.1367) −​0.020 (0.0663) 2.75 (0.1946) −​0.015 (0.1817) 0.00 (1.0000) −​0.008 (0.0577) 0.00 (1.0000) −​0.003 (0.3910)

All the linked QTL (the 5th, 6th, 7th, 8th, 10th to 12th, and 16th to 18th QTL)

  I 1.65 (0.0128) −​0.040 (0.0262) 0.50 (0.5042) −​0.032 (0.0549) 0.70 (0.0607) −​0.014 (0.1216) −​0.45 (0.2620) −​0.006 (0.0811)

  II 1.65 (0.1121) −​0.021 (0.2520) 0.35 (0.8222) −​0.007 (0.7505) 0.40 (0.5217) −​0.005 (0.4951) −​0.90 (0.0710) −​0.009 (0.1081)

  III 0.60 (0.5231) 0.000 (1.0000) 0.60 (0.6717) 0.014 (0.6118) 0.65 (0.1027) −​0.01 (0.3107) 0.65 (0.1748) 0.004 (0.6618)

Table 1.   Differences and their paired-t-test probabilities for average power and mean absolute deviation 
(MAD) obtained from genome-wide composite interval mapping in Monte Carlo simulation studies*.  
*​All the probabilities in paired t test for differences of average powers or MADs across all the related QTL are in 
parentheses, where the difference equals to A−​B.
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experiment and the polygenic background was changed into epistatic background = .h( 0 105)epi
2 , similar trends 

were observed (Tables S5, S6 and S8), although various P-values were observed.
As shown above, the contribution to increase the statistical power and to decrease the MAD varies from QTL 

to QTL. It is natural to make clear which kind of QTL has the maximum contribution to the increase of power 
and to the decrease of the MAD.

Small-effect QTL.  To make clear the reasons that result in significant difference in statistical power across 
various methods, we summarized the results from small-effect QTL. In this study, the 9th, 14th, 19th and 20th 
QTL were viewed as small, because their r2 were less than 1%. For these four small-effect QTL, the average powers 
for QTL detection from the new method and empirical Bayes had 31.38% and 31.75% higher than that from the 
CIM, respectively (P-values: 0.0178 and 0.0173, respectively), while no significant difference between the new 
method and empirical Bayes was observed (P-value =​ 0.7177) (Fig. 1, Tables S4 and S8). In the second and third 
simulation experiments, the same trends were found as well (Fig. 1; Tables S5, S6 and S8), although their P-values 
varied.

The accuracy for the QTL-effect estimate is also important for a new method. All the estimates from the three 
methods in the three simulation experiments were compared with their corresponding true values. MAD, MSE 
and SD were used to measure the accuracy. As a result, the new method and the empirical Bayes method had 0.23 
and 0.24 significantly smaller average MAD for QTL effect than the CIM (P-values =​ 0.0115 and 0.0102) (Fig. 1, 
Tables S4 and S8). For other indicators and simulation experiments, the trends were similar except that the new 
and empirical Bayes methods were not statistically significant (P-values =​ 0.5456 and 0.5707) (Fig. 1; Tables S5, 
S6 and S8).

Closely-linked QTL.  To make clear the reasons that result in significant difference in statistical power across 
various methods, we summarized the results from closely linked QTL. If the map distance between two adjacent 
QTL is not larger than 20 cM, these QTL were viewed as linked QTL. For example, the 5th and 6th QTL, the 7th and 
8th QTL, the 10th to 12th QTL, and the 16th to 18th QTL. For these ten closely-linked QTL, the statistical powers 
in the detection of QTL using the new and empirical Bayes methods were 34.25% and 35.20% higher than that 
using the CIM method, respectively (P-values: 4.92E-3 and 3.85E-3, respectively), while no significant difference 

Figure 1.  Average statistical power (a–c) and mean absolute deviation ((d–f), MAD) for small-effect QTL in 
the simulation experiments I (a,d), II (b,e) and III (c,f). The effects for the 9th, 14th, 19th and 20th QTL were 
small.
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between the new and empirical Bayes methods was observed (P-value =​ 0.5813) (Fig. 2, Tables S4 and S8).  
In the second and third simulation experiments, similar trends were found as well (Tables S5, S6 and S8), although 
their P-values varied.

