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Population-weighted efficiency in 
transportation networks
Lei Dong1, Ruiqi Li2, Jiang Zhang2 & Zengru Di2

Transportation efficiency is critical for the operation of cities and is attracting great attention 
worldwide. Improving the transportation efficiency can not only decrease energy consumption, 
reduce carbon emissions, but also accelerate people’s interactions, which will become more and more 
important for sustainable urban living. Generally, traffic conditions in less-developed countries are 
not so good due to the undeveloped economy and road networks, while this issue is rarely studied 
before, because traditional survey data in these areas are scarce. Nowadays, with the development of 
ubiquitous mobile phone data, we can explore the transportation efficiency in a new way. In this paper, 
based on users’ call detailed records (CDRs), we propose an indicator named population-weighted 
efficiency (PWE) to quantitatively measure the efficiency of the transportation networks. PWE can 
provide insights into transportation infrastructure development, according to which we identify 
dozens of inefficient routes at both the intra- and inter-city levels, which are verified by several ongoing 
construction projects in Senegal. In addition, we compare PWE with excess commuting indices, and 
the fitting result of PWE is better than excess commuting index, which also proves the validity of our 
method.

Almost all of the dynamical processes we concern within cities, such as human mobility1–4, epidemic spreading5–8, 
and socio-economic activities, are driven by population interactions and based on transportation networks. In a 
broad sense, almost all urban flows (e.g. population, products, energy, information) are carried by “transportation 
networks”. After realizing the importance, most cities are stretching their transportation networks to promote 
urban development, but it is too costly to build new routes to reach every part of a city. Thus, analyzing and 
improving the efficiency of transportation networks are of great importance, since the efficiency improvement 
can not only decrease energy consumption and CO2 emissions9, but also accelerate urban flows, which are critical 
for the sustainability and effective operation of cities10.

Previous researches on transportation efficiency mainly focus on three separate ways: one is about the topol-
ogy of networks, which is devoted to a general network efficiency, which can be applied to information exchange 
and transportation by treating the inverse of distance between node pairs as local measure of efficiency between 
them11. Another is about the geometric properties of spatial networks12,13, and develops an indicator named route 
factor (denote as = ∑ =q
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) to measure the network efficiency by calculating the mean ratio of the distance 

along edges (li0) and Euclidean straight line (di0)14,15. The other one concentrates on the job-housing balance16 or 
excess commuting [i.e., the difference between the average actual commuting time (or distance) and the theoret-
ical minimum average commuting time (or distance)]17,18. The first two do not consider the real population dis-
tribution, while the third one suffers from the use of statistically improbable variable (minimum average 
commuting distance) as a benchmark18, and is limited in finding local inefficient routes. Some recent work uses 
hypergraphs to study transferability of collective transportation line network and begins to concern with passen-
ger system level19. In addition, these methods need either road network data (e.g. ordnance survey) or transpor-
tation survey data, which are costly and time consuming, and might not be available in less-developed countries. 
The data scarcity problem adds up many difficulties to the empirical analysis of transportation efficiency in these 
areas, where the traffic conditions are usually not so good due to the undeveloped economy and infrastructure.

Today, we leave tremendous “digital footprints” (geo-located data collected by electronic equipment) in cit-
ies due to the increasing penetration rate of mobile phones20, social media21, transportation cards22, and credit 
cards23, among others. These “digital footprints” give us a dynamical perspective of the ongoing phenomena in 
cities24,25, and provide us new data source to explore the transportation efficiency. Among these data, call detailed 
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records (CDRs) of mobile phone users are considered to be of the highest quality to estimate the population/
traffic dynamics due to the high penetration rate and lower usage bias than social media data.

In this paper, based on mobile phone CDRs and other open accessed data, we overcome the above-mentioned 
shortcomings and develop a new indicator called population-weighted efficiency (PWE) to quantitatively meas-
ure the road network performance. The population weight factor is based on home-work matrices, which will be 
our Origin-Destination (OD) matrices, extracted from CDRs, and the road network data are based on Google 
Map Application Programming Interface (API). The contributions of our work are as follows: First, the real popu-
lation distribution is imported as the weight to the route factor. Cities with the same road network structure (route 
factor) but different population distribution may have different efficiencies, they can be captured by our method 
rather than the traditional way. Second, mobile phone data and Google Maps are used as proxy variables for 
population and road networks separately, they are quite useful for empirical research in African cities26–29, where 
the urbanization is fast but the population census are costly and not timely updated, and road network data of the 
OpenStreetMap (OSM)30 are sparse. Third, our method can be applied to detect inefficient routes and provide 
suggestions for infrastructure development and improvement. For example, route pairs with a high volume of 
commuters and abnormal low PWE would be considered as in need of improvement or reconstruction. As a case 
study, for Dakar, we identify the most inefficient route pairs at both intra- and inter-city levels, and our results are 
partially verified by several ongoing construction projects (e.g., the Dakar-Diamniadio highway31,32).

