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Systems view of adipogenesis via 
novel omics-driven and tissue-
specific activity scoring of network 
functional modules
Isar Nassiri1,*, Rosario Lombardo1,*, Mario Lauria1, Melissa J. Morine1, Petros Moyseos1, 
Vijayalakshmi Varma2, Greg T. Nolen2, Bridgett Knox2, Daniel Sloper2, Jim Kaput3,† & 
Corrado Priami1,4,†

The investigation of the complex processes involved in cellular differentiation must be based on 
unbiased, high throughput data processing methods to identify relevant biological pathways. A 
number of bioinformatics tools are available that can generate lists of pathways ranked by statistical 
significance (i.e. by p-value), while ideally it would be desirable to functionally score the pathways 
relative to each other or to other interacting parts of the system or process. We describe a new 
computational method (Network Activity Score Finder - NASFinder) to identify tissue-specific, omics-
determined sub-networks and the connections with their upstream regulator receptors to obtain a 
systems view of the differentiation of human adipocytes. Adipogenesis of human SBGS pre-adipocyte 
cells in vitro was monitored with a transcriptomic data set comprising six time points (0, 6, 48, 96, 192, 
384 hours). To elucidate the mechanisms of adipogenesis, NASFinder was used to perform time-point 
analysis by comparing each time point against the control (0 h) and time-lapse analysis by comparing 
each time point with the previous one. NASFinder identified the coordinated activity of seemingly 
unrelated processes between each comparison, providing the first systems view of adipogenesis in 
culture. NASFinder has been implemented into a web-based, freely available resource associated with 
novel, easy to read visualization of omics data sets and network modules.

High-throughput technologies have enabled biologists to produce unprecedented quantities of data ranging from 
gene expression to protein abundances and metabolic profiles. The tables of numbers and annotations produced 
by this screening of biological systems need to be interpreted in order to turn data into actionable knowledge1. 
Network analysis is an increasingly prevalent tool for representing the complexity of biological processes and how 
they relate to each other2–5. Identification of active sub-networks (modules) based on omics data sets can assist in 
explaining properties of the underlying biological system6. Networks are also used to integrate multi-source and 
multi-level data sets to improve the quality of the biological interpretations7. The quality of the results, and there-
fore functional interpretation of high dimensional data sets, must account for differences in biological processes 
and functions within different tissue and cell types, which is now possible with available databases of protein and 
RNA abundances in over 40 tissues8.

Adipocyte differentiation or adipogenesis is the process by which pre-adipocytes differentiate into mature 
functional adipocytes by accumulation of triglycerides9–11. This process involves a complex sequence of events 
that occur in a coordinated fashion for driving the differentiation of preadipocytes with a fibroblastic morphol-
ogy to fully differentiated rotund fat-storing cells. Adipogenesis is a protective mechanism whereby the excess 
energy and calories consumed gets stored as fatty acid in adipocytes. The storage capacity of adipocytes prevents 
ectopic accumulation of fat in other organs such as the liver, skeletal muscle, heart, pancreas, or other tissues12 
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that can result in the development of insulin resistance. Unconstrained adipogenesis can result in the expansion 
of adipose tissue and the development of obesity13. A number of different factors can trigger adipogenesis result-
ing in increased adiposity including nutritional overload14, environmental contaminants and xenobiotics15, or 
influences of the gut microbiome16.

Adipogenesis is a fairly well-characterized process and many of the key genes involved have been previously 
described in11,17,18. However, information on the coordinated, time dependent changes in pathways involved as 
well as a better understanding of the networks and interactions of the genes and pathways participating in the 
process of adipogenesis (i.e., a system-level understanding) is crucial to better identify potential interventions 
and drug targets in treating and preventing obesity and its co-morbidities. While network-based analysis of genes 
has been more recently explored to better understand adipocyte differentiation in 3T3L1 adipocytes of rodent 
origin19–21, such analyses are lacking in human adipocytes.

We propose a novel method (called network activity score finder or NASFinder) that integrates omics data 
with network analysis and tissue specificity information and we use it to improve our understanding of adipo-
cyte differentiation in human adipocyte. Network analysis can be seen as a way of integrating new experimental 
evidence with previous knowledge about biological systems: the novelty of NASFinder is in the way it addresses 
the tradeoffs inherent in this type of analysis. In its simplest form, network analysis first seeks to expand a list of 
differentially expressed genes/proteins/metabolites resulting from the experiment at hand with the help of known 
molecular interactions, and then tries to identify the biological context of the enlarged list using functional anno-
tations in the form of gene ontologies and canonical pathways. The two most critical steps of the whole workflow 
remain the expansion of the initial gene list and the identification of the relevant functional context both of which 
demand a careful balance directly affecting the overall sensitivity and accuracy of the analysis. Several approaches 
have been published that differ in how they address these critical points. EnrichNet22 produces a ranking of refer-
ence datasets based on a random walk algorithm that scores the distance between the input genes and the collec-
tion of reference gene sets; the same reference datasets can also be scored using tissue-specific association scores 
computed for 60 human tissues to further guide the search. DRAGEN23 is designed to identify differentially regu-
lated reference gene sets by analyzing how the strength of interaction between all TF-target pairs included in each 
gene set changes between experimental conditions (e.g., between control and treated samples), and estimating the 
significance of such changes. SPIA24 introduces a type of network analysis specifically formulated for signaling 
pathways and combines traditional enrichment analysis with a score that measures the perturbation of a pathway 
under a given experimental condition.

NASFinder implements a number of strategies of network exploration that try to reproduce the advantages 
of these methods without some of their limitations, such as the need to have a directed background network 
as in SPIA or network annotations in terms of TF-target pairs as in DRAGEN. First, NASFinder constrains the 
initial expansion of the gene list by performing a guided exploration of the interaction network which must 
include at least one ‘source’ node at the upstream end, such as a receptor, transporter, or transcription factor 
(the specific member of the user-defined class of molecules is automatically selected). Second, the exploration 
is further constrained by restricting it to a user-specified tissue-specific network. The use of tissue-specific net-
works is an advantage over the post-analysis association scoring based on tissue-specific gene expression profiles 
used by EnrichNet because we do not consider at all interactions not specific to the tissue. Additionally, our 
method ranks the enriched sub-networks identified in the guided exploration according to their activity level in 
the experimental data sets relying on an information flow algorithm. Conceptually, we follow a systems biology 
interpretation of cellular processes where biological components are considered as information processing units 
and their interactions as information exchange steps25–28, effectively employing this abstraction as a guide for the 
identification of relevant functional contexts. The sub-networks can then be functionally annotated in terms of 
canonical pathways (e.g., Reactome database) or gene ontologies. We also developed a set of novel visualization 
tools to illustrate the mapping of data into biological context and to enable enhanced biological interpretation. 
The complete pipeline is illustrated in Fig. 1A. NASFinder is available at the URL http://www.cosbi.eu/research/
prototypes/nasfinder as a free web service.

To elucidate the key mechanisms, and time dependent changes in the interacting networks and pathways 
driving human adipocyte differentiation, we used human Simpson-Golabi-Behmel Syndrome (SGBS) euploid 
progenitor cell that differentiates to adipocytes in culture5,29,30. Microarray-based transcriptional profiling was 
conducted at different stages of differentiation in vitro. RNA samples from biological triplicates were analyzed 
at 0, 6, 48, 96, 192, and 384 hours after induction of adipogenesis. The main analyses we performed were the 
comparison of each time point with the control (0 hours), and comparison of each time point with the previous 
one. The combination of the two provides a clearer picture of the activation and de-activation of the processes 
and their relationships that are fundamental to sustain the complete differentiation of pre-adipocytes into mature 
adipocytes. The data from the samples, our novel method, and the results of the analyses were used for building 
the first systems view of human adipocyte differentiation.

Material and Methods
SGBS Cell culture. Human Simpson-Golabi-Behmel syndrome (SGBS) preadipocytes that were provided by 
Martin Wabitsch were used in this study and cultured as described previously31. Briefly, the SGBS preadipocytes 
cells were cultured at 37 °C in a humidified incubator maintaining a 5% CO2 atmosphere. The growth medium 
consisted of DMEM:F12 (1:1) (GIBCO, Life technologies, Grand Island, NY), 33 mM biotin, and 17 mM panto-
thenate containing 10% fetal bovine serum (Hyclone, Logan, UT) and 1% penicillin-streptomycin (GIBCO, Life 
technologies). For this study, SGBS preadipocytes were plated at 1 ×  105 cells per well of a 6 well plate. The cells 
were grown to confluence and induced to differentiate into adipocytes one day post confluence by addition of a 
serum-free differentiation medium. The differentiation medium consisted of DMEM:F12 (1:1) (obtained by mix-
ing Dulbecco’s Modified Eagle’s Medium without glucose (SIGMA) and Hams F12 nutrient mixture containing 
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10 mM glucose (SIGMA) in a 1:1 ratio) to which 25 nM dexamethasone, 500 μ M 3-isobutyl-1-methylxanthine, 
2 μ M rosiglitazone, 0.01 mg/ml human transferrin, 2 ×  10−8 M insulin, 10−7 M cortisol, 0.2 nM T3, 33 mM bio-
tin, and 17 mM pantothenate was added. The final glucose concentration in the medium was 5 mM glucose, 
equivalent to the normal blood glucose concentration. The cells were maintained in differentiation medium for 
4 days after which the medium was changed to a serum-free adipogenic medium consisting of DMEM:F12 (1:1) 
with 0.01 mg/ml human transferrin, 2 ×  10−8 M insulin, 10−7 M cortisol, 0.2 nM T3, 33 mM biotin, and 17 mM 
pantothenate. The adipogenic medium was essentially similar to the differentiation medium but without 3-isobu-
tyl-1-methylxanthine (IBMX), dexamethasone and rosiglitazone. The medium was renewed every two days from 
the initiation of differentiation. Cells were harvested in triplicates for each specific time point including 0, 6, 
48, 96, 192 and 384 hours, following the initiation of differentiation to examine the time-dependent changes 
in mRNA transcripts. During harvesting, the medium was aspirated and the cells were harvested using Lysis/
Binding Solution (Ambion® , Life Technologies). Total RNA was isolated from the harvested cells using the 
RNAqueous®  Total RNA Isolation Kit (Ambion® , Life Technologies Inc., Carlsbad, CA) as per the manufacturer’s  
recommendations. The quality of the RNA isolated was examined using Agilent 2100 Bioanalyzer (Agilent tech-
nologies, Palo Alto, CA). RNA integrity numbers of > 9 were obtained in each case. The quantity of RNA was 