False positive rate.  In the fourth simulation experiment, no QTL was simulated. At this case, all the QTL 
identified were false. If the number of QTL detected is large, the false positive rate is high. As a result, the number 
of QTL found in the fourth simulation experiment was 8, 160 and zero from the new method, CIM and empirical 
Bayes, indicating relatively low false positive rate from the new method.

Real data analysis in triticale.  To validate the new method, each of four crosses in Würschum et al.27 
were analyzed for DS1, DS2 and DS3 by the CIM method, and all the four crosses were jointly analyzed for DS1, 
DS2 and DS3 by the new method, the empirical Bayes method and the method of Würschum et al.27. Würschum  
et al.27 detected 29, 14 and 14 QTL, respectively, for DS1, DS2 and DS3. All the results were listed in Tables 2 and S7.

The new method detected 27, 16 and 18 QTL, respectively, for DS1, DS2 and DS3. The corresponding num-
bers significantly associated with markers are 18, 10 and 12, respectively, from empirical Bayes. These significantly 
associated markers or QTL for each trait were used to conduct a multiple linear regression analysis and the corre-
sponding Bayesian information criteria (BIC) were calculated. The new method shows the lowest BIC values for 
all the three traits (Table 3), indicating the best model fit from the new method.

In this study, two QTL detected by various methods are viewed to be similar if their positions are within 5 cM. 
As a result, there were 19, 11 and 10 similar QTL, respectively, for the above three traits, between the new method 
and the method of Würschum et al.27, 15, 14 and 11 similar QTL between the new method and the CIM method, 
and 14, 8 and 10 similar QTL between the new method and the empirical Bayes method. Clearly, these results 
validated the new method.

Discussion
In the random model method of Wei & Xu28, the part-marker-derived K matrix method has higher power in 
QTL detection than the whole-marker-derived K matrix method. Similar results have been found as well in 
GWAS. The results are not seemingly consistent with our results in this study. Actually, they are identical, because 

Figure 2.  Average statistical power (a–c) and mean absolute deviation ((d–f), MAD) for closely-linked QTL in 
the simulation experiments I (a,d), II (b,e) and III (c,f). The 5th and 6th QTL, the 7th and 8th QTL, the 10th to 
12th QTL, and the 16th to 18th QTL were closely linked.
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smaller probabilities in the genome-wide scan (the first step) of the GCIM are found in the part-marker-derived 
K matrix case (data not shown). In the GCIM, only all the peaks in the genome-wide scan curve are selected as 
the positions of multiple putative QTL. The position changes for the putative QTL under the part-marker-derived 
K matrix may decrease the power and accuracy.

Although Xu21 used the random-QTL-effect mixed linear model framework of GWAS to identify QTL in 
backcross, his approach was not significantly better than the CIM in the Monte Carlo simulation experiments. 
The integration of multi-locus genetic model with Xu’s method21 in this study has significantly improved the 
statistical power of QTL detection. Although we adopted the GWAS methodology in this study, the new method 
is different from the GWAS methodology, because QTL mapping in backcross or DH populations can evaluate 
each possible genome position without marker. In this case, pseudo markers in every d cM need to be inserted 
in order to cover the entire genome, which makes the new method estimate QTL positions more accurately. This 

QTL Chr
Posi 
(cM)

GCIM (new) CIM Empirical Bayes Würschum et al.27

Marker interval LOD Additive r2(%) Marker interval LOD Additive r2(%) Population code Marker LOD Additive r2(%) Marker Additive r2(%)

