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Non-commutativity measure of 
quantum discord
Yu Guo

Quantum discord is a manifestation of quantum correlations due to non-commutativity rather than 
entanglement. Two measures of quantum discord by the amount of non-commutativity via the trace 
norm and the Hilbert-Schmidt norm respectively are proposed in this paper. These two measures can 
be calculated easily for any state with arbitrary dimension. It is shown by several examples that these 
measures can reflect the amount of the original quantum discord.

The characterization of quantum correlations in composite quantum states is of great importance in quantum 
information theory1–6. It has been shown that there are quantum correlations that may arise without entangle-
ment, such as quantum discord (QD)4, measurement-induced nonlocality (MIN)6, quantum deficit7, quantum 
correlation induced by unbiased bases8,9 and quantum correlation derived from the distance between the reduced 
states10, etc. Among them, quantum discord has aroused great interest in the past decade11–30. It is more robust 
against the effects of decoherence13 and can be a resource in quantum computation31,32, quantum key distribu-
tion33 remote state preparation34,35 and quantum cryptography36.

Quantum discord is initially introduced by Ollivier and Zurek4 and by Henderson and Vedral5. The idea is to 
measure the discrepancy between two natural yet different quantum analogs of the classical mutual information. 
For a state ρ of a bipartite system A +  B described by Hilbert space Ha ⊗  Hb, the quantum discord of ρ (up to part 
B) is defined by

ρ ρ ρ= − |Π
Π

D I I( ): min{ ( ) ( )}, (1)
b

b

where, the minimum is taken over all local von Neumann measurements Π b, ρ ρ ρ ρ= + −I S S S( ): ( ) ( ) ( )a b   
is interpreted as the quantum mutual information, ρ ρ ρ= −S ( ): Tr( log ) is the von Neumann  
entropy, ρ ρ ρΠ = − ΠI S S( )}: ( ) ( )b

a
b , ρ ρΠ = ∑S p S( ): ( )b

k k k  and ρ ρ= ⊗ Π ⊗ ΠI I( ) ( )k p a k
b

a k
b1

k
 with =p Trk  

ρ⊗ Π ⊗ ΠI I[( ) ( )]a k
b

a k
b , k =  1, 2, … , dim Hb. Calculation of quantum discord given by Eq. (1) in general is 

NP-complete since it requires an optimization procedure over the set of all measurements on subsystem B37. 
Analytical expressions are known only for certain classes of states15,16,20,38–45. Consequently, different versions (or 
measures) of quantum discord have been proposed19,24,25,46,47: the discord-like quantities in46, the geometric meas-
ure47, the Bures distance measure24 and the trace norm geometric measure19, etc. Unfortunately, all of theses 
measures are difficult to compute since they also need the minimization or maximization scenario.

Let {|ia〉 } be an orthonormal basis of Ha. Then any state ρ acting on Ha ⊗  Hb can be represented by

∑ρ = ⊗E B ,
(2)i j

ij ij
,

where Eij =  |ia〉 〈 ja| and ρ= | 〉〈 | ⊗B j iTr ( 1 )ij a a a b . That is, assume that Alice and Bob share a state ρ, if Alice take 
an ‘operation’

ρ ρΘ | 〉〈 | ⊗ j i: 1 (3)ij a a b

on her part, then Bob obtains the local operator Bij (Note here that, the ‘operation’ Θ ij is not the usual quantum 
operation which admits the Kraus sum respresentation). Quantum discord is from non-commutativity: D(ρ) =  0 
if and only if Bijs are mutually commuting normal operators47,48. It follows that the non-commutativity of the 
local operators Bijs implies ρ contains quantum discord. The central aim of this article is to show that, for any 
given state written as in Eq. (2), its quantum discord can be measured by the amount of non-commutativity of 
the local operators, Bijs. In the following, we propose our approach: the non-commutativity measures. We present 
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two measures: the trace norm measure and the Hilbert-Schmidt norm one. Both of them can be calculated for 
any state directly via the Lie product of the local operators. We then analyze our quantities for the Werner state, 
the isotropic state and the Bell-diagonal state in which the original quantum discord have been calculated. By 
comparing our quantities with the original one, we find that our quantities can quantify quantum discord roughly 
for these states.