Figure 1. (A) NASFinder pipeline. The input is a transcriptomic data set used to detect sets of genes that are 
differentially expressed and that have common biological functions (DEGs modules), a set of nodes of interest 
with specific functions (transporters, transcription factors, receptors, etc.), and a tissue-specific reference 
network to contextualize the gene sets for a better interpretation. The algorithm determines active sub-networks 
connecting receptors with DEGs modules and ranks them according to the network activity score. The 
significant sub-networks are then used for contextual enrichment analysis against canonical pathways. (B) Sub-
network identification. The shortest paths from each element of the DEG module to the receptors are computed 
and the shortest ones are kept. In the figure the orange paths are the ones with minimal distance greater than 
0 from the DEGs module to the regulator molecules (receptors in this study). In the next step (right graph) for 
each receptor previously selected (for instance, the top-right receptor in this case) we identify all the shortest 
paths from that receptor to the elements of the DEGs module (the orange paths).



www.nature.com/scientificreports/

4Scientific RepoRts | 6:28851 | DOI: 10.1038/srep28851

measured using the NanoDrop 8000 (Thermo Scientific Wilmington, DE) and the 260/280 ratios obtained were 
between 1.8 and 2.1.

Transcriptomics data. The dataset was generated with 8 Illumina Human HT-12 version 4 BeadChips 
(Ilumina, Inc., San Diego, CA) hybridized with the RNA from 18 cell-cultures at different time points (0, 6, 48, 96, 
192, 384 hours). The RNA labeling and microarray hybridization was performed according to the manufacturer’s 
recommendations. The data file contains 26 arrays (including technical replicates)31 and is available on GEO 
(accession number GSE76131).

Normalization, Variance stabilization. A list of 19 variance stabilization/normalization methods were com-
pared (Supplement Table 8 in Supplementary file 1) to select the best one for the dataset by assessing the relation 
between the empirical standard deviation and the rank of the mean expression for each method. When plotting 
the standard deviation versus the rank of the mean, an ideal method would produce a parallel line to the x-axis 
where some random fluctuations might exist but without exhibiting an overall trend. The plots for all the methods 
(Supplement Fig. 5 in Supplementary file 1) were created using the diagnostic functions available in the VSN R 
package32. According to the above criteria, the VSN method was selected for calibration and variance stabilization 
of the data.

Filtering. Filtering out irrelevant or noisy data helps in reducing the burden of multiple testing and thereby 
improves the power to detect differential expression. Probe sequences were annotated with four quality catego-
ries (‘Perfect’, ‘Good’, ‘Bad’ and ‘No match’ - Supplement Fig. 6 in Supplementary file 1)33. The definition of the 
quality categories is: Perfect if it perfectly and uniquely matches the target transcript; Good if the probe is still 
likely to provide considerably sensitive signal, even though it imperfectly matches the target transcript; Bad if the 
probe matches repeat sequences, intergenic or intronic regions, or is unlikely to provide specific signal for any 
transcript. No match if it does not match any genomic region or transcript. Probes classified as either ‘Bad’ or ‘No 
match’ (illuminaHumanv4.db in R) were removed as represented in red in the histogram in Supplement Fig. 6 in 
Supplementary file 1.

Re-annotation. The Illumina Human HT-12 version 4 data were re-annotated (illuminaHumanv4.db in R) to 
avoid some inconsistencies of the data set. For the missing EntrezID mappings an additional annotation script 
was implemented in R that works also for non-Illumina data. Gene symbols (HUGO and non-official syno-
nyms) were converted into EntrezID by analyzing the consensus results from Ensemble (via web service) and the 
Genome wide annotation for Human (org.Hs.eg.db in R) [The HUGO and non-official gene name is associated 
with the EntrezId as determined by the intersection of results from Ensemble and org.Hs.eg.db. If not empty, 
then the merge of what was produced by org.Hs.eg.db was used where more than one EntrezId can be associated 
with the same gene name.]. These steps increased the ratio of significant gene markers usable in public DBs from 
65–80% of previous workflows up to 99% of recognized gene symbols. Downstream enrichment and pathway 
analyses can now benefit from 99% of the overall significant biological signals detected by the differential expres-
sion analysis.

Statistical empirical array quality analysis as implemented in limma34 was applied to associate quality weights 
with all arrays. The computed array quality weights were used in the successive identification of the differentially 
expressed genes. To take the correlation structure between the technical replicates into account we used the duplicate  
Correlation function in limma.

NASFinder pipeline. The novel NASFinder method is introduced in the Results section (and illustrated in 
Fig. 1A) because it is a main achievement of this study. The inputs of the pipeline are a set of functionally related 
and differentially expressed genes, an human interactome network and a class of molecules tagged as main reg-
ulator for the ongoing study (receptors, transporters, etc.). NASFinder applies an information flow algorithm 
to detect the most active sub-networks connecting the main regulators and the genes in the input module. The 
next-subsections briefly discuss the methods underlying the computational process of scoring the activity level 
of network functional modules.

Identification of significantly differentially expressed genes. This sub-section refers to the first box 
in the pipeline reported in Fig. 1A. After data filtering and normalization, the set of differentially expressed probes 
were identified and used in the first step of the NASFinder pipeline. When multiple high-quality DE probes were 
available per gene, we selected the most significant (the lowest p-value). The outcome of each analysis was a list of 
differentially expressed genes (DEG) that are then grouped in clusters of functionally related genes (DEG mod-
ules, see next sub-section).

Time-point differential expression analysis of controls. This analysis identified the differentially expressed genes 
at each time point 6, 48, 96, 192, 384 hours with respect to the time point 0 h, i.e. controls at each time point 
were compared with the baseline at time 0 h. The analyses were performed using the limma35 R package and the 
probes were ranked by their log-odds scores given by empirical Bayesian moderation of sample variances and a 
FDR threshold set at 0.01. The results of these analyses are summarized in the Venn diagram and histogram in 
Supplement Fig. 3 in Supplementary file 1 (see also Supplementary file 2-S3).

Time-lapse differential expression analysis of controls. Time-lapse analysis identified the differentially expressed 
genes for each two consecutive time points (6 vs 0, 48 vs 6, 96 vs 48, 192 vs 96, 384 vs 192 hours). The time-lapse 
analysis detects what changes specifically at each time interval; which differs from the time-point analysis 
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that identified changes between a time point and baseline. Differentially expressed probes were determined 
by using the moderated t-statistic with empirical Bayesian shrinking of variances and a FDR threshold set at 
0.01. The results of these analyses are summarized in the Venn diagram and histogram in Supplement Fig. 4 in 
Supplementary file 1 (see also Supplementary file 2-S3).

Correlation analysis and identification of DEG modules. This sub-section refers to the second, third 
and fourth boxes in the pipeline reported in Fig. 1A. An R pipeline was developed to identify co-expressed and 
functionally related gene sets (hereafter DEG modules). This pipeline relies on the external web-services Ensembl 
and DAVID. We first outline the steps in the construction of gene co-expression lists (Supplementary file 2-S4), 
then we describe the functional annotation of TP and TL analyses.

Co-expression modules. The differentially expressed probes identified in time-point and time-lapse analyses 
were used to construct the weighted gene co-expression modules using the R package WGCNA36. The bi-weight 
mid-correlation was chosen because it is more robust to outliers and varying conditions than Pearson’s correla-
tion37. The dynamic branch cutting algorithm from the same package was used to detect the modules of 
co-expressed genes and a WGCNA co-expression analysis was run for each time-point and time-lapse compari-
son. A parameter scan-based selection of the three main parameters (correlations sign, power β and sensitivity to 
cluster splitting in the dynamic tree cut) was carried out by manually inspecting the quality of the resulting 
co-expression clustering dendograms (in terms of definition and noise) to obtain coherent and compact clusters 
of co-expressed genes (Supplementary file 2-S4).

Identification of functionally related gene sets (DEG modules). Each cluster of co-expressed genes contained a 
large number of genes. Therefore the clusters were decomposed according to the functional categories of their 
genes related to biological functions and pathways (DEG modules). The EntrezIDs for the genes of each clus-
ter were functionally grouped with DAVID v6.7 and the kappa statistic (determined within DAVID) with the 
default parameters38. The following annotation databases were used for functional annotation clustering: KEGG, 
BIOCARTA, REACTOME, PANTHER, GO, MINT, INTERPRO, SP_PIR_KEYWORDS, PIR_SUPERFAMILY, 
UP_SEQ_FEATURE, COG_ONTOLOGY, BBID and SMART. Analyses and results were managed from within 
R workspace via web services using the R DAVID Web Service package v1.239. All functionally clustered groups 
with DAVID enrichment score greater than 1 were considered (DAVID’s enrichment score 1.3 is equivalent to 
0.05 p-value, however our automated pipeline allowed us to analyze many potentially interesting groups at a 
slightly lower threshold than recommended by DAVID’s authors39). However, only the genes associated with 
functional terms whose a p-value was smaller than 0.05 were considered to form a DEG module (Supplementary 
file 2-S5). The workflow was automated for handling genome wide analysis. The outcome of this step was a list of 
DEG modules of genes that are co-expressed and functionally related in biological functions computed for each 
time-point and time-lapse analysis. NASFinder considers a DEG module at a time and can be iteratively applied 
to all the DEG modules detected.