1 2A 61.16 wPt-6393~ 
wPt-3114 14.32 −​0.43 6.20

wPt-8826,  
wPt-3114~ 
wPt-7466

2.63-7.25 −​0.48-0.27 3.98~7.96 DH06,EAW74, 
EAW78

wPt-
3114 12.76 −​0.30 3.72 wPt-3114 −​0.32 4.9

2 4A 14.7 wPt-6867 5.13 0.31 1.90

3 4A 40.1 wPt-5428 3.19 −​0.16 0.77 wPt-5857~ 
wPt-5951 2.60 −​0.54 20.16 DH07

4 5A 2.5 wPt-5096 4.57 −​0.29 1.39 wPt-5787~ 
wPt-5096 2.77~5.08 −​0.37~ 

0.24 7.90~8.07 DH06,EAW74 wPt-
5096 5.18 −​0.33 2.26

5 5A 47.85 wPt-7201~ 
wPt-7769 4.07 −​0.41 4.61 wPt-7255 −​0.22 0.7

6 6A 14.5 wPt-4017 0.15 1.1

7 6A 38.8 wPt-3965 3.86 0.16 0.85

8 6A 58.2 wPt-0902 7.96 −​0.42 3.67 wPt-0902~ 
tPt-513992 2.85~8.15 −​0.52~ 

1.27 8.49~13.85 DH06,EAW78 wPt-
0902 7.48 −​0.44 4.99 wPt-0902 −​0.50 5.0

9 7A 12 tPt-512944 3.19 −​0.16 0.83 rPt-389464~ 
rPt-4199 2.75~5.02 −​1.28~ 

−​0.37 7.91~13.84 DH06,EAW74 rPt-4199 3.49 −​0.18 1.20

10 7A 65.05 wPt-8377~ 
wPt-7299 3.78 0.24 1.88 wPt-

345934 3.99 0.21 1.43

11 1B 38.02 wPt-0097~ 
wPt-7476 2.85 −​0.20 1.36 wPt-3765 2.83 0.22 6.92 DH06

12 2B 130.9 wPt-6199~ 
wPt-9958p2B 5.99 0.26 2.22 wPt-

9958p2B 3.81 0.17 1.18 wPt-9958 0.20 1.9

13 3B 98.7 tPt-513153 2.41 0.37 6.52 EAW74 wPt-9422 −​0.15 0.2

14 6B 50.73 wPt-5408~ 
wPt-7426 3.51 −​0.49 8.04 wPt-7426 −​0.20 1.1

15 6B 76.5 wPt-3581 5.02 0.28 1.47 wPt-3581 6.56 0.40 17.16 DH07 wPt-
3581 4.69 0.29 2.00 wPt-3581 0.30 1.4

16 7B 68.8 wPt-8919 4.84 −​0.21 1.30 wPt-9798~ 
wPt-9133 4.41 0.45 10.36 EAW74 wPt-

9133 4.63 0.22 1.79

17 3R 35.2 rPt-507396 2.55 −​0.28 2.45 EAW78 rPt-507396 −​0.33 0.9

18 4R 65.4 rPt-410866 5.00 −​0.19 1.14 rPt-401323 2.68 −​0.24 7.09 DH07 rPt-
410866 3.70 −​0.18 1.26 rPt-410866 −​0.22 1.9

19 5R 18.9 rPt-399681 44.93 0.98 32.70 rPt-399681 27.27 1.02 35.02 EAW78 rPt-
399681 38.78 0.98 40.27 rPt-399681 1.04 17.4

20 5R 35.2 rPt-402367 3.42 0.26 2.22 rPt-402367 0.30 1.8

21 6R 46.2 rPt-401125 5.97 −​0.24 1.60 rPt-398551 2.61 1.28 13.86 DH06 rPt-401125 −​0.24 1.4

22 7R 40.4 rPt-410852 2.77 −​0.32 2.95 EAW78 rPt-400878 0.21 1.1

Table 2.   Main-effect DS3 QTL identified by genome-wide composite interval mapping (GCIM), composite 
interval mapping (CIM), empirical Bayes and joint multi-population analysis of Würschum et al.27.