Results
The amount of non-commutativity.  Let X and Y be arbitrarily given operators on some Hilbert space. 
Then [X, Y] =  XY −  YX =  0 if and only if ||[X, Y]|| =  0, ||·|| is any norm defined on the operator space. That is, ||[X, 
Y]|| ≠  0 implies the non-commutativity of X and Y. In general, ||[X, Y]|| reflects the amount of the non-commu-
tativity of X and Y. Furthermore, for a set of operators Γ  =  {Ai : 1 ≤  i ≤  n}, the total non-commutativity of Γ  can 
be defined by

∑Γ = || ||.
<

N A A( ): [ , ]
(4)i j

i j

In ref. 49, N(Γ ) is used for measure the ‘quantumness’ of a quantum ensemble Γ  when ||·|| is the trace norm 
||·||Tr, i.e., = †A A ATrTr

. We remark here that any norm can be used for quantifying the amount. It is a nat-
ural way that, for any state as in Eq. (2), the amount of its non-commutativity can be considered as the total 
non-commutativity of {Bij}, N({Bij}).

Non-commutativity measure of quantum discord.  Let ρ = ∑ ⊗E Bi j ij ij,  be a state acting on Ha ⊗  Hb 
as in Eq. (2). We define a measure of QD for ρ by

∑ ∑ρ = || || + || || .
≤ ≤ < <

D B B B B( ): [ , ] [ , ]
(5)

N
i k j l

ij kl
i k l j

ij kl
,

Tr
,

Tr

Similarly, we can define

∑ ∑ρ′ = || || + || ||
≤ ≤ < <

D B B B B( ): [ , ] [ , ] ,
(6)

N
i k j l

ij kl
i k l j

ij kl
,

2
,

2

where ||·||2 denotes the Hilbert-Schmidt norm, i.e., = †A A ATr( )2
. That is, if Alice takes Θ ijs on her part, 

1 ≤  i, j ≤  dim Ha, then Bob can calculate the amount of non-commutativity through the reduced operators Bijs. By 
definition, it is obvious that i) DN(ρ) ≥  0, ρ′ ≥D ( ) 0N , both DN and ′DN  vanish only for the zero quantum discord 
states, i.e., ρ ρ= ′ =D D( ) ( ) 0N N  iff D(ρ) =  0; ii) both DN and ′DN  are invariant under the local unitary operations 
as that of the quantum discord, i.e., ρ ρ= ⊗ ⊗† †D D U U U U( ) ( )N N a b a b  and ρ ρ′ = ′ ⊗ ⊗† †D D U U U U( ) ( )N N a b a b  
for any unitary operator Ua/b acting on Ha/b (this implies that DN and ′DN  are independent on the choice of the 
local orthonormal bases: if ρ = ∑ ⊗E Bi j ij ij,  with respect to the local orthonormal basis {|ia〉  |jb〉 } and 
ρ = ∑ ′ ⊗ ′E Bi j ij ij,  with respect to another local orthonormal basis | ′ | ′i j{ }a b , then ′ = †E U E Uij a ij a  and 
′ = †B U B Uij b ij b  for some local unitary operators Ua and Ub); iii) ρ ρ≥ ′D D( ) ( )N N  for any ρ. By the definitions, it is 

clear that both DN and ′DN  can be easily calculated for any state.
Let |ψ〉  be a pure state with Schmidt decomposition ψ λ= ∑ k kk k a b . Then

∑ ∑ψ ψ λ λ λ λ| 〉〈 | =








∈Ω

D ( ) 2 ,
(7)

N
i j

i j
k l

k l
, ( , )

∑ ∑ψ ψ λ λ λ λ′ | 〉〈 | =









+

∈Ω′
D ( ) 2 2 ,

(8)
N

i j
i j

k l
k l

, ( , )

where Ω =  {(k, l): either i <  k ≤  j ≤  l or k =  i and l =  j if i <  j; i ≤  k <  l if i =  j}, Ω′  =  {(k, l): i <  k ≤  j ≤  l if i <  j; 
i ≤  k <  l if i =  j}. Therefore, DN(|ψ〉 〈 ψ|) =  0 (or ψ ψ′ =D ( ) 0N ) if and only if |ψ〉  is separable. For the maximally 
entangled state |Ψ 〉 = ∑ | 〉| 〉+ i i

d i a b
1  in a d ⊗  d system, it is straightforward that |Ψ 〉〈Ψ | =+ +D ( )N

3
2

 whenever 
d =  2, 8

3
 whenever d =  3 and 4 whenever d =  4, ′ |Ψ 〉〈Ψ | = ++ +D ( ) 1N

2
4

 whenever d =  2, +2 2  whenever 
d =  3 and +13

4
3 2
8

 whenever d =  4. DN and ′DN  reach the maximum values only on the maximally entangled one.
It is worth mentioning here that both DN and ′DN  are defined without measurement, so the way we used is far 