Preparation of the human interactome for network analysis and main regulators selection.  
This sub-section refers to the fifth box in the pipeline reported in Fig. 1A. The default interactome that NASFinder 
used is the largest manually curated human signaling network and was created by the Wang Lab (http://www.
cancer-systemsbiology.org/dataandsoftware.htm). The network consists of 6000 proteins and 63000 interactions 
determined from review literature on cell signaling and other sources including BioCarta, CST Signaling path-
ways, Pathway Interaction database (PID), and Information Hyperlinked over Proteins (iHOP). The Wang Lab 
network is updated yearly (for this study we used version 6 released in 2014). This interaction network is referred 
to as reference network in the following.

Expanding the reference network. A main step of NASFinder is mapping a DEG module to the reference net-
work. However, some genes in the module were not in the reference network. To improve the quality of the anal-
ysis, NASFinder accepts nodes and interactions to be added to the reference network as an additional input data 
set from the user. Finally, NASFinder expands the reference network by adding the missing genes and interactions 
from BioGRID40. The resulting reference network has a much better coverage of the genes in the DEG module.

Tissue specificity. The user may specify a reference tissue to perform the analysis. In this case, NASFinder prunes 
the expanded reference network to reflect tissue specificity relying on the tissue-based map of the human pro-
teome8 (www.proteinatlas.org/humanproteome/tissue+  specific). The map is composed of 32 human tissues and 
classifies genes in terms of tissue specificity according to the following three definitions:

1. tissue enriched genes (TE): genes with at least 5-fold greater expression (expressed as fragments per 
kilobase of exon per million mapped reads; FPKM) in one specific tissue compared to all others,

2. group enriched genes (GE): genes with at least 5-fold greater expression in a limited number of tissues 
compared to all others,

3. tissue enhanced genes (TEn): genes that do not fulfill the criteria of tissue enriched but show a 5-fold high-
er level in a specific tissue type compared to the average FPKM value of all 32 analyzed tissue types.

NASFinder implements tissue specificity by pruning from the expanded reference network all the tissue 
enriched and group enriched genes for the tissues that are different from the selected one without removing the 
genes that are tissue enriched, group enriched, or tissue enhanced for the selected tissue.

http://www.cancer-systemsbiology.org/dataandsoftware.htm
http://www.cancer-systemsbiology.org/dataandsoftware.htm
http://www.proteinatlas.org/humanproteome/tissue+specific
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Selecting the closest regulators to the DEGs module. In order to help focus the analysis of specific biological 
questions while computing the network activity score and the functional annotation of the sub-network modules 
detected, the user defines a class of molecules with a specific biological role (e.g., receptors, transporters, tran-
scription factors, etc.). The outcome of this selection is an increased sensitivity of the results of NASFinder. The 
type of molecules is defined according to the annotation of the initial reference network. The user can expand the 
list of molecules of a chosen type by providing an additional annotated network as input to NASFinder. The list of 
typed molecules does not change when expanding the reference network with BioGRID nodes and interactions. 
This study used receptors as candidate regulators (Supplementary file 2-S6) since this class included transcription 
factors (nuclear receptors), membrane, and other types of signaling receptors. Members of this “family” have 
been shown to be involved in adipogenesis. However, a tenet of systems analysis is to not restrict inputs to only 
those genes/proteins previously shown to be involved in a given biological process (in this case, adipogenesis). 
Including all members of this class provides an opportunity to discover unsuspected pathways and networks.

To keep the signaling function of receptors focused on the experimental conditions (implicitly encoded in 
the DEGs module), we selected all the closest receptors to the DE genes of the module (minimal distance greater 
than 0) as main regulators plus the receptors differentially expressed and members of the DEGs module (Fig. 1B). 
The selection is implemented by a breadth-first search to select the shortest paths from the molecules in the DEG 
module to candidate regulators (in this study receptors). Note that this step takes advantage of the experimental 
evidence encoded in the DEGs module and of previous knowledge encoded in the topology of the reference 
network.

Contextual enrichment analysis and network activity score. This sub-section refers to the sixth, 
seventh, and eighth boxes in the pipeline reported in Fig. 1A. Edges of the network were labeled with a common 
linkage index that uses common neighbors as an evidence of the strength of the interaction between two mole-
cules3,41. Consider two nodes ai and aj with a direct interaction value in the adjacency matrix Dij and define Iij as 
the number of common neighbors of the two nodes (representing the indirect interactions between ai and aj). The 
common linkage index (CL) used to label the edge between ai and aj is

=
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+ +
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n n

2

( 1)( 1) (1)
ij

ij ij

i j

where nk is the number of neighbors of the node ak. The common linkage index is a proportion of the common 
shared neighbors with respect to the total neighbors of the two nodes ai and aj. We assume that the common 
linkage index between two nodes that are not connected is 0.

For each key regulator identified in the previous section, NASFinder traverses the network by retaining the 
path from the regulator to each gene in the DEG module that has the highest score computed by multiplying 
the CLij of each edge in the path42. NASFinder subsequently generates a network by merging all the paths (up to 
length 9) retained in the traversal of the graph and then, optionally, extends it to include the 1-neighbor of each 
node. The outcome of this step is a set of minimal sub-networks, one per DEG module, that include most of the 
genes in the input DEG module (those at distance < 10 from at least one key regulator). A cap of 10 on distances 
was set because longer paths are rare and unlikely to bring additional benefits.

NASFinder uses the genes in the DEG module that belong to the minimal network identified in the previous 
step as target set T. NASFinder also uses reference gene sets R1, … , Rm representing the canonical pathways as 
defined by 4 reference databases (KEGG, BioCarta, PID and Reactome)43. NASFinder computes the enrichment 
score of the common molecules between the target set T  and the genes in the canonical pathways Ri by using the 
Sorensen-Dice Similarity index:

∩= × | | | | + | |SDS T R T R T R( , ) 2 /( ) (2)i i i

where |T| and |Ri| are number of molecules in T  and Ri, respectively. The SDS ranges between 0 and 1, and 
accounts for the over representation of small gene sets44,45. A p-value associated to the overlap between the target 
set T  and the genes in the canonical pathways Ri is computed using the hypergeometric distribution; no multiple 
testing correction is applied because these p-values are used only for ranking purposes. NASFinder repeats this 
analysis for all minimal networks and for all reference gene sets, calculates the p-values and selects the most rele-
vant reference set (the lowest p-value).

Network activity score and module ranking. NASFinder also computes a score of the activity of the identified 
network called network activity score (NAS). NAS was designed to take into account both (i) the activity of the 
genes that are both in the DEG module and the identified sub-network, and (ii) the proportion of genes that are 
differentially expressed over the total of pathway genes. NAS is used to evaluate the impact of networks for a 
given experiment by utilizing corresponding variation to omics data46,47. NAS is based on the number of common 
molecules between the experimental data and the selected reference signature (CDR), the number of molecules in 
reference signature (NGR) and the mean of normalized fold change of CDR (MNF). NAS =  (MNF ×  CDR)/NGR  
is used to represent how the selected reference gene signature was influenced by the experimental conditions, 
based on the magnitude of fold changes (e.g., concentration or intensity level)48. The normalization of the fold 
change is done with a scaling method that maps fold changes into the interval [0, 1]. Specifically, a fold change  
v is mapped to
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where vmax and vmin are the maximum and minimum fold changes taken with sign. Finally, each node of the ref-
erence network corresponding to genes in the DEG module is labeled with its normalized fold change. We found 
this normalization method to outperform other normalization strategies in our study of pre-adipocyte differen-
tiation because it favors positive fold changes that represent activation of pathways in the differentiation process.

Results
The main results of this paper are a new method (NASFinder) for identification and activity ranking of the main 
biological processes using omics data and its specific application to gene expression data generating the first 
systems view of the adipocyte differentiation process in culture. The following sub-sections describe these two 
aspects and also provide a comparison of the NASFinder method against other network analysis pipelines using 
publicly available transcriptomic data sets. A more complete description of the methodology and biological 
results from SGBS cells are reported in Supplementary file 1. We start describing the novel method and then we 
move to the systems view of adipogenesis by interpreting the results of NASFinder.

A novel pipeline to detect and rank tissue-specific sub-networks identified by omics data. We 
developed a new method (NASFinder) to identify tissue-specific sub-networks connecting an omics-determined 
module to its main regulator(s) chosen among a user-defined class of molecules (e.g., receptors, transcription 
factors, etc.). The information flow from differentially expressed genes (DEG) to the main regulator (nodes) in the 
network topology is used to associate nodes with an activity score and ultimately to determine the sub-network 
activity score (NAS index). Finally, the sub-network is annotated using comparisons to canonical pathways or 
gene ontologies to predict its biological function. The pipeline that we developed and adopted in the paper is 
schematized in Fig. 1A and is made up of the following logical steps:

1. Transcriptomic module identification. Pre-processing of transcriptomic data and identification of sets 
of differentially expressed genes that are co-expressed and that have similar biological functions (DEGs 
modules). This step is performed in the first four blocks in Fig. 1A relying on the R packages Limma and 
WGCNA and finally applying DAVID for a preliminary functional annotation.

2. Identification of the main regulator molecules. Each DEGs module is mapped onto the largest manually 
curated human signaling network (Wang Lab - http://www.cancer-systemsbiology.org/dataandsoftware.
htm), our reference network, consisting of 6000 proteins and 63000 interactions determined from review 
of the literature on cell signaling and other sources including BioCarta, CST Signaling pathways, Pathway 
Interaction database (PID), and information hyperlinked over proteins (iHOP). The network is updated 
yearly (ver. 6 - 2014 was used in this study). The network was expanded with genes in the DEG module 
and their interactions that were not in the reference network, but are available in BioGRID. After selection 
of the user-defined class of regulator molecules, the network was pruned according to tissue specificity. 
Through an iterated application of the breadth-first search algorithm starting from DEGs of the module, we 
identified the closest regulator molecules to the DEGs module (distance greater than 0). We then extended 
the set of regulators to include all the differentially expressed regulators within the module (fifth box in 
Fig. 1A and left graph in Fig. 1B).