Trait

Twice the Negative logarithm likelihood function value Bayesian information criterion (BIC)

GCIM Empirical Bayes Würschum et al.27 GCIM Empirical Bayes Würschum et al.27

DS1 2016.7 2192.2 2092.2 2210.9 2328.1 2292.8

DS2 2056.6 2152.9 2140.2 2179.6 2237.1 2250.3

DS3 1661.8 1764.5 1762.0 1797.7 1861.6 1872.0

Table 3.   Bayesian information criterion (BIC) for the regression of each trait on all the associated SNPs 
using genome-wide CIM (GCIM), empirical Bayes and joint analysis of Würschum et al.27.
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is another reason why the new method is called as GCIM, although the most important reason is that the new 
method may control polygenic background on a genome-wide level. Although the new method was proposed in 
backcross or DH, it is suitable for the mapping any populations with two genotypes, for example, recombinant 
inbred lines. The new method is also used to map QTL in chromosome segment substitution lines, but we can 
scan only marker positions, because conditional probabilities at the positions of pseudo markers can not be calcu-
lated. If the number of genotypes in a mapping population is more than two, for example, F2, the current method 
requires some modifications and further investigation will be conducted in the near future.

Here we compared the new method with the CIM, which is a widely-used QTL mapping method. The results 
from the new method showed higher power in QTL detection, higher accuracy in QTL effect estimation, and 
better model fit under various genetic backgrounds in the first to third simulation experiments, especially for 
small-effect and closely-linked QTL. The reasons are as follows. We scanned and selected markers with a low 
criterion of significance test. Potential QTL especially with small-effect or linkage cannot be excluded and can 
be easily included in the last model. In addition, we also compared the new method with inclusive CIM (ICIM) 
of Li et al.4. As a result, the new method has higher average power than the ICIM, especially for small-effect and 
closely-linked QTL (Table S9).

Although empirical Bayes is slightly better than the new method but no significant difference is observed 
in this study. Note that in this study empirical Bayes was implemented with multi-marker analysis. If pseudo 
markers were inserted between two adjacent markers and the effects for all the true and pseudo markers were 
simultaneously estimated by the empirical Bayes, the empirical Bayes was significantly worse than the new 
method (results not shown). If we increase marker density, the collinearity among closely linked markers will 
make parameter estimation of the empirical Bayes method difficult. If the number of the true and pseudo mark-
ers is many times larger than sample size, the empirical Bayes will fail. Thus, the new method is better than the 
empirical Bayes method.

Conclusion
The mrMLM methodology for GWAS was used to conduct linkage analysis in backcross and DH populations. 
Genomic background can be effectively controlled by estimating polygenic variance. All the peaks of the negative 
logarithm P-value curve in genome-wide single-point scanning were selected as the positions of multiple putative 
QTL to be included in a multi-locus genetic model, and true QTL were automatically identified by empirical 
Bayes. The new method had higher power in QTL detection, greater accuracy in QTL effect estimation, and 
stronger robustness under various backgrounds as compared with the CIM and empirical Bayes methods, espe-
cially for small and closely linked QTL.

Methods
The method is adopted from the mixed model genome-wide association studies11,12 where population structure 
and other non-genetic variables are treated as fixed effects and polygenes are fitted to the model as a random 
effect. The computational algorithm follows the eigen-decomposition approach used in the efficient mixed model 
association (EMMA) proposed by Kang et al.14 and in the improved genome-wide efficient mixed-model associ-
ation (GEMMA) developed by Zhou & Stephens18. We propose to scan the genome by one marker at a time. The 
effect of the current marker is treated as a random effect19. In this study, when the marker effect is treated as ran-
dom effect, the model is called the random effect model. For the paper to be self-contained, we briefly introduce 
both models in the next paragraphs.