In addition, we study ten main cities in Senegal and compare their PWEs with the most commonly used excess 
commuting index, and find that there is a significantly correlation between PWE and the average commuting 
time, and the fitting result of PWE is better than excess commuting index, which further proves the validity of 
our method.

Results
Data description.  Our analysis is based on anonymous mobile phone datasets of CDRs and text exchanges 
at antenna resolution between more than 9 million users of the Orange/Sonatel Group in Senegal from January 
1, 2013, to December 31, 201333. The data are preprocessed33 and provided by D4D Challenge organizers and 
are systematized into sub-datasets: dataset 1 includes the hourly voice and text exchange between mobile phone 
towers, and dataset 2 includes fine-grained anonymized individual mobility data at the antenna level of approxi-
mately 300,000 randomly sampled users for each fortnight. See ref. 33 for a full detailed description of the dataset, 
and more related works based on D4D data can be found in ref. 34.

We focus on ten main cities of Senegal, especially Dakar, which is the capital and the largest city in Senegal. 
The locations of the mobile phone towers and studied cities are displayed in Fig. 1a, and the averaged call den-
sity of Dakar is shown in Fig. 1b. According to the CDRs, we find that: i) on average, in each fortnight, there are 
more than 170,000 users within the region of Dakar, which accounts for almost 60% of the total sampled users 
(300,000); ii) Plateau and Médina are two of the most active regions during the daytime, which is also in agree-
ment with the situation observed in reality. Instead of using the administration city boundary, we define the city 
boundary by the following criteria: i) divide the whole country into sub-regions by Voronoi tessellation, which 
are calculated according to the geographical coordinates of the antennas (see Fig. 1a); ii) calculate the population 
density of each cell based on WorldPop data35 and select all cells with a population density over 100 people/km2; 
and iii) combine the data with Google earth remote sensing data to filter out cells of non-built-up areas (artificial 
recognition). The first four columns of Table 1 show the names, population, and population density of the studied 
cities.

Population-weighted efficiency (PWE).  If two places are geometrically close (with a small geometric 
distance, assigned as de), but the route distance (dr) between them is large (Fig. 2a shows the difference between 

Figure 1.  (a) Cell tower distribution (orange dots) for the ten main cities (blue dots) of Senegal. There are 
1666 cell towers nationwide, 492 of which locate in Dakar. (b) The average daily call density map of Dakar; the 
Plateau and Médina are two of the most active regions in Dakar, which is also in agreement with the situation 
observed in reality. The gray dashed borders in (a) and thin black borders in (b) are Voronoi polygons generated 
according to cell towers. Maps were created using QGIS 2.8 (http://www.qgis.org).

http://www.qgis.org
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the geometric distance and route distance), then we can assume that this route’s structural efficiency de/dr is low 
and requires improvement. Here, the definition of structural efficiency is similar to the route factor proposed in 
refs 14,15. After repeating the process of calculating de/dr for every route, and average the results, we can get the 
efficiency of the whole road networks. This way weights each route equally, but in practice, the traffic volumes of 
routes are expected to be very different from one another, due to the uneven distribution of population. Therefore, 
if we weight the route factor by the proportion of population flows along each route, we can then obtain a more 
practical indicator, the population-weighted efficiency (PWE) for road networks, defined as:
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where P(i,j) stands for the number of persons commuting from place i to j and = ∑P Ptot i j i j, ( , ) is the total size of 
the population flows, dr(i,j) is the route distance between i and j, and de(i,j) is the geometric distance. It is easy to 
calculate de(i,j) between any two locations according to their (longitude, latitude)s, and dr(i,j) could be acquired 
from Google Map API (see the Methods, and Fig. 2b). By integrating the PWEs of each route pair, we can obtain 
the overall PWE of a city:

∑η η= .
(2)i j

ij
,

Based on our definition, η =​ 1 is the most efficient situation (there’s a direct route between any commuting 
pairs); the smaller η is, the less efficient it is.