3. Contextual enrichment analysis. For each closest regulator molecule of each DEGs module, the paths (up to 
length 9 – for each length the shortest path to DEG is selected) from the regulator to a DEG in the module 
are collected and ranked according to the NAS score. For all the selected paths, a sub-network is built by 
extending them with their 1-neighbors. The sub-networks undergo an enrichment analysis using canonical 
pathways from the databases KEGG, BioCarta, PID and Reactome. For each receptor, the sub-network with 
the highest similarity score with a canonical pathway is chosen. If multiple sub-networks share the same 
similarity score, the sub-network with the greatest NAS is selected. Finally, similar pathways determined in 
the enrichment analysis are aggregated for ease of interpretation.

Steps 2 and 3 are repeated for each DEG module identified in step 1. The added value of NASFinder with 
respect to similar methods is its ability of managing tissue specific or cell specific networks as well as the ability to 
select molecules with a specific role (e.g., receptors or transcription factors etc.) that will enable a very broad or a 
highly specific and focused interrogation of the data as needed.

Visualization. An integrative visualization approach was used to summarize and visually combine in a com-
mon frame multiple analytical results coming from the NASFinder pipeline. The main outcome is the set of 
canonical pathways predicted by NASFinder. NASFinder identified the leptin receptor pathway, known to be 
up-regulated during adipocyte differentiation, which is shown in Fig. 2 as an example of the main NASFinder 
output. When multiple DEG modules resulted in the same active canonical pathway, the identified networks 
have been summarized together to offer a more comprehensive view of the interactions around the same active 
pathway. To visually combine topological and analytical information, we produced graphical output in different 
formats, including XGMML and interactive visualizations with force-directed layout49–51 (Supplementary file 3 - 
http://www.cosbi.eu/3867/NASFinder_Supplementary_file_3.zip - tested only on Firefox).

http://www.cancer-systemsbiology.org/dataandsoftware.htm
http://www.cancer-systemsbiology.org/dataandsoftware.htm
http://www.cosbi.eu/3867/NASFinder_Supplementary_file_3.zip
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Genes often belong to one or more pathways at a given time point or in a given comparison. To capture this 
component of systems networks, we used a crosstab table in EXCEL for all DEG at a time point and all NASFinder 
pathways (Supplementary file 2-S2) and we represented it graphically in Circos visualizations (Supplementary file 
3 – available at the URL http://www.cosbi.eu/3867/NASFinder_Supplementary_file_3.zip).

Benchmarking NASFinder performance. We compared NASFinder with 15 representative tools22,23,53–58 
performing overrepresentation analysis (ORA) and quantitative enrichment analysis (QEA) on 10 data sets. ORA 
and QEA are gene set enrichment analysis approaches that are used to functionally annotate a list of genes of 
interest22,59. A gene list is the only requirement for performing ORA whereas QEA uses abundance or differential 
expression levels to weight each gene. Some existing ORA and QEA tools map genes onto interaction networks 
and use network topological properties to improve the result of enrichment analysis23,48,59,60.

The data sets that we used as benchmark are the expression data from 10 cancer cell lines (Supplementary file 
2-S1) which are accessible on GEO (accession numbers GSE24065, GSE11352, and GSE1868461–64). To compute 
true positive, true negative, false positive and false negative predictions of the tools we annotated all reference 
pathways collected from KEGG, Reactome, PID and BioCarta as positive or negative for each experimental set-
ting. The pathways related to TP53, NFkB and ER genes were selected as positive results (for instance, path-
ways containing TP53 were annotated as positive in experiments where the treatment was Doxorubicin). For 
the LNCaP data set (GSE18684), the pathways including the androgene receptor (AR) were selected as positive 
results. Supplementary file 2-S1 contains the description of all the conditions used to determine the positive 
results as well as the annotations of all the reference pathways used in the benchmark.

The comparison was performed by running all of the tools on the data sets described above with default 
parameters and using the annotated reference pathways to define positive and negative results. The raw out-
put results for all the tools are reported in Supplementary file 5 (available at the URL http://www.cosbi.
eu/3867/NASFinder_Supplementary_file_5.zip). Some of the tools only use a subset of our reference DBs and 
for them we used as annotated references the corresponding subset of the table in Supplementary file 2-S1.  

Figure 2. Leptin pathway and contextual interactions identified for contrast 48h vs. controls. LEPR is the 
receptor and is the entry point for identifying the active sub-network determined by NASFinder. The molecules 
belonging to the canonical pathway and within the 1-neighbor network of the active network determined by 
NASFinder are LEPR, PRKAG2, PRKAA1, PRKAG1.

http://www.cosbi.eu/3867/NASFinder_Supplementary_file_3.zip
http://www.cosbi.eu/3867/NASFinder_Supplementary_file_5.zip
http://www.cosbi.eu/3867/NASFinder_Supplementary_file_5.zip
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We defined true positive (tp) a positive pathway (according to the manual annotation) with p-value less than 0.05, 
true negative (tn) a pathway annotated as negative and with p-value greater then 0.05, false positive (fp) a negative 
pathway with p-value less than 0.05 and false negative (fn) a positive pathway with p-value greater than 0.05. The 
standard measures we used to compare the tools are:

1. Precision defined as tp/(tp +  fp)
2. Recall or Sensitivity defined as tp/(tp +  fn) =  tp/positives
3. Specificity defined as tn/(tn +  fp) =  tn/negatives
4. Accuracy defined as (tp +  tn)/(positives +  negatives).

We considered 3 scenarios: the 10 top-ranked results, the 100 top-ranked results and all results from each 
tool in order to avoid bias due to the choice of the cut. It is difficult to compare the tools by considering only 
the standard measures mentioned above because no tool outperforms the others in all the measures, although 
NASFinder is the only tool that always performs better than average with positive z-scores in all 3 scenarios (Fig. 3 
and Supplementary file 2-S1, respectively). We then considered the average of the z-scores computed on each 
standard measure as a cumulative quality measure. NASFinder outperformed all the considered tools using this 
aggregate measure of performance (Fig. 4). We attribute this better performance of NASFinder to the combined 
use of tissue specificity, network exploration strategy, and network activity scoring.

Figure 3. The performance assessment of the tools shown on the y-axis, based on z-scores of precision, 
recall, specificity, accuracy computed on the 10 benchmark data sets. NASFinder is the only tool with scores 
above the average in all three scenarios (i.e. the z-scores of all the performance measures are positive in all 
scenarios).
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Curation of adipocyte differentiation analyses –A systems view. NASFinder provided a more com-
prehensive analysis of the global transcriptional state of human SBGS cell line in vitro during adipogenesis than 
most published reports by identifying the most active sub-networks at 6, 48, 96, 192 and 384 hours compared 
to the undifferentiated cell. This euploid progenitor pre-adipocyte is now a widely used human model of adipo-
genesis30,65 and has been shown to be comparable to the aneuploid (2n =  40) mouse 3T3-L1 pre-adipocytes65,66. 
The neutral lipid stain, Oil Red O was used to assess lipid accumulation in the adipocytes used in this study at 
different time points (0, 48, 96, 192 and 384 h) from the induction of differentiation at 0 h (Supplement Fig. 1 
in Supplementary file 1). Time point analysis (TP) consisted of identifying networks of differentially expressed 
genes (DEG) determined as the ratio of expression at each of 5 time points (6, 48, 96, 192, 384 hr) compared to 
control (0 hour), while the ratio of expression at each time point compared to the previous time point constituted 
the time lapse analysis (TL). A total of 5 sets of data were produced for TP analysis and 5 for TL (Supplementary 
file 4). These data sets together provided a comprehensive analysis of the differentiation process viewed through 
sub-networks based on receptor nodes. Similar analyses were performed for transcription factors and transport-
ers (not shown). Since cellular processes are by nature interacting systems, many of the functions identified in the 
pathways overlapped in TP and TL analyses. More detailed analyses of selected processes, including genes within 
these pathways with published references, are presented in Supplementary file 1.

Hierarchical analysis indicated that the majority of the pathways at each time point or between time points did 
not overlap (not shown), although some individual genes participated in multiple pathways (summarized in TP 
and TL Supplementary file 2-S2) and many pathways shared interactions when expanding the identified networks 
with 1-neighborhood nodes and interactions (Supplementary file 3 – http://www.cosbi.eu/3867/NASFinder_
Supplementary_file_3.zip). In addition, NASFinder identified all paths between one or more source nodes (e.g., 
receptor) and a DEG module; this may generate multiple instances of the same canonical pathway. For example, 
three CARDIACEGF_Pathways were identified at 6 hours after induction with EGFR, IL12RB2, and PPARA as 
source nodes (see Supplementary file 2-S7, 6 v control). In other cases, multiple instances of a pathway with the 
same source node were identified. These results were expected since transcriptional regulation and resulting 
cellular processes consist of interconnected sub-systems. In some cases, we combine all pathways with the same 
name under the term, consolidated pathway.

A subset of pathways (usually NAS >  0.1 with p value <  0.05) for TP or TL is summarized visually using cell 
modules (Figs 5 and 6). For exact overlaps and network activity scores of all pathways – time point and time lapse 
– see Supplementary file 2-S2. The molecular pathways identified (Figs 5 and 6 and Supplementary file 1) can con-
tribute to a better understanding of the molecular mechanisms involved in the adipocyte differentiation process.

Time Point Analysis. The differences in abundance of genes at each time point versus pre-induction (0 hr) 
identified the networks involved in converting a pre-adipocyte to a mature adipocyte. The pathways identified 
were grouped by class to provide an overview of the differentiation process: signaling, transcription factor, metab-
olism, energy, structural membrane, and cellular structure (Table 1). Although the function of many of these 
pathways overlaps, especially signaling pathways that may be connected to cell membrane interactions and tran-
scriptional regulation (white crossed lines in each figure), the table provides a summary of the relative activities 
of cellular processes at each time point. Signaling pathways are the predominant functional class at all time points 
with most of these pathways up-regulated, consistent with the selection of receptors as the source node. A diverse 
set of metabolic processes is induced across all time points but the majority is induced at 96, 192, and 384 hr. 
Examples of pathways identified by NASFinder at each time point are summarized in Table 2.