Genetic model.  Let y be an n ×​ 1 vector of phenotypic values for n individuals in a backcross or DH popula-
tion. Let Zk be a genotype indictor variable for marker k, where the jth element of Zk is defined as

= +
−{Z AA

Aa
1 for
1 for (1)jk

We now write the model by

γα ξ ε= + + +y ZX (2)k k

where X is a design matrix for (non-genetic) fixed effects α, γk is the effect of marker k. We now treat γk as a ran-
dom effect with a φN (0, )k

2  distribution. When treated as random, the estimated γk is a shrinkage estimator and 
also called empirical Bayes estimate because φ2 is also estimated from the data29. ξ is an n ×​ 1 vector of polygenic 
effects and ε is the residual error. Assume that ε ∼​ N(0, Inσ2) and ξ ∼​ N(0, Kφ2), where σ2 is the residual error 
variance and φ2 is the polygenic variance. The covariance structure K is calculated using genome-wide marker 
information21.

QTL mapping differs from GWAS in that chromosome regions without markers also need to be evaluated. 
Essentially, we insert one pseudo marker in every d cM to cover the entire genome evenly so that every position 
of the genome will be evaluated. When a pseudo marker is located between two consecutive markers, we will use 
the multipoint method of Jiang & Zeng30 to calculate the genotype probabilities, denoted by pjk(AA) and pjk(Aa), 
respectively, for the two genotypes AA and Aa in backcross. The genotype indicator variable, Zjk, is then defined 
as the expected value conditional on flanking marker genotypes31. Therefore, Zjk is defined as

= + + − = −Z p AA p Aa p AA p Aa( 1) ( ) ( 1) ( ) ( ) ( ) (3)jk jk jk jk jk

The expectation of y is E(y) =​ Xα and the variance is
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φ φ σ

λ λ σ

λ σ

= + +

= + +

= +

y Z Z K I

Z Z K I

Z Z H

var( )

[ ( )]

( ) (4)

k k
T

k

k k
T

k

k k
T

k

2 2

2

2

where λ φ σ= /k k
2 2 and H =​ Kλ+​I where

∑=
=m

K Z Z1
(5)k

m

k k
T

1

is a marker-inferred kinship matrix21.

Parameter estimation.  After absorbing α and σ2 we have two variance ratios to estimate for each marker, 
which are λk and λ. The fast algorithm of Zhou & Stephens18 does not apply to more than two variance compo-
nents in its original form. The Newton-Raphson iteration algorithm must be used to search for the solution of two 
variance components. Here, we adopted the approximate approach implemented in EMMA15 and P3D16 to 
assume that the polygenic variance ratio is constant across loci and thus is replaced by the estimated value under 
the pure polygenic model (λ̂) where no markers are fitted to the model. Once λ λ= ˆ  is fixed, we can still take 
advantage of the eigen-decomposition to speed up the genome scan process19.

Let y* =​ UTy, X* =​ UTX and =⁎Z U Zk
T

k be transformed variables so that

γα ξ ε= + + +⁎ ⁎ ⁎y X Z U ( ) (6)k k
T

The variance-covariance matrix of y* is

φ σ

φ φ σ

φ φ σ

φ λ σ

λ σ

ξ= + +

= + +

= + +

= + +

= +

ˆ

⁎ ⁎ ⁎

⁎ ⁎

⁎ ⁎

⁎ ⁎

⁎ ⁎

y Z Z U U I

Z Z U KU I

Z Z D I

Z Z D I

Z Z R

var( ) var( )

( )

( ) (7)

k k
T

k
T

k k
T

k
T

k k
T

k

k k
T

k

k k
T

k

2 2

2 2 2

2 2 2

2 2

2

where λ= +ˆR D I0  is a known diagonal matrix. Let λ= +⁎ ⁎R Z Z Rk k k
T

k  be the general covariance structure. 
After absorbing α and σ2, we have the following profiled restricted log likelihood function,

λ = − | | − | | −
−−⁎ ⁎ ⁎ ⁎L n rR X R X y P y( ) 1

2
ln 1

2
ln

2
ln( ) (8)k k

T
k

T
k

1

where

= −− − − − −⁎ ⁎ ⁎ ⁎P R R X X R X X R( ) (9)k k k
T

k
T

k
1 1 1 1 1

This likelihood function contains only one unknown parameter, λk. The Newton algorithm for λk is