Users’ behavioral patterns and OD detection.  To understand the PWE of a city, the first step is to iden-
tify the dynamic population distribution, Pi,j, i.e., (at least) where people live and work, which is also called OD 
matrices and usually collected by field transportation survey. While for many developing or less-developed coun-
tries, the transportation survey is not available. Even for developed countries, the survey is usually conducted by 

City name
Pop. 
(104)

Den. 
(pop./km2) PWE

Cmin 
(km)

Cact1 
(km)

Cact2 
(km) Cex1 Cex2

Dakar 333 5447 0.683 1.28 2.20 3.31 41.8 61.3

Diourbel 22 292 0.732 1.36 1.88 2.57 27.7 47.1

Kaolack 23 1036 0.721 1.64 2.45 3.44 33.1 52.3

Louga 20 181 0.755 1.44 1.76 2.46 18.2 41.5

Mbour 42 680 0.725 1.73 3.03 4.34 42.9 60.1

Saint-Louis 26 735 0.730 1.31 2.44 3.32 46.3 60.5

Thies 36 1333 0.716 1.09 2.00 2.85 45.5 61.8

Tivaouance 12 323 0.777 1.32 1.91 2.50 30.9 47.2

Touba 88 980 0.729 1.46 2.37 3.30 38.4 55.8

Ziguinchor 20 962 0.777 1.09 1.85 2.52 41.1 56.7

Table 1.   Population, population density, population-weighted commuting efficiency (PWE) and excess 
commuting index of the ten main cities in Senegal. The population is based on WorldPop data35.

Figure 2.  (a) The diagram of a monocentric city with Manhattan grids. The route distance from location (x, y) 
to the city center (0, 0) is |x| +​ |y|, and the geometric distance is (x2 +​ y2)1/2; (b) The geometric distance (red) and 
route distance (blue) between two points. The base map is from OpenStreetMap30 and modified in Illustrator.
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the government once a year (or longer) for transportation planning purposes. Here, we use mobile phone call data 
to estimate the OD matrices, which has been widely accepted in academia36,37. However, unlike previous related 
works on OD analysis, which assume working hours according to practical experience28,36, we detect OD matrices 
by analyzing users’ behavioral patterns.

For a closer look at the temporal patterns of the mobile phone calls, we find some common features of the 
calling patterns compared with cities in developed countries: there are two peaks in phone call activities, one at 
noon (about 12:00) and another at night (about 21:00–22:00, see Fig. 3a,b), and the second peak in Senegal is a 
little later than in most Spanish cities25. An attractive finding is that the average call duration during the day is 
about 60 seconds (Fig. 3c), which may be influenced by the charging mode or may be merely a reflection of the 
daytime work character, which is short, frequent and brief. Additionally, people in Senegal are quite active during 
nights: the call duration is long (see Fig. 3a), and the number of short messages is very high at night (especially 
late night, see Fig. 3d).

Based on these user behavioral patterns, we identify that the actual working hours are from 10:00 to 19:00. It is 
because the existence of a rapid increase in average call duration before and after this period, which corresponds 
to different active patterns. In Fig. 3d, we observe a striking peak in short messaging service (SMS) behavior at 
approximately 23:00, when the total call duration also peaks (see Fig. 3a,d), which implies another important 
behavior feature that usually occurs during leisure time (i.e., at home). Therefore, we set the home hours as 21:00 
to 06:00 of the next day. For a user, we identify the most frequently visited location (tower) over the two periods 
mentioned above as his or her work/home places, respectively (see the Methods).

Therefore, we can extract an OD pair as the home to work place of each user at antenna resolution. By going 
through all of the users’ records, we obtain the OD matrices at both the intra- (see Fig. 4a,b and Supplementary 
Fig. S1, at antenna resolution) and inter-city levels (see Fig. 5b, at city levels, i.e., treat all the antennas within 

Figure 3.  (a) The total call duration of all users; (b) the number of calls; (c) the average call duration; and (d) 
the number of SMS messages. We found the following results: (i) there are two peaks in calling activity (a,b): 
one is at noon (about 12:00) and another is at night (about 21:00–22:00); (ii) the average call duration during 
the day is about 60 seconds (c), which may be influenced by the charging mode or could just be a reflection of 
the daytime work character; (iii) people in Senegal are quite active during early night and they make longer calls 
compared to day time; few people make calls during the late night, but the ones who do, make much longer calls 
(c), and the number of short messages sent is very high at night (d).
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one city as a node). Figure 4 shows the OD matrices in Dakar (Fig. 4a) and Thies (Fig. 4b): it implies that a lot of 
people commute from west to east in Dakar, whereas the commuting pattern in Thies is from the center to the 
suburbs. It should be noted that these plots only show the geometric links between two places, rather than the 
real routes.

PWE and its applications.  After obtaining the OD matrices, we can query each OD pair’s locations to 
Google Map API, which can return the route distance and travel time between two locations. Figure 4c shows the 
scatter plots of route distance and geometric distance of Dakar and Fig. 4d exhibits Thies. The left-top points of 
Fig. 4c,d indicate routes with high route distances and low geometric distances, which implies that paths between 
these points are zigzags or complicated and of inefficiencies. The PWE of each road can be obtained by plugging 
the OD matrices and the ratio of the real route distance and the geometric distance into Eq. (1).

As an improved indicator for road networks efficiency, PWE has essentially three applications: i) detect inef-
ficient routes within cities and ii) at inter-city level; iii) calculate overall commuting efficiency of each city. In the 
following, we will show the viability and effectiveness of the PWE.

First, as a case study in Dakar, according to the PWE of each road, we identify dozens of the most critical inef-
ficient routes (see Fig. 5a, and Supplementary Table S1 gives the values of top ten inefficient routes). An attractive 
finding is that almost all of these critical inefficient routes are south-north trending, and can be divided into three 
groups (colored in red, blue and green separately in Fig. 5a). The existence of the red group in the east region may 
be mainly caused by the separation of the west-east trending highway, people are forced to detour the way from 
home to work. The blue group in the west region is mainly caused by the high weight of commuting volume, 
P(i,j)/Ptot and the detour. And the green group is another representative type that crosses an enclosed space (the 
airport in Dakar). The pattern of detected inefficient routes implies the necessity of constructing some fast transits 
between the north and south regions.

Figure 4.  The daily OD pairs in Dakar (a) and Thies (b) extracted from the CDRs; Scatter plots of the route 
distance and geometric distance for Dakar (c) and Thies (d); the blue colored points and box indicate routes 
with large route distances and low geometric distances, which require improvement. The size of a node 
represents its OD volume, and the gray line has slope 1. Maps were created using QGIS 2.8 (http://www.qgis.
org).

http://www.qgis.org
http://www.qgis.org
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Second, PWE can be applied to inter-city level by considering the entire antennas within a city to be a node. 
Figure 5b shows the commuting flows between the ten main cities. We find that many people commute between 
Dakar and its surrounding cities, especially Thies, Mbour, and Touba, which indicates that the agglomeration 
degree of the urban population is very high in Senegal and that most of its population live near the Dakar region. 
With a similar calculation for PWE within the city, we can obtain the PWEs for city pairs. We find that there are 
several routes connecting Dakar, Thies and Mbour that are of the lowest PWEs, which indicates that we may need 
to build better roads between these city pairs. Our results are also partially verified by the ongoing construction 
of the Dakar-Diamniadio highway, which makes transit faster between Dakar, Thies, and Mbour31,32 (see inset of 
Fig. 5b).

Third, we compute the overall PWE for all ten main Senegalese cities (see the fourth column of Table 1), from 
which we find that Dakar is the most inefficient city with η =​ 0.683, whereas most city PWEs are about 0.73–0.78. 
The low efficiency of Dakar is mainly due to the lack of fast south-north trending transits and the high work-home 
separation, which could also be inferred from CDRs (see the Methods). In Dakar, We find that most of the users 
are distributed in Dakar Plateau, Grand Dakar, Médina, and Parcelles Assainies during the daytime (Fig. 6a), and 
Parcelles Assainies at night (Fig. 6b). Figure 6c depicts the work-home user differences in Dakar. For each depart-
ment, we obtain a day/night population ratio, which evaluates the work-home separation situation (see Fig. 6d). 
We compare the separation degree of each Region and find that Dakar and Kaolack are the two Regions that have 
the highest separation degree (see Supplementary Table S2 for the calculation of the separation degree).

Comparison between PWE and excess commuting index.  There are many indicators could be used 
to measure commuting efficiency and job-housing balance in transportation literature18. In this section, we want 
to compare the most commonly used one, excess commuting, with PWE. First proposed by Hamilton38, the 
concept of excess commuting is used to measure the difference between the actual commuting distance (or time) 

Figure 5.  (a) The identified most inefficient route pairs in Dakar; there are three groups (red, blue, and green), 
and almost all are south-north trending. The base map is from OpenStreetMap30. (b) Commuting flows between 
ten cities, and the flows are aggregated from antenna resolution to city resolution. We find that there are a lot 
of people who commute between Dakar and its surrounding cities, especially Thies, Mbour, and Touba. (inset) 
The ongoing constructed Dakar-Diamniadio Highway (orange line), which makes transit faster between Dakar, 
Thies, and Mbour. (c) The scatter plot of the PWE (x axis) and average commuting time (y axis). The red line is 
the OLS linear regression fitting line, the coefficient is −​1816 (244), the adjusted R2 is 0.87, and the p-value is 
0.0001, which indicate a significant negative relationship between the PWE and average commuting time. Maps 
were created using QGIS 2.8 (http://www.qgis.org).

http://www.qgis.org
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and the theoretical minimum average commuting distance (or time). Mathematically, the equation of excess 
commuting could be expressed as follows:

=
−

×C C C
C

100
(3)ex

act min

act

where Cact is the actual commuting distance, which is similar to de at individual level if measured by geometric 
distance, or dr by route distance (see Supplementary Fig. S2). Cmin is the minimum commuting distance when all 
working and living places are fixed in urban area, workers in a city choose work places that is closest to their living 
places. In other words, the assumptions of this transportation problem are: 1) the volume of origins, destinations 
of each area and the total flows between them are fixed; 2) individuals choose living and working places to mini-
mize the total travel distance. The most optimal commuting flows could be derived by optimizing:
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where cif is the distance (or time) between area i and area j, Oi is the total number of people living in area i, and Dj 
is the total number of people working in area j. nij is the commuting flow from area i to j.

The minimum commuting flows (nij) are calculated using Scipy.optimize package in Python, and the average 
minimum commuting distance (Cmin) is shown in the fifth column of Table 1. Since Cact varies for different defi-
nitions, here we calculate both geometric distance and route distance, and depict them in the sixth and seventh 

Figure 6.  Day (a) and night (b) density maps of mobile phone users in Dakar, which could be an estimator 
of the population density; (c) the difference between the day and night density map (day minus night); red 
areas indicate that the day density is greater than the night density, and blue areas mean the opposite; (d) the 
scatter plot of the day-time population (x-axis in log scale) and the ratio of the day population over the night 
population (y-axis); each point represents one Department, and different colors represent different Regions 
(Department and Region are all Senegal administrative boundaries, and each Region includes 3–5 Departments). 
We find that Kaolack and Dakar are the two cities with the highest work-home separation degree. Maps were 
created using QGIS 2.8 (http://www.qgis.org).

http://www.qgis.org
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columns of Table 1 respectively. Obviously, Cact1 (geometric distance) is smaller than Cact2 (route distance). 
Combining with Eq. 3, we could get excess commuting indices, Cex1 and Cex2 (see Table 1).

To compare PWE and excess commuting, a third benchmark is needed. Here, we choose average commuting 
time, which is a direct reflection of the transportation efficiency. We calculate the average commuting time in 
each city (see the Methods), and find that both PWE and excess commuting indices highly correlate with average 
commuting time (by OLS regression), which indicates both of them could be used to measure the efficiency of a 
city, however, PWE is better because its correlation coefficient is much higher (R2 =​ 0.87, see Fig. 5c) than the ones 
of Cex1 (R2 =​ 0.24) or Cex2 (R2 =​ 0.42).

Excess commuting can offer valuable insights in evaluating job-housing balance and the overall efficiency of 
a city. However, the minimized commuting flows are obtained by the global optimum solution, making excess 
commuting index unable to find local inefficient routes, which could be improved by our PWE method.

A null model.  To explain why most ηs lie in (0.73, 0.78) (see Table 1), we build a null model to compare 
the simulation with empirical results. Let us assume a monocentric city, where all the people work at the center 
of the city and live uniformly around the city space. The road network of the city is in the form of a lattice (e.g. 
Manhattan grids, see Fig. 2a); therefore, the route distance from the location (x, y) to the city center (0, 0) is 
|x| +​ |y|, and the geometric distance is (x2 +​ y2)1/2. Under these assumptions, we could easily get η =​ 0.77 by simu-
lation (see the Methods). Because the population distribution is not uniform within the city in reality, we also test 
for normal and exponential population density decay from the city center, which are observed in many cities39. 
The PWEs of the normal, and exponential distributions are 0.79 and 0.80, which implies the concentration at the 
city center leads to higher efficiency.