different from the original quantum discord and other quantum correlations (note that all the measures of the 
quantum correlations proposed now are defined by some distance between the state and the post state after some 
measurement). In addition, it is clear that DN(ρ) and ρ′D ( )N  are continuous functions of ρ since both the trace 
norm and Hilbert-Schmidt norm are continuous. In28, a set of criteria for measures of correlations are introduced: 
(1) necessary conditions ((1-a)–(1-e)), (2) reasonable properties ((2-a)–(2-c)), and (3) debatable criteria ((3-a)–
(3-d)). One can easily check that our quantity meets all the necessary conditions as a measure of quantum corre-
lation proposed in28 (note that the condition (1-d) in28 is invalid for DN(ρ) and ρ′D ( )N ). The continuity of DN and 
′DN  meets the reasonable property (2-a) (note: (2-b) and (2-c) are invalid since these two conditions are associated 

with measurement-induced correlation). (7) and (8) guarantee the debatable property (3-a). (3-c) and (3-d) are 
not satisfied as that of the original quantum discord while (3-b) is invalid for DN and ′DN . That is, all the associated 
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conditions that satisfied by the original quantum discord are met by our quantities. From this perspective, DN and 
′DN  are well-defined measures as that of the original quantum discord.

Comparing with the original quantum discord.  In what follows, we compare the non-commutativity 
measures DN and ′DN  with quantum discord D for several classes of well-known states and plot the level surfaces 
for the Bell-diagonal states. These examples will show that DN and ′DN  reflect the amount of quantum discord 
roughly: DN and ′DN  increase (resp. decrease) if and only if D increase (resp. decrease) for almost all these states 
(see Figs 1–3). DN ≥  D and ′ ≥D DN  for almost all these states while there do exist states such that DN <  D and 
′ <D DN  (see Fig. 3(a,b)). In addition, DN and ′DN  characterize quantum discord in a more large scale than that of 

D roughly. For the two-qubit pure state ψ λ= ∑ k kk k a b , we can also calculate that ψ ψ ψ ψ>D D( ) ( )N  
whenever λ1 >  a with a ≈  0.3841 while ψ ψ ψ ψ<D D( ) ( )N  whenever λ1 <  a and ψ ψ ψ ψ′ >D D( ) ( )N  
whenever λ1 >  b with b ≈  0.4279 while ψ ψ ψ ψ′ <D D( ) ( )N  whenever λ1 <  b.

Werner states.  The Werner states of a d ⊗  d dimensional system admit the form50,

Figure 1.  The measures D, DN and ′DN  as a function of α for the Werner state when (a-1) d =  2, (b-1) d =  3 and 
(c-1) d =  4, and that of the isotropic state when (a-2) d =  2, (b-2) d =  3 and (c-2) d =  4. For both the Werner 
state and the isotropic state, DN and ′DN  are monotonic functions of D.
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The three measures of quantum correlation, i.e., DN, ′DN  and D, are illustrated in (a-1), (b-1) and (c-1) in Fig. 1 
for comparison, which reveals that the curves for DN and ′DN  have the same tendencies as that of D.

Isotropic states.  For the d ⊗  d isotropic state

ρ β β β=
−

− + − ∈+

d
I d P1

1
((1 ) ( 1) ), [0, 1],

(12)is 2
2

where = ∑ ⊗+P i j i j
d i j a a b b
1

,  is the maximally entangled pure state in  ⊗d d. Then
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The three measures of quantum correlation, i.e., DN, ′DN  and D, are illustrated in (a-2), (b-2) and (c-2) in Fig. 1 
for comparison. We see from this figure that the curves for DN and ′DN  have the same tendencies as that of D. It 
also implies that i) for both the Werner states and the isotropic states, DN and ′DN  are close to each other, ii) D is 
close to DN and ′DN  with increasing of the dimension d for the Werner states, which in contrast to that of the iso-
tropic states.

Bell-diagonal states.  The Bell-diagonal states for two-qubits can be written as

∑ ∑σ σ σ λ β β=





⊗ + ⊗






=

=
I I c1

4
,

(15)
ab

j
j j j

a b
ab ab ab2 2

1

3

,

where the σjs are Pauli operators, {|βab〉 } are four Bell states β| 〉 ≡ | 〉 + − | ⊕ 〉b b( 0, ( 1) 1, 1 )ab
a1

2
. Then
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Figure 2.  The surfaces of constant DN and ′DN  as a function of c1, c2 and c3 for: (a) DN =  0.05, (b) DN =  0.1 and 
(c) DN =  0.3; (a′) ′ = .D 0 05N , (b′) ′ = .D 0 1N  and (c′) ′ = .D 0 3N .
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σ = + − + +D c c c c c c c( ) 1
2 2

( ), (16)N ab 1 2
3

1 2 1 2

σ′ = + + .D c c c c c( ) 1
2 2 2 (17)N ab 1 2

3
1
2

2
2

In Fig. 2, the level surfaces of DN and ′DN  are plotted respectively. By comparing them with that of D in ref. 51, 
we find that the trends of DN and ′DN  are roughly the same as that of D: DN and ′DN  increase when D increases 
roughly and vice versa. (The geometry of the set of the Bell-diagonal states is a tetrahedron with the four Bell 
states sit at the four vertices, the extreme points of tetrahedron (i.e., (− 1, 1, 1), (1, − 1, 1), (1, 1, − 1) and (− 1, − 1, 
− 1)), see Fig. 1 in ref. 51 for detail.)