Forty-seven [47] consolidated networks were identified at 6 hours post induction, the majority of which had 
modest NASFinder scores (< 0.1) relative to other time points. The state of the cell at this early differentiation 
point is best summarized as having up- or down regulation of many cytokine and intracellular signaling (Figs 5 
and 6 vs 0). For example, CARDIACEGF regulates intracellular calcium concentration that contributes to the ini-
tiation of downstream signal transduction changes. Expression of cytokines, such as IL1 and IL6 in the IL1R path-
way, can suppress adipogenesis39. Many cytokine pathways were down regulated at this time point (Figs 5 and 6  
vs 0) and are very early events in facilitating induction and promotion of adipogenesis67.

The induction of insulin like growth factor activity, prostanoid ligand receptors (which can activate PPARs), 
translational machinery, cytoskeletal remodeling (pathogenic E. coli infection), insulin signaling, interconnected 
cell membrane structures, and transcriptional regulation were the most dominant pathways at 48 hours versus 
control (40 networks of 101 are shown in Fig. 5, 48 vs 0). These pathways are consistent with the increased protein 
requirement and cytoskeletal reorganization that enables a preadipocyte of fibroblastic morphology to switch into 
a more rotund cell that can load and accumulate lipid. Transcription of genes associated with central metabolic 
processes (triacylglycerol hydrolysis, branched chain and lysine amino acid degradation, TCA cycle, and porphy-
rin, pyruvate, retinol, galactose metabolism) was increased at 48 hours. Branched chain amino acid degradation 
may provide an alternative energy source for adipogenesis68.

The diversity in networks was most apparent at 96 hours when 145 consolidated pathways were identified. The 
40 networks shown in Fig. 5, 96 vs 0, are representative of the utility of NASFinder: although genes overlap and 
connect subsets of pathways, a large number of networks were identified that affect different cellular processes 
involved in preparing the cell for production of adipocyte specific metabolic processes. For example, the three 
RNA pathways detected encompass ribosomal machinery, energy metabolism (oxidative phosphorylation, TCA 
cycle), the misidentified Alzheimer’s and Parkinson’s pathways (due to genes in the pathways initially shown to 
be associated with these diseases), and a more diverse set of metabolic networks were also induced at 96 hours, in 
addition to the bellwether adipogenic pathways, PPARγ /VDR and leptin.

Another set of pathways emerged at 192 (31 of 137 are shown Fig. 5, 192 vs 0) and 384 (40 of 137 networks are 
shown in Fig. 5, 384 vs 0) hours that can be considered adipocyte specific (PPAR_Signaling, peroxisome, leptin, 

http://www.cosbi.eu/3867/NASFinder_Supplementary_file_3.zip
http://www.cosbi.eu/3867/NASFinder_Supplementary_file_3.zip


www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:28851 | DOI: 10.1038/srep28851

Figure 4. The overall performance of the tools shown on the x-axis expressed in terms of the average of the 
z-scores computed for precision, recall, accuracy and specificity on the 10 benchmark data sets. Colors of 
bars identify the reference databases used to compute the performance measures. NASFinder outperforms all 
the other tools in terms of aggregate performance.
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Figure 5. Selected pathways identified in the analyses are overlaid onto the cell based on the approximate 
location of the main cellular process of the genes involved and grouped by function. Note that many 
pathways and networks overlap cellular compartments which could not be represented in this format. The white 
lines connecting the signaling pathways to the nuclear pathways are used to indicate that these networks have 
components from the cell membrane to transcriptional machinery. The colors represent the network activity 
score of up/down-regulated differentially expressed genes traversed in the active path and its 1-neighborhood 
context. That proportion is reported as a fraction in parenthesis (x/y) denoting the number of up-regulated 
genes with respect to the total traversed and contextual ones. TP analysis.
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insulin receptor signaling) or involved in maintaining the differentiated state (e.g. Cell_Cycle). As with other 
time points, over half the networks at each of these time points were involved in intracellular signaling. Although 
SGBS showed adipocyte characteristics by 8 days (our results and65), only 15 signaling pathways had high NAS at 
p <  0.05 were shared between 192 and 384 hours. A similar phenomenon occurred with metabolic pathways: only 
8 pathways (folate biosynthesis, insulin pathway, glutathione, pyruvate, carbohydrate, nucleotides, pantothenate, 
and vitamins and cofactors) were in common between day 8 and 16. Many of these networks are also differentially 
expressed at the 384 vs 0 hour comparison, when the adipocyte is fully mature.

Time lapse (TL). Time lapse analysis identified changes between time points and provided a more dynamic 
view of the differentiation process (Fig. 6). The majority of pathways differentially regulated between time points 

Figure 6. Same as Fig. 5, but for TL analysis.

TP Hr
Signaling 
Pathways

Transcription 
Factor Metabolism Energy

Membrane 
Structure Cell Struct/Funct

6 43 (30) – 4 (4) – – –

48 56 (52) 4 (2) 12 (10) 3 (3) 12 (11) 14 (13)

96 74 (69) 9 (8) 25 (23) 7 (7) 17 (9) 12 (10)

192 66 (60) 6 (6) 32 (31) 9 (8) 11 (8) 11 (8)

384 74 (67) 8 (7) 27 (26) 4 (4) 17 (13) 5 (4)

Table 1.  Number of Time Point Pathways by Functional Class.  Numbers in parenthesis are pathways with 
50% or greater up-regulation within that class.



www.nature.com/scientificreports/

1 4Scientific RepoRts | 6:28851 | DOI: 10.1038/srep28851

(Table 3) involved signal transduction with their highest percentages of total pathways at the early (6 v 0 hr) and 
late (384 v 192 hr) intervals (91% and 72%, respectively). While many of the pathways that differed between 
time points were the same as those between a time point to 0 hr, the majority of these networks were further 
up-regulated as differentiation occurred (examples in Table 4). The intermediate time intervals had a greater 
number of pathways at p <  0.05 which were also more functionally diverse. Many non-overlapping, up-regulated 
metabolic and cell-signaling pathways were identified in the first 3 time lapse comparisons. In contrast to the 
extensive changes in gene expression between 192 and 96 hours, fewer pathways were identified in the com-
parison between day 16 and day 8 (384 v 192h). The pathways regulating cell shape and structure as well as 
metabolic pathways were the few pathways that featured prominently during the 384 v 192 hr comparison. The 
data summarized here indicates that SGBS cells showed characteristic adipocyte features by 192 hours with subse-
quent transcriptional regulation targeted toward signaling networks that likely maintained the differentiated state. 
These data were consistent with our previous studies showing adipocyte specific metabolic flux was established at 
192 hours but more robust at 384 hours31,69. A novel finding of these analyses was the up-regulation of the sodium 
independent glucose transporters between 384 and 192 hours. These transporters (SLC2A5 and SLC2A8) are 
responsible for not only glucose uptake, but also fructose uptake70,71. A more detailed description of time lapse 
analysis is in the Supplementary file 1.

Time point Selected Processes Result Ref (e.g.)

 6 v C
Decrease in cytokine signaling Certain cytokines block 

adipogenesis 19,20,67

Differential transcription factor 
regulation (e.g., JUN, FOS)

Cell cycle arrest, promotion of 
adipogenesis 76–79

 48 v C

Transamination Decreased amino acid catabolism 68

PPAR Signalling Pathway Nuclear receptor signaling 80

7 pathways associated with ribosome 
function New protein synthesis 21

Differential regulation of actin and 
related proteins Changes in cytoskeletal structures 81–83

Insulin Insulin responsiveness 84

Integrin Cell surface remodelling 85

Branched chain amino acid Branched chain amino acid 68,86–88

Synthesis of very long chain FA Fat Metabolism 89

Oxidative phosphorylation Mitochondrial function 90

Leptin Leptin signalling

 96 v C

PPAR-γ  pathway PPAR signalling 74,91

Focal adhesion/integrin Cell remodelling 92

Insulin signalling Insulin responsiveness 84

Pathogenic response to E. Coli Tubulin and associated processes 82

Leptin Leptin signalling 67

Pathways associated with ribosome 
function New protein synthesis 21

 192 v C

WNT signalling Coupling signalling to 
transcription 93,94

Insulin signalling Insulin responsiveness 84

Metabolism of proteins Protein & mitochondrial 
synthesis 21

PPAR, VDR_RXR Nuclear receptor signalling 74,80,91

Peroxisome Fatty acid metabolism

IL5, ERK, ILK, P53 Cell signaling

Prolactin receptor signalling Regulation of glucose/lipid & 
transporters 95

Porphyrin metabolism Linked to WNT signaling 96

Pyruvate, Citrate and TCA cycle Changes in energy metabolism 97

Branched chain amino acid Lipid & energy production 68,86,87

 384 v C

Insulin pathway Insulin responsiveness 84

Glucose metabolism Energy metabolism & precursors 67

Adipokine networks Cell signalling 98

Integrin Extracellular matrix 85

Leptin Adipokine signaling 67,98

Cell cycle Maintenance of cell state 99

Branched chain amino acid Lipid & energy production 68

Table 2.  Time Points Key Pathways (hr versus control).
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Discussion
Analyzing mRNA abundance with microarrays and more recently RNA sequencing technologies is now a routine 
tool for high throughout analysis of cellular and tissue systems. However, the “data glut” makes it challenging for 

TL
Signaling 
Pathways

Transcription 
Factor Metabolism Energy

Membrane 
Structure Cell Struct/Funct

6 v 0 43 (30) – 4 (4) – – –

48 v 6 69 (63) 3 (3) 19 (17) 2 (2) 9 (5) 8 (5)

96 v 48 36 (35) 2 (2) 13 (12) 3 (3) 9 (2) 5 (3)

192 v 96 60 (49) 1 (1) 27 (26) 2 (2) 11 (1) 5 (1)

384 v 192 28 (28) 1 (1) 4 (2) 1 (1) 5 (5) 2 (2)

Table 3.  Number of Time Lapse Pathways by Functional Class.  Numbers in parenthesis are pathways with 
50% or greater up-regulation within that class.

Time lapse Selected Processes Result Ref (e.g.)