The empirical results for monocentric cities in Senegal are well fitted by simulation except for Dakar. In fact, 
the urban form of Dakar is irregular narrow strip, and cannot be treated as a monocentric city. From both the 
model and empirical results, we could find that PWE is mainly influenced by the road network structure, and the 
population distribution. The more direct routes between OD pairs of high traffic volumes, the higher efficiency 
the road network is. Similarly, increasing the ratio of jobs-housing balance may reduce overall commuting dis-
tance and improve the transportation efficiency.

Discussion
In this paper, basing on CDRs, we introduce a new indicator, the population-weighted efficiency, which tells us 
how efficient the city is and provides a quantitative measurement to guide transportation infrastructure devel-
opment. This indicator is helpful for evaluation of urban planning and designing, and could be applied to other 
spatial networks easily. Besides, our method to obtain the OD matrices is more objective which is based on users’ 
behavior patterns rather than practical sense. We prove that the PWE is a proper indicator for evaluating the 
efficiency in two ways. First, according to the PWE, we identify the most inefficient roads both within Dakar and 
between cities, which are partially verified by ongoing constructed roads. Second, we compare PWE with excess 
commuting, the most commonly used commuting efficiency index in transportation literature, and find that 
PWE is highly correlated with the average commuting time, and has a better fitting result than excess commuting.

After comparing the PWE indicator of all ten main cities in Senegal, We discover that Dakar is the most inef-
ficient city, which is mainly due to the lack of fast south-north trending transit and the high degree of work-home 
separation. Another finding is that most Senegalese cities’ average PWE value are approximately 0.73–0.78, and 
we believe that this is a reflection of the monocentric feature and Manhattan road networks (i.e., lattice networks), 
which can be explained by the simple model that we propose. In fact, the efficiency and extendibility of a city is 
strongly influenced by its terrain, current road network and population distribution, and suitable planning strat-
egies are required for special terrain. For example, Dakar may need to build cross-sea transportation, but another 
possibility may lead to the redistribution of land use for the historical heart of the city.

In addition, different types of people may tend to have quite different mobility patterns. The mobility dynam-
ics for local and non-local users may not be similar (see Supplementary Fig. 4) as well as for people with different 
income24,40. For future studies, it will be critical to distinguish between different dynamics for different types of 
users41, which could be helpful when performing simulations for policy impact evaluations or urban planning 
and real-estate development. One more possible exploration is assessing the infrastructure development within a 
region by comparing the infrastructure density (e.g., road density) and population density within the same region 
(see Supplementary Fig. 4).

Methods
OD detection.  By integrating the CDR data records, we obtain a list of places a user visited with information 
of both when and how many times these visits occurred. Then, we count the locations at which the user appears 
at both night and day and consider the places that appear with the highest frequencies to be the home and work-
place. When we fail to detect the work or home location, we assign it as UNKNOWN. If a user’s home is unknown 
but work is known (or vice verse), we still accumulate the data point as the daytime population and draw it out 
together in Fig. 6. We obtain an extended OD matrix with an extra row and column for users without a detected 
home or work place, respectively. There’s no user with both unknown home and work place, but the non-local 
users in Dakar are easily absent of a home location (see discussion in Supplementary Fig. 3), which also happens 
in developed countries37.

Road network data and efficiency.  The Google Map API (http://maps.googleapis.com/maps/api/) can 
return the travel time (by car, in seconds) and route distance between two locations, and the geometric distance 
between these two locations can be easily calculated according to their (longitude, latitude)s. In addition, the 

http://maps.googleapis.com/maps/api/
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Google API can return real-time data on travel time in big cities, which could be used to compute the average 
commuting time in cities.

Simulation for the null model.  The simulation is performed as follows. We split the entire L ×​ L space into 
L2 lattices, which represent Manhattan road networks. We uniformly generate 100,000 points, which are located 
at the intersections of the road network. Therefore, we calculate the geometric distance (x2 +​ y2)1/2 and route dis-
tance (|x| +​ |y|) to the center of the L ×​ L space, where the central lattice represents the working place. The PWEs 
of the uniform, normal, and exponential distributions are 0.77(0.001), 0.79(0.001), and 0.80(0.001), respectively. 
Each simulation was performed 10 times under the R Environment.
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