Especially, we consider

ρ β β β β β β= | 〉〈 | + | 〉〈 | +
−
| 〉〈 |

p p1
2 2

1
2

, (18)1 01 01 00 00 10 10

ρ β β β β β β= | 〉〈 | +
−

| 〉〈 | + | 〉〈 |p p1
2

( ), (19)2 11 11 01 01 00 00

ρ β β β β= + −p p(1 ) (20)3 11 11 01 01

and

ρ β β β β= + − |.p p(1 ) (21)4 10 10 01 01

The three measures of quantum correlation, i.e., DN, ′DN  and D, are compared in Fig. 3. For ρ1, ρ3 and ρ4, the 
variation trends of DN and ′DN  coincide with that of D while for ρ2 the curves of DN and ′DN  have the same ten-
dency as that of D roughly. In addition, one can see that i) DN and ′DN  can both lager than and smaller than D, 
namely, there is no order relation between D and the two previous measures, ii) while the behavior of both meas-
ures DN and ′DN  is quite similar, they are quite different from that of D.

Going further, we can quantify the symmetric quantum discord, i.e., the quantum discord up to both part A 
and part B. Let {|kb〉 } be an orthonormal basis of Hb, then any ρ acting on Ha ⊗  Hb admits the form

∑ ∑ρ = ⊗ = ⊗E B A F
(22)i j

ij ij
k l

kl kl
, ,

Figure 3.  The measures D, DN and ′DN  as a function of p for (a) ρ1, (b) ρ2, (c) ρ3 and (d) ρ4.
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with Fkl =  |kb〉 〈 lb|. Here, Akl =  Trb(1a ⊗  |lb〉 〈 kb|ρ) are local operators on Ha. Let

∑ ∑

∑ ∑

ρ = || || + || ||

+ || || + || ||
≤ ≤ < <

≤ ≤ < <

D̃ B B B B

A A A A

( ) : [ , ] [ , ]

[ , ] [ , ] ,
(23)

N
i k j l

ij kl
i k l j

ij kl

p s q t
pq st

p s t q
pq st

, ,

, ,

where ||·|| is the trace norm, or the Hilbert-Schmidt norm, or other norms. Then i) ρ ≥D̃ ( ) 0N  and ρ =D̃ ( ) 0N  if 
and only if it is a classical-classical state (ρ is called a classical-classical state if ρ = ∑ | 〉〈 | ⊗ | 〉〈 |p i i j ji j ij a a b b,  with 
pij ≥  0 and ∑ =p 1i j ij, ); ii) D̃N  is invariant under the local unitary operations. We can conclude that ρD̃ ( )N  quan-
tifies the amount of the symmetric quantum discord of ρ.

Discussion
New measures of quantum discord has been proposed by means of the amount of the non-commutativity quan-
tified by the trace norm and the Hilbert-Schmidt norm. Our method provides two calculable measures of quan-
tum discord from a new perspective: unlike the original quantum discord and other quantum correlations were 
induced by some measurement, the two non-commutativity quantities we presented were not defined via meas-
urements. Both of them can be calculated directly for any state, avoiding the previous optimization procedure 
in calculation. The nullities of our measures coincide with that of the original quantum discord and they are 
invariant under local unitary operation as well. The examples we analyzed indicate that, when comparing our 
quantities with the original quantum discord, although they are different and even have large difference for some 
special states, the non-commutativity measures reflect the original quantity roughly overall. We can conclude, 
to a certain extent, that our approach can reflect the original quantum discord for the set of states with arbitrary 
dimension. On the other hand, the non-commutativity measures reflect quantum discord in a larger scale than 
that of the original quantum discord, we thus can use these measures to find quantum states with limited quan-
tum discord or the maximal discordant states (especially for the states represented by one or two parameters), etc.

As usual, only the trace norm and the Hilbert-Schmidt norm are considered. In fact we can also use the gen-
eral operator norm or other norms in the definitions of DN and ′DN . In addition, Fig. 2 shows that the level surfaces 
of ′DN  are nearly symmetric up to the four Bell states directions, which is very close to that of the quantum discord 
D (the level surfaces of D are symmetric up to the four Bell states directions51). Also note that the Hilbert-Schmidt 
norm is more easily calculated than the trace norm one, we thus use the Hilbert-Schmidt norm measure in 
general.
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