6 v 0
Decrease in cytokine signaling Certain cytokines block adipogenesis 19,20,67

Differential transcription factor 
regulation

Cell cycle arrest, promotion of 
adipogenesis 76–79

48 v 6

IL signalling pathways Signalling through JAK/STAT 67,100

Peroxisome & UnsatFA synthesis Fatty acid metabolism 101

Prolactin receptor signalling Regulation of glucose/lipid & 
transporters 95

Pathogenic E. coli Changes in cytoskeletal structures 81–83

PPAR-γ  pathway Nuclear receptor signalling 74,80,91

NOTCH2,3,4 Signalling 102,103

TGF-β Signalling 104

Integrin Extracellular matricx 85,105

96 v 48

PPAR-γ  pathway PPAR signalling 74,91

Focal adhesion/integrin Cell remodelling 92

Insulin signalling Insulin responsiveness 84

Leptin & adipokine Adipokine signaling 67,98

Unsaturated fatty acid synthesis Fatty acid metabolism 101

Glyoxlate, dicarboxylate, glycine, 
serine, threonine

Precursors including for fatty acid 
biosynthesis

NOTCH, TGFB, TRIAL, CTCF Cell signalling 102,103

Citrate and TCA cycle Changes in energy metabolism 97

Syndecan Link ECM to signalling pathways 106

P53 pathway Cell cycle control 107

192 v 96

WNT signalling Coupling signalling to transcription 93,94

Insulin signalling Insulin responsiveness 84

Glucose metabolism Changes in energy metabolism 94

PPAR signalling PPAR signalling 74,91

FOXM1 Multipl with DNA repair 108

Peroxisome, FA metabolism Fatty acid metabolism 101

IL5, ERK, ILK, P53 Cell signaling

Porphyrin metabolism Linked to WNT signaling 96

Regulation of pyruvate 
dehydrogenase, Citrate & TCA cycle Changes in energy metabolism 97

Syndecan Link ECM to signalling pathways 106

Branched chain amino acid Lipid biosynthesis 109

384 v 192

Na independent glucose transporters Increased glucose & fructose uptake

FRA Pathway Transcriptional regulations 98,110

Integrin 4 Basement membrane structure 105

NGF and Toll Cell signaling 111

IGF1 Pathway Adipose regeneration 112

Insulin signalling Insulin responsiveness 84

Cardiaegf Calcium regulation 113

Table 4.  Time Lapse Key Pathways.
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biologists to comprehensively interpret the results of sophisticated computational analysis, particularly when 
there is a very large number of differentially expressed genes. In many cases, the top 10 gene ontologies or the 
top 10 genes extracted from the high dimensional data are used to explain complex biological processes. Such 
approaches to data analysis limit the understanding of how cell or tissue systems operate.

Our novel network enrichment approach has advantages over other methodologies that use clustering and 
interacting genes or comparisons of submitted lists with annotated gene sets for functional analysis2,72,73. For 
example, clustering based on the gene ontology terms or expression profiles provides weak criteria for functional 
analysis and the predicted interactions between the gene products do not ensure that they are part of the same 
network – i.e., co-expression does not imply functional interaction. Another challenge of current enrichment 
analysis tools is their representation of results as list of GO terms and lack of condition specificity72. NASFinder 
reduces a list of molecules of interest after network mapping to a related group of molecules with a specific recep-
tor/transporter, and improves discriminative power of gene sets for functional analysis. NASFinder improves the 
specificity of results by producing the tissue specific background network.

The networks and pathways identified by NASFinder confirmed and extend many independent studies of 
different pathways involved in adipogenesis which tend to analyze selected components of the system (e.g., 
transcription factor regulation during adipogenesis)74 or rely solely on p-values to rank discovered pathways. 
NASFinder provides a scoring system that ranks negatively and positively regulated pathways and networks and 
provides a score to indicate the activity of a given network in any comparison. Network activity scores show 
how different processes are occurring at a given time point (or between time points) but also how pathways are 
altered across time and differentiation. The results presented here can also be used to identify adipocyte systems 
processes within the newly described white adipose tissue systems network75.

We developed a (manual) process that maps pathways to a model cell. The position of these symbols repre-
sents the approximate cellular location of the majority of the components of the network since some members 
of a given cytoplasmic network (for example) may be localized to the cell membrane or nucleus (white lines in 
Figs 5 and 6 indicate this connection). These visualization tools allow for a more systematic view of how various 
pathways in the cell were regulated at a given time point or condition. An Excel file (Supplementary file 2-S2) 
consisting of a matrix of genes and identified pathways at each time point or time lapse was used to create Venn 
diagrams to show estimates of genes belonging to related pathways. A color code indicated up or down regulation 
for the pathway or network. For example, the 96 v 0 hr cell model (Fig. 5) shows the up-regulation of transla-
tional machinery, mitochondrial associated pathways, peroxisomal and PPAR signaling networks, and certain 
membrane associated complexes. The coordinate regulation of these pathways would be expected to play a role 
in cellular differentiation.

Global transcriptomic analysis and mapping of differentially expressed genes to networks uncovered another 
advantage of NASFinder. Gene families are often involved in complex cellular processes making it difficult to 
predict the biological roles of individual genes within the families. For example, membrane and extracellular 
matrix networks may be composed of different members of the integrin, laminin, and other membrane proteins 
interacting with different cellular structures (e.g., actin, also composed of different members of the family). The 
timing of gene expression may provide clues as to the function of a particular family member within the complex, 
assuming that – for example - timed transcriptional regulation during differentiation indirectly alters interactions 
of the protein complex through changes in protein levels. Although further biochemical studies are needed to 
prove any hypothesis generated from transcript abundance, the changes in expression may provide insights into 
how complex protein structures need to be regulated during the differentiation process. Since interactions of 
individual subunits with cognate partners of other complexes (e.g., integrins and actins) are often known, a more 
dynamic view of the regulatory and structural changes during differentiation may be elucidated.

Our analysis was limited to ‘receptors’ as the class of regulator molecules of interest, which may bias the results 
presented toward signaling pathways. However, metabolic and transcriptional regulatory sub-networks were also 
identified and often had high activity scores. Many of the networks identified with receptor as regulator mole-
cules were also identified when using transcription factors and transporters as regulator molecules (not shown). 
We also used pathways for functional analysis instead of gene ontologies (which is an option in the NASFinder 
method) since our initial curation of the NASFinder output suggested that canonical pathways provided a more 
comprehensible explanation of the biological processes altered during adipogenesis. However, some of the path-
way names relate to phenotype (e.g., response to E. coli infection), which masks the underlying function (in this 
case, cytoskeleton) and necessitate further inspection of individual pathways.

NASFinder and the visualization tools described in this report provide valuable additions to the collection of 
tools for systems analysis of biological samples. Although this report focused on differentiating cells in vitro, no 
conceptual barrier exists to using these methods for other source material (e.g., tissue biopsy) and for other types 
of molecules (e.g., proteomics and metabolomics).

References
1. Bonetta, L. Bioinformatics - from genes to pathways. Nature Methods 1, 169–175 (2004).
2. Khatri, P., Sirota, M. & Butte, A. J. Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges. Plos Comput 

Biol 8(2), e1002375, doi: 10.1371/journal.pcbi.1002375 (2012).
3. Bass, J. I. F. et al. Using networks to measure similarity between genes: association index selection (vol 10, pg 1169, 2013). Nature 

Methods 11, 349–349 (2014).
4. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabasi, A. L. Hierarchical organization of modularity in metabolic 

networks. Science 297, 1551–1555 (2002).
5. Priami, C. & Morine, M. J. Analysis of biological systems, (Imperial College Press, 2015).
6. Kidd, B. A., Peters, L. A., Schadt, E. E. & Dudley, J. T. Unifying immunology with informatics and multiscale biology (vol 15, pg 

118, 2014). Nature Immunology 15, 894–894 (2014).



www.nature.com/scientificreports/

17Scientific RepoRts | 6:28851 | DOI: 10.1038/srep28851

7. Ritchie, M. D., Holzinger, E. R., Li, R. W., Pendergrass, S. A. & Kim, D. Methods of integrating data to uncover genotype-phenotype 
interactions. Nature Reviews Genetics 16, 85–97 (2015).

8. Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
9. Ali, A. T., Hochfeld, W. E., Myburgh, R. & Pepper, M. S. Adipocyte and adipogenesis. Eur J Cell Biol 92, 229–236 (2013).

10. Stephens, J. M. The Fat Controller: Adipocyte Development. Plos Biol 10(11), e1001436, doi: 10.1371/journal.pbio.1001436. (2012).
11. Cristancho, A. G. & Lazar, M. A. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell 

Biol 12, 722–734 (2011).
12. Rutkowski, J. M., Stern, J. H. & Scherer, P. E. The cell biology of fat expansion. Journal of Cell Biology 208, 501–512 (2015).
13. Camp, H. S., Ren, D. L. & Leff, T. Adipogenesis and fat-cell function in obesity and diabetes. Trends in molecular medicine 8, 

442–447 (2002).
14. de Ferranti, S. & Mozaffarian, D. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem 54, 

945–955 (2008).
15. Regnier, S. M. & Sargis, R. M. Adipocytes under assault: environmental disruption of adipose physiology. Biochim Biophys Acta 

1842, 520–533 (2014).
16. Bäckhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in 

germ-free mice. PNAS 104, 979–984 (2007).
17. Rosen, E. D. & MacDougald, O. A. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7, 885–896 (2006).
18. Tang, Q. Q. & Lane, M. D. Adipogenesis: from stem cell to adipocyte. Annual review of biochemistry 81, 715–736 (2012).
19. Kabir, S. M., Lee, E. S. & Son, D. S. Chemokine network during adipogenesis in 3T3-L1 cells: Differential response between growth 

and proinflammatory factor in preadipocytes vs. adipocytes. Adipocyte 3, 97–106 (2014).
20. Gustafson, B. & Smith, U. Cytokines promote Wnt signaling and inflammation and impair the normal differentiation and lipid 

accumulation in 3T3-L1 preadipocytes. J Biol Chem 281, 9507–9516 (2006).
21. von der Heyde, S., Fromm-Dornieden, C., Salinas-Riester, G., Beissbarth, T. & Baumgartner, B. G. Dynamics of mRNA and 

polysomal abundance in early 3T3-L1 adipogenesis. BMC Genomics 15, 381 (2014).
22. Glaab, E., Baudot, A., Krasnogor, N., Schneider, R. & Valencia, A. EnrichNet: network-based gene set enrichment analysis. 

Bioinformatics 28, I451–I457 (2012).
23. Ma, S., Jiang, T. & Jiang, R. Differential regulation enrichment analysis via the integration of transcriptional regulatory network and 

gene expression data. Bioinformatics 31, 563–571 (2015).
24. Tarca, A. L. et al. A novel signaling pathway impact analysis. Bioinformatics 25, 75–82 (2009).
25. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).
26. Hood, L. & Galas, D. The digital code of DNA. Nature 421, 444–448 (2003).
27. Fisher, J. & Henzinger, T. A. Executable cell biology. Nat Biotechnol 25, 1239–1249 (2007).
28. Nurse, P. Life, logic and information. Nature 454, 424–426 (2008).
29. Priami, C. In Handbook of Natural Computing. (eds. G. Rozenberg, T. Bäck & J. Kok) 1835–1862 (Springer Berlin Heidelberg, 

2012).
30. Wabitsch, M. et al. Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation. Int J Obes 

Relat Metab Disord 25, 8–15 (2001).
31. Varma, V. et al. Metabolic fate of fructose in human adipocytes: a targeted C tracer fate association study. Metabolomics 11, 

529–544 (2015).
32. Huber, W., von Heydebreck, A., Sultmann, H., Poustka, A. & Vingron, M. Variance stabilization applied to microarray data 

calibration and to the quantification of differential expression. Bioinformatics 18 Suppl 1, S96–104 (2002).
33. Barbosa-Morais, N. L. et al. A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression 

data. Nucleic Acids Res 38, e17 (2010).
34. Ritchie, M. E. et al. Empirical array quality weights in the analysis of microarray data. Bmc Bioinformatics 7, 261, doi: 10.1186/1471-

2105-7-261 (2006).
35. Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl 

Genet Mol Biol 3, Article3 (2004).
36. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
37. Wilcox, R. R. Introduction to Robust Estimation and Hypothesis Testing (Elsevier Science Publishing Company, North-Holland, 

2011).
38. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics 

resources. Nature Protocols 4, 44–57 (2009).
39. Fresno, C. & Fernandez, E. A. RDAVIDWebService: a versatile R interface to DAVID. Bioinformatics 29, 2810–2811 (2013).
40. Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34, D535–539 (2006).
41. Small, H. Update on science mapping: Creating large document spaces. Scientometrics 38, 275–293 (1997).
42. Huffner, F., Wernicke, S. & Zichner, T. Faspad: fast signaling pathway detection. Bioinformatics 23, 1708–1709 (2007).
43. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression 

profiles. PNAS 102, 15545–15550 (2005).
44. Murguia, M. & Villasenor, J. L. Estimating the effect of the similarity coefficient and the cluster algorithm on biogeographic 

classifications. Ann Bot Fenn 40, 415–421 (2003).
45. Hazewinkel, M. Mahalanobis distance. Encyclopedia of Mathematics, Vol 3, (Springer, 2001).
46. Lee, E., Chuang, H. Y., Kim, J. W., Ideker, T. & Lee, D. Inferring Pathway Activity toward Precise Disease Classification. Plos 

Computat Biol 4, doi: 10.1371/journal.pcbi.1000217 (2008).
47. Draghici, S. et al. A systems biology approach for pathway level analysis. Genome Res 17, 1537–1545 (2007).
48. Nassiri, I., Masoudi-Nejad, A., Jalili, M. & Moeini, A. Discovering dominant pathways and signal-response relationships in 

signaling networks through nonparametric approaches. Genomics 102(4), 195–201 (2013).
49. Punin, J., Mukkai Krishnamoorthy. XGMML (eXtensible Graph Markup and Modeling Language) 1.0. Draft Specification (2001).
50. Ono, K., Demchak, B. & Ideker, T. Cytoscape tools for the web age: D3.js and Cytoscape.js exporters. F1000Research 3, 143 (2014).
51. Coleman, M. K. & Parker, D. S. Aesthetics-based graph layout for human consumption. Software Pract Exper 26, 1415–1438 

(1996).
52. Krzywinski, M. et al. Circos: An information aesthetic for comparative genomics. Genome Research 19, 1639–1645 (2009).
53. Geistlinger, L., Csaba, G. & Zimmer, R. Bioconductor’s EnrichmentBrowser: seamless navigation through combined results of 

set- & network-based enrichment analysis. BMC Bioinformatics. 17, 45 (2016).
54. Chen, J., Bardes, E. E., Aronow, B. J. & Jegga, A. G. ToppGene Suite for gene list enrichment analysis and candidate gene 

prioritization. Nucleic Acids Res. 37, W305–11 (2009).
55. Reimand, J., Arak, T. & Vilo, J. g:Profiler-a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res 39, 

W307–W315 (2011).
56. Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 

(2013).
57. Jiao, X. L. et al. DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 28, 1805–1806 (2012).
58. Chang, J. T. & Nevins, J. R. GATHER: a systems approach to interpreting genomic signatures. Bioinformatics 22, 2926–2933 (2006).



www.nature.com/scientificreports/

1 8Scientific RepoRts | 6:28851 | DOI: 10.1038/srep28851

59. Hung, J. H. Gene Set/Pathway enrichment analysis. Methods Mol Biol 939, 201–213 (2013).
60. Kamburov, A., Stelzl, U., Lehrach, H. & Herwig, R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res 41, 

D793–D800 (2013).
61. Bisio, A. et al. Cooperative interactions between p53 and NFkappaB enhance cell plasticity. Oncotarget 5, 12111–12125 (2014).
62. Lion, M. et al. Interaction between p53 and estradiol pathways in transcriptional responses to chemotherapeutics. Cell Cycle 12, 

1211–1224 (2013).
63. Lin, C. Y. et al. Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet 3, e87 (2007)
64. Choudhary, V. et al. Novel role of androgens in mitochondrial fission and apoptosis. Mol Cancer Res 9, 1067–1077 (2011).
65. Fischer-Posovszky, P., Newell, F. S., Wabitsch, M. & Tornqvist, H. E. Human SGBS Cells - a Unique Tool for Studies of Human Fat 

Cell Biology. Obesity Facts 1, 184–189 (2008).
66. Allott, E. H. et al. The SGBS cell strain as a model for the in vitro study of obesity and cancer. Clin Transl Oncol 14, 774–782 (2012).
67. Rodriguez, A., Ezquerro, S., Mendez-Gimenez, L., Becerril, S. & Fruhbeck, G. Revisiting the adipocyte: a model for integration of 

cytokine signaling in the regulation of energy metabolism. Am J Physiol Endocrinol Metab 309, E691–714 (2015).
68. Green, C. R. et al. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat Chem Biol 12, 15–21 

(2016).
69. Varma, V. et al. Fructose Alters Intermediary Metabolism of Glucose in Human Adipocytes and Diverts Glucose to Serine 

Oxidation in the One-Carbon Cycle Energy Producing Pathway. Metabolites 5, 364–385 (2015).
70. Du, L. & Heaney, A. P. Regulation of adipose differentiation by fructose and GluT5. Mol Endocrinol 26, 1773–1782 (2012).
71. Debosch, B. J., Chen, Z., Saben, J. L., Finck, B. N. & Moley, K. H. Glucose transporter 8 (GLUT8) mediates fructose-induced de 

novo lipogenesis and macrosteatosis. J Biol Chem 289, 10989–10998 (2014).
72. Mitrea, C. et al. Methods and approaches in the topology-based analysis of biological pathways. Frontiers in physiology 4, doi: 

10.3389/fphys.2013.00278 (2013).
73. Winterhalter, C., Widera, P. & Krasnogor, N. JEPETTO: a Cytoscape plugin for gene set enrichment and topological analysis based 

on interaction networks. Bioinformatics 30, 1029–1030 (2014).
74. Lahnalampi, M., Heinaniemi, M., Sinkkonen, L., Wabitsch, M. & Carlberg, C. Time-Resolved Expression Profiling of the Nuclear 

Receptor Superfamily in Human Adipogenesis. Plos One 5 (2010).
75. Kelder, T. et al. White adipose tissue reference network: a knowledge resource for exploring health-relevant relations. Genes Nutr 

10, 439 (2015).
76. Mariani, O. et al. JUN oncogene amplification and overexpression block adipocytic differentiation in highly aggressive sarcomas. 

Cancer Cell 11, 361–374 (2007).
77. Knebel, B. et al. A mutation in the c-fos gene associated with congenital generalized lipodystrophy. Orphanet journal of rare 

diseases 8, 119, doi: 10.1186/1750-1172-8-119, (2013).
78. Kim, Y. J., Kim, H. J., Chung, K. Y., Choi, I. & Kim, S. H. Transcriptional activation of PIK3R1 by PPARgamma in adipocytes. Mol 

Biol Rep 41, 5267–5272 (2014).
79. White, U. A. & Stephens, J. M. Transcriptional factors that promote formation of white adipose tissue. Mol Cell Endocrinol 318, 

10–14 (2010).
80. Hallenborg, P. et al. The elusive endogenous adipogenic PPARgamma agonists: Lining up the suspects. Prog Lipid Res, Dec. (61), 

149–62, doi: 10.1016/j.plipres.2015.11.002, (2015).
81. Yang, W. L. et al. Arp2/3 complex regulates adipogenesis by controlling cortical actin remodelling. Biochemical Journal 464, 

179–192 (2014).
82. Feng, T. S., Szabo, E., Dziak, E. & Opas, M. Cytoskeletal Disassembly and Cell Rounding Promotes Adipogenesis from ES Cells. 

Stem Cell Rev Rep 6, 74–85 (2010).
83. McLean, J. R., Chaix, D., Ohi, M. D. & Gould, K. L. State of the APC/C: Organization, function, and structure. Critical reviews in 

biochemistry and molecular biology 46, 118–136 (2011).
84. Newgard, C. B. Interplay between Lipids and Branched-Chain Amino Acids in Development of Insulin Resistance. Cell Metab 15, 

606–614 (2012).
85. Liu, J. et al. Changes in integrin expression during adipocyte differentiation. Cell Metab 2, 165–177 (2005).
86. Herman, M. A., She, P. X., Peroni, O. D., Lynch, C. J. & Kahn, B. B. Adipose Tissue Branched Chain Amino Acid (BCAA) 

Metabolism Modulates Circulating BCAA Levels. J Biol Chem 285, 11348–11356 (2010).
87. Kitsy, A. et al. Effects of Leucine Supplementation and Serum Withdrawal on Branched-Chain Amino Acid Pathway Gene and 

Protein Expression in Mouse Adipocytes. Plos One 9(7), e102615, doi: 10.1371/journal.pone.0102615, (2014).
88. Halama, A. et al. Metabolic switch during adipogenesis: From branched chain amino acid catabolism to lipid synthesis. Arch 

Biochem Biophys 589, 93–107 (2016).
89. Kobayashi, T. & Fujimori, K. Very long-chain-fatty acids enhance adipogenesis through coregulation of Elovl3 and PPARgamma 

in 3T3-L1 cells. Am J Physiol Endocrinol Metab 302, E1461–1471 (2012).
90. Llobet, L., Toivonen, J. M., Montoya, J., Ruiz-Pesini, E. & Lopez-Gallardo, E. Xenobiotics that affect oxidative phosphorylation alter 

differentiation of human adipose-derived stem cells at concentrations that are found in human blood. Dis Model Mech 8, 
1441–1455 (2015).

91. Farmer, S. R. Regulation of PPARgamma activity during adipogenesis. Int J Obes (Lond) 29 Suppl 1, S13–16 (2005).
92. Tokunaga, M. et al. Fat depot-specific gene signature and ECM remodeling of Sca1(high) adipose-derived stem cells. Matrix Biol 

36, 28–38 (2014).
93. Moreno-Navarrete, J. & Fernández-Real, J. In Adipose Tissue Biology. (ed. M.E. Symonds) 17–38 (Springer New York, 2012).
94. Yuan, Z. et al. PPARgamma and Wnt Signaling in Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells. Curr 

Stem Cell Res Ther, May 18, doi:10.2174/1574888X10666150519093429, (2015).
95. Ben-Jonathan, N. & Hugo, E. Prolactin (PRL) in adipose tissue: regulation and functions. Adv Exp Med Biol 846, 1–35 (2015).
96. Vanella, L. et al. Increased heme-oxygenase 1 expression in mesenchymal stem cell-derived adipocytes decreases differentiation 

and lipid accumulation via upregulation of the canonical Wnt signaling cascade. Curr Stem Cell Res Ther 4, 28 (2013).
97. Roberts, L. D., Virtue, S., Vidal-Puig, A., Nicholls, A. W. & Griffin, J. L. Metabolic phenotyping of a model of adipocyte 

differentiation. Physiol Genomics 39, 109–119 (2009).
98. Mutch, D. M., Rouault, C., Keophiphath, M., Lacasa, D. & Clement, K. Using gene expression to predict the secretome of 

differentiating human preadipocytes. Int J Obesity 33, 354–363 (2009).
99. Al Adhami, H. et al. A systems-level approach to parental genomic imprinting: the imprinted gene network includes extracellular 

matrix genes and regulates cell cycle exit and differentiation. Genome Res 25, 353–367 (2015).
100. Morine, M. J. et al. Network analysis of adipose tissue gene expression highlights altered metabolic and regulatory transcriptomic 

activity in high-fat-diet-fed IL-1RI knockout mice. J Nutr Biochem 24, 788–795 (2013).
101. Collins, J. M. et al. De novo lipogenesis in the differentiating human adipocyte can provide all fatty acids necessary for maturation. 

J Lipid Res 52, 1683–1692 (2011).
102. Gridley, T. & Kajimura, S. Lightening up a notch: Notch regulation of energy metabolism. Nat Med 20, 811–812 (2014).
103. Song, B. Q. et al. Inhibition of Notch Signaling Promotes the Adipogenic Differentiation of Mesenchymal Stem Cells Through 

Autophagy Activation and PTEN-PI3K/AKT/mTOR Pathway. Cellular physiology and biochemistry: international journal of 
experimental cellular physiology, biochemistry, and pharmacology 36, 1991–2002 (2015).



www.nature.com/scientificreports/

1 9Scientific RepoRts | 6:28851 | DOI: 10.1038/srep28851

104. Santibanez, J. F. & Kocic, J. Transforming growth factor-beta superfamily, implications in development and differentiation of stem 
cells. Biomolecular concepts 3, 429–445 (2012).

105. Noro, A. et al. Laminin production and basement membrane deposition by mesenchymal stem cells upon adipogenic 
differentiation. J Histochem Cytochem 61, 719–730 (2013).

106. Zaragosi, L. E. et al. Syndecan-1 regulates adipogenesis: new insights in dedifferentiated liposarcoma tumorigenesis. Carcinogenesis 
36, 32–40 (2015).

107. Hallenborg, P., Feddersen, S., Madsen, L. & Kristiansen, K. The tumor suppressors pRB and p53 as regulators of adipocyte 
differentiation and function. Expert opinion on therapeutic targets 13, 235–246 (2009).

108. Zona, S., Bella, L., Burton, M. J., Nestal de Moraes, G. & Lam, E. W. FOXM1: an emerging master regulator of DNA damage 
response and genotoxic agent resistance. Biochim Biophys Acta 1839, 1316–1322 (2014).

109. Schmidt, M. & Finley, D. Regulation of proteasome activity in health and disease. Biochim Biophys Acta 1843, 13–25 (2014).
110. Luther, J. et al. Fra-2/AP-1 controls adipocyte differentiation and survival by regulating PPARgamma and hypoxia. Cell Death 

Differ 21, 655–664 (2014).
111. Im, W., Chung, J. Y., Kim, S. H. & Kim, M. Efficacy of autologous serum in human adipose-derived stem cells; cell markers, growth 

factors and differentiation. Cellular and molecular biology (Noisy-le-Grand, France) 57 Suppl, OL1470–1475 (2011).
112. Hu, L. et al. IGF1 Promotes Adipogenesis by a Lineage Bias of Endogenous Adipose Stem/Progenitor Cells. Stem Cells 33, 

2483–2495 (2015).
113. Bhaskar, B., Mekala, N. K., Baadhe, R. R. & Rao, P. S. Role of signaling pathways in mesenchymal stem cell differentiation. Curr 

Stem Cell Res Ther 9, 508–512 (2014).

Acknowledgements
We thank Alice Matone, Marie-Pier Scott-Boyer and the whole COSBI team for helpful comments on the pipeline 
during its development and on the manuscript. This study was supported by the National Center for Toxicological 
Research (Protocol E0740401 (VV)), Food and Drug Administration, and funding from the Nestle Institute of 
Health Sciences (JK). The results and conclusions presented in this paper are solely the opinion of the authors and 
do not necessarily reflect the opinion of the Food and Drug Administration.

Author Contributions
I.N. and C.P. developed the NASFinder concept with contribution by M.J.M. and R.L. The core of NASFinder was 
implemented by I.N. Subsequent refinements were conducted by the COSBI team, with M.L. improving network 
analysis and R.L. taking the lead development of visualization tools. P.M. adapted NASFinder to the web version. 
V.V. designed the SGBS transcriptomic analysis in discussion with J.K. G.T.N., V.V. and D.S. performed the cell 
culture work, and B.K. performed the microarray experiment. J.K. and V.V. analyzed the NASFinder output. C.P., 
I.N., R.L., M.L. and J.K. wrote the first draft and all authors contributed to the writing.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: Jim Kaput works for Nestlé Institute of Health Sciences, a for-profit company.
How to cite this article: Nassiri, I. et al. Systems view of adipogenesis via novel omics-driven and tissue-specific 
activity scoring of network functional modules. Sci. Rep. 6, 28851; doi: 10.1038/srep28851 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Systems view of adipogenesis via novel omics-driven and tissue-specific activity scoring of network functional modules
	Introduction
	Material and Methods
	SGBS Cell culture
	Transcriptomics data
	Normalization, Variance stabilization
	Filtering
	Re-annotation

	NASFinder pipeline
	Identification of significantly differentially expressed genes
	Time-point differential expression analysis of controls
	Time-lapse differential expression analysis of controls

	Correlation analysis and identification of DEG modules
	Co-expression modules
	Identification of functionally related gene sets (DEG modules)

	Preparation of the human interactome for network analysis and main regulators selection
	Expanding the reference network
	Tissue specificity
	Selecting the closest regulators to the DEGs module

	Contextual enrichment analysis and network activity score
	Network activity score and module ranking


	Results
	A novel pipeline to detect and rank tissue-specific sub-networks identified by omics data
	Visualization
	Benchmarking NASFinder performance
	Curation of adipocyte differentiation analyses –A systems view
	Time Point Analysis
	Time lapse (TL)

	Discussion
	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Systems view of adipogenesis via novel omics-driven and tissue-specific activity scoring of network functional modules
            
         
          
             
                srep ,  (2016). doi:10.1038/srep28851
            
         
          
             
                Isar Nassiri
                Rosario Lombardo
                Mario Lauria
                Melissa J. Morine
                Petros Moyseos
                Vijayalakshmi Varma
                Greg T. Nolen
                Bridgett Knox
                Daniel Sloper
                Jim Kaput
                Corrado Priami
            
         
          doi:10.1038/srep28851
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep28851
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep28851
            
         
      
       
          
          
          
             
                doi:10.1038/srep28851
            
         
          
             
                srep ,  (2016). doi:10.1038/srep28851
            
         
          
          
      
       
       
          True
      
   