λ λ
λ
λ

λ
λ

= −








∂
∂

















∂
∂









+
−

L L( ) ( )

(10)
k

t
k

t k
t

k

k
t

k

( 1) ( )
2 ( )

2

1 ( )

Once the iteration process converges, the solution is the REML estimate of λk, denoted by λ̂k. Given λ λ= ˆ
k k, 

the estimates of α and σ2 are

σ

α

α α

=

=
−

− −

− − −

−

ˆ

ˆ ˆˆ

⁎ ⁎ ⁎ ⁎

⁎ ⁎ ⁎ ⁎

n q

X R X X R y

y X R y X

( )
1 ( ) ( )

(11)

T
k

T
k

T
k

1 1 1

2 1

The best linear unbiased prediction (BLUP) of γk is also the conditional expectation of γk given y* and has the 
following expression,

γ λ λ= −− − − − −⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎y Z R y Z R X X R X X R yE( ) ( ) (12)k k k
T

k k k
T

k
T

k
T

k
1 1 1 1 1

The conditional variance is

γ λ σ λ λ σ= − −⁎ ⁎ ⁎y Z R Zvar( ) (13)k k k k
T

k k k
2 1 2

Under the random model approach, we first estimate the polygenic variance. We then estimate λk and test 
λk =​ 0 for each marker using the same estimated polygenic variance.

Wald test for marker effect.  We use the Wald test to test H0 : γk =​ 0 or H0 : λk =​ 0 in the random effect 
model approach, The Wald test statistic is
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γ
γ

=
ˆW

var( ) (14)k
k

k

2

where γ̂k and var(γk) are obtained from equations (12) and (13), respectively32.

Multi-locus random-QTL-effect mixed linear model method.  The single-marker random-QTL-effect 
mixed linear model (rMLM) method described above is considered as an initial scanning step for a new 
multi-locus random-QTL-effect mixed linear model (mrMLM) approach that is described here. In the rMLM 
step, the negative logarithm P-value curve is obtained for the whole genome. In the curve, all the peaks were 
selected as the positions of putative QTL in a multi-locus QTL mapping model. Thus, multi-locus genetic model 
under consideration is as follows

∑ γα ε= + +
=

y ZX
(15)k

K

k k
1

where K is the number of peaks in the negative logarithm P-value curve, γ =​ (γ1 γ2…γK)T, and the others are same 
as those in model (2). Note that γ σ∝P N( ) (0, )k k

2  and other prior distributions are same as those in Xu32. In the 
above model, polygenic background is not included, because that all the potential QTL have been included in the 
model (15)19.

All the effects of QTL in the multi-locus model were estimated by empirical Bayes of Xu32. The procedure for 
parameter estimation is as follows.

(1) Setting initial values: σ σ σ= = = = 1K1
2

2
2 2 , α=​(XTX)−1XTy and σ α α= − −y (y( X ) X )

n
T2 1

2
;

(2) E-step: QTL effect can be predicted by

γ σ α= −−E Z V y( ) ( X ) (16)k k k
T2 1

where σ σ= ∑ +=V Z Z Ik
K

k k
T

k1
2 2;

(3) M-step: update parameters σk
2, α and σ2
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1

where γ γ γ γ γ= +E E E( ) ( ) ( ) tr[var( )]k
T

k k
T

k k  and γ σ σ σ= − −I Z V Zvar( )k k k k
T

k k
2 2 1 2. Repeat E-step and M-step 

until convergence is satisfied.

If the P-value for a random effect apart from zero was less than 0.01 in the F-test, the putative QTL were  
picked up to perform the likelihood ratio test (LRT). All the putative QTL with the ≥​2.5 LOD score were viewed  
as true. Considering that all potential QTL were selected in the first stage, we decided to place a slightly  
more stringent criterion of 0.000691, which is converted from LOD score 2.50 of the test statistics using 
= χ > . × . = .ν=p Pr( 2 50 4 605) 0 0006911

2 .
In this study, the mrMLM method was used to detect QTL for the trait. The identified QTL were used to cor-

rect original phenotypes, and the corrected ones were analyzed again in order to increase the power.

Real dataset analyzed.  A large mapping population of triticale with 647 doubled haploid lines derived 
from four partially connected crosses (HeTi117-06 ×​ Pawo, HeTi117-06 ×​ TIW671, Modus ×​ Saka3006 and 
Modus ×​ Saka3008) was used for the demonstration27. All the plants were scored visually for their developmental 
stages at three time points termed DS1, DS2 and DS3, and scanned for genotypes. Only one marker was kept if 
several markers are located at the same position. All the 1549 markers with different positions covered 2,306.7 cM 
of the entire genome. The average marker distance was 1.5 cM. All the data was downloaded from http://www.
g3journal.org/content/4/9/1585/suppl/DC1. We inserted one or more pseudo markers in intervals larger than 
1 cM to make sure that the entire genome is evenly covered by pseudo or true markers with no intervals larger 
than 1 cM. The number of pseudo markers inserted was 1691, resulting in a total of 3240 markers. For the pseudo 
markers, the genotype indicator variable is missing for every individual. In this case, the missing variable was 
replaced by their conditional expectation.

Monte Carlo simulation experiments.  Each backcross population with 400 individuals was simulated. 
We placed one marker in every 5 cM and the entire chromosome was then evenly covered by 481 co-dominant 
markers. Twenty simulated QTL were located on a single large chromosome of 2400 cM in length. The effects and 
locations of the 20 QTL were listed in Table S1. These QTL vary in size with the largest QTL explaining 20% of 
the phenotypic variance and with the smallest QTL explaining 0.5% of the phenotypic variance. The population 
mean is 100 and the residual variance is 10. Each of the 200 simulated samples was analyzed by the new method, 
CIM and empirical Bayes. All the true and pseudo markers were scanned for the new and CIM methods but only 

http://www.g3journal.org/content/4/9/1585/suppl/DC1
http://www.g3journal.org/content/4/9/1585/suppl/DC1
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the true markers were included in the full model for empirical Bayes. For each simulated QTL, we counted the 
samples in which the LOD statistic exceeded 2.5. A detected QTL within 5 cM of the simulated QTL was con-
sidered a true QTL. The ratio of the number of such samples to the total number of replicates (200) represented 
the empirical power of this QTL. The false positive rate (FPR) was calculated as the ratio of the number of false 
positive effects to the total number of zero effects considered in the full model. To measure the bias of QTL effect 
estimates, mean squared error (MSE) and mean absolute deviation (MAD),

∑ γ γ= −
=

ˆMSE 1
200

( )
(18)k

i
k i k

1

200

( )
2

∑ γ γ= −
=

ˆMAD 1
200 (19)k

i
k i k

1

200

( )

were calculated, where γ̂k i( ) is the estimate of γk in the ith sample.
To investigate the effect of polygenic (small effect genes) background on the new method, polygenic effect was 

simulated by multivariate normal distribution σN K(0, )pg
2 , where σpg

2  is polygenic variance, and K is kinship coef-
ficient matrix between a pair of individuals. Here σ = 5pg

2 , so = .h 0 088pg
2 . Other setups are identical to the first 

simulation experiment (Table S2).
To investigate the effect of epistatic background on the new method, three epistatic QTL pairs each with 

σ = .4 05epi
2  and = .h 0 035epi

2  were simulated. The first one was placed between 800 cM and 1800 cM; the second 
one between 1210 cM and 1860 cM; and the last one between 275 cM and 740 cM. Other setups are identical to the 
first simulation experiment (Table S3).

To investigate the type I error for the new method, no QTL was simulated. We just simulated residual error in 
this simulation study. Other setups are identical to the first simulation experiment.

We developed our own software to implement all the analyses in this paper and would upload it to the R web-
site (https://cran.r-project.org/web/packages/mrMLM/index.html).
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