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Amplitude dynamics favors 
synchronization in complex 
networks
Lucia Valentina Gambuzza1, Jesus Gómez-Gardeñes2,3 & Mattia Frasca1

In this paper we study phase synchronization in random complex networks of coupled periodic 
oscillators. In particular, we show that, when amplitude dynamics is not negligible, phase 
synchronization may be enhanced. To illustrate this, we compare the behavior of heterogeneous units 
with both amplitude and phase dynamics and pure (Kuramoto) phase oscillators. We find that in small 
network motifs the behavior crucially depends on the topology and on the node frequency distribution. 
Surprisingly, the microscopic structures for which the amplitude dynamics improves synchronization 
are those that are statistically more abundant in random complex networks. Thus, amplitude dynamics 
leads to a general lowering of the synchronization threshold in arbitrary random topologies. Finally, we 
show that this synchronization enhancement is generic of oscillators close to Hopf bifurcations. To this 
aim we consider coupled FitzHugh-Nagumo units modeling neuron dynamics.

Synchronization of interacting units is a universal collective behavior appearing in a variety of natural and arti-
ficial systems1,2. The most used mathematical formalisms to study how synchronization shows up, such as the 
paradigmatic Kuramoto model3, consider each dynamical unit as a pure phase oscillator. This coarse-grained 
dynamical description lies in the following assumption: since each isolated unit has a stable limit cycle oscillation 
at a given natural frequency, it is enough to study the variable accounting for the motion along this limit cycle (the 
phase), while the other dynamical variables may be ignored. This approach is justified provided the attraction to 
the limit cycle is strong compared to the coupling between dynamical units4. On the contrary, if the coupling is 
strong or the attraction to the limit cycle is weak, different phenomena, whose analysis demands both amplitude 
and phase dynamics, such as oscillation death5,6 and remote synchronization7–9, can occur.

The Stuart-Landau (SL) model10,11 allows to bridge the gap between the simplicity of the Kuramoto model 
and the completeness of the amplitude-phase frameworks. In particular the SL model may describe, by means 
of a single parameter, both the behavior close to the Hopf bifurcation, which represents an instance where the 
attraction to the limit cycle is weak, and the case where, on the contrary, the motion is purely confined to the limit 
cycle thus behaving as a phase oscillator.

Synchronization of pure phase oscillators interacting according to a complex network topology has been 
widely studied during the last decade12. These studies have covered different topics such as the conditions for the 
onset of synchronization13, the path towards it14, the interplay between topology and dynamics15,16, the emergence 
of first-order transition17–20, the effect of noise on the robustness of the global state21, among others. However, 
interesting issues about the interplay of a network topology of interactions and the coupled dynamics of the 
amplitude and phase of the oscillators are often ignored from scratch, due to the underlying dynamical frame-
work chosen.

In this paper, we adopt the framework of SL oscillators coupled according to different network configurations 
and compare with its reduction to pure phase oscillators. Our goal is to investigate the effect of the amplitude 
dynamics near the Hopf bifurcation on the synchronization in random complex networks. The most striking 
result is that, when the amplitude dynamics is not negligible and the natural oscillation frequencies of the nodes 
are not homogeneous, synchronization is enhanced regardless of the topology of the underlying network. The 
result holds for oscillators close to the Hopf bifurcation and in particular we also discuss its implications for 
neuron-like dynamics, by illustrating the behavior for the FitzHugh-Nagumo model.
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Model
Our analysis is based on a system of N coupled SL oscillators formally described by:

∑α ω λ= + ⋅ − ⋅ + −
=

u u u A u u( i ) ( ),
(1)j j j j

l

N

jl l j
2

1

where uj is a complex variable so that in polar coordinates: ρ= θu ej j
i j, being ρj the amplitude of oscillator j and θj 

its phase. α is the Hopf bifurcation parameter which controls how fast the trajectory decays onto the attractor, ωj 
is the frequency of oscillator j when uncoupled (natural frequency), λ the coupling strength between interacting 
units and Ajl is the network adjacency matrix (defined as Ajl =  Alj =  1 if j and l are connected, Ajl =  0 otherwise).

In this work, system (1) is studied with respect to the parameters α and λ and different frequency distribu-
tions. Importantly, when α is large compared to coupling λ, the amplitude dynamics vanishes, i.e., ρ =


0j  and 

ρ α=j . In this limiting case Eq. (1) reduce to:

∑θ ω λ θ θ= + −
=
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i.e., the Kuramoto model in a network. As introduced above, our aim is to compare phase synchronization in net-
works of amplitude and phase oscillators with that in networks of pure phase oscillators. In doing so, we unveil the 
key role of the parameter ruling the Hopf bifurcation, which transforms a generic oscillator into a pure phase one 
driving the system far from the critical point. To this aim, we consider SL oscillators [Eq. (1)] with small α (in particu-
lar, α =  1), while for Kuramoto (K) oscillators we study Eq. (2) or, equivalently, Eq. (1) with large α. We will then dis-
cuss the universality of our findings by studying dynamics other than the SL in the proximity of the Hopf bifurcation.

Phase synchronization in the model is monitored through the order parameter r. This parameter, rigorously 
defined in the Methods section, represents the degree of global synchronization in the whole network. Values 
of r close to 1 indicates that all the pairs of oscillators are phase synchronized, whereas r =  0 in the absence of 
synchronization.

Results
Motifs.  We start our discussion by considering the onset of synchronization in small undirected network 
motifs. In particular we analyze the 2-node motif (representing a pair of coupled oscillators) and two 3-node 
motifs (the open and the closed triangle). In the case of the open triangle we have three different configurations 
depending on how natural frequencies are assigned to each of the three oscillators. In particular, if we indicate as 
ω1 the natural frequency of the degree-2 (central) node we have: i) ω1 >  ω2, ω3; ii) ω1 <  ω2, ω3; and iii) ω2 <  ω1 <  ω3 
(or equivalently ω2 >  ω1 >  ω3).

To illustrate the possible scenarios, in Fig. 1 we show the evolution of the degree of synchronization r as a 
function of the coupling λ for both the SL and K dynamics in 4 network motifs for a specific set of frequency 
values. By indicating as λc

SL λ( )c
K  the value of the coupling for which the SL (K) oscillators reach full synchroni-

zation, i.e. r =  1, we observe that, in the 2-node motif [Fig. 1(a)], λ λ=c
SL

c
K, so the two types of oscillators display 

no difference in the synchronization level. On the contrary, in the closed triangle [Fig. 1(b)] λ λ<c
SL

c
K, i.e., the 

transition to full synchronization in the SL oscillators occurs for a lower coupling than in the K oscillators. Finally, 
in the case of the open triangle motif we observe either λ λ<c

SL
c
K [Fig. 1(c)] or λ λ>c

SL
c
K [Fig. 1(d)], depending 

on the distribution of the natural frequencies of the oscillators.
To characterize how the system behavior is influenced by the natural frequencies, without loss of generality we 

have fixed ω2 =  1.01 and systematically varied ω1 and ω3 in [1.01, 5] for the closed and open triangle. For each pair 
(ω1, ω3), we calculate λ ω ω( , )c

K
1 3  and λ ω ω( , )c

SL
1 3 . Figure 2 illustrates the results: the color codes account for the 

difference between the two synchronization thresholds, that is, λ λ−c
K

c
SL. For the closed triangle (Fig. 2(a)), λc

SL 
is always lower than λc

K. On the other hand, for the open triangle (Fig. 2(b)), λ λ<c
SL

c
K in the region below the 

main diagonal (where ω1 >  ω3), whereas in the region above the main diagonal (where ω3 >  ω1) the sign of 
λ λ−c

K
c
SL may be positive or negative. Given the symmetry of the structure, we derive that:

•	 When ω1 >  ω2, ω3 (or ω1 <  ω2, ω3), λ λ<c
SL

c
K both in the open and closed triangles.

•	 When ω2 <  ω1 <  ω3 (or ω2 >  ω1 >  ω3), λ λ<c
SL

c
K for the closed triangle, while this does not always hold for 

the open one.

Hence, in the open triangle the critical value of the coupling is lower in SL oscillators than in K oscillators, 
when the natural frequency of the central oscillator (1) is either larger or smaller than those of the two peripheral 
units (2 and 3), while, otherwise, we can observe either λ λ<c

SL
c
K or λ λ>c

SL
c
K.

As a conclusion, the dynamical behavior of the 3-node motifs leads to the identification of three types of con-
figurations: the closed triangle, which we indicate as motif A, the open triangle with either ω1 >  ω2, ω3 or ω1 <  ω2, 
ω3 (motif B), and the open triangle with either ω2 <  ω1 <  ω3 or ω3 <  ω1 <  ω2 (motif C). Interestingly, the presence 
of an unconstrained amplitude variable yields an enhancing of synchronization in both motifs A and B with 
respect to the usual K framework.

We now tackle the stability analysis of the open/closed triangle to gain insight about the behavior observed 
numerically. Note that the case of a pair of coupled oscillators has been already analytically treated for both K1 and 
SL4 oscillators, yielding λ = ω ω−

c 2
1 2 . We first rewrite Eq. (1) in polar coordinates for the triangle motif, and 

define ϕ12 =  θ1 −  θ2 and ϕ13 =  θ1 −  θ3 to obtain:
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Figure 1.  Synchronization for a 2-node motif and 3-node motifs of Kuramoto and Stuart-Landau oscillators: 
(a) 2-node motif with ω1 =  2.5 and ω2 =  1.01; (b) closed triangle with ω1 =  2.51, ω2 =  1.01, ω3 =  1.66; (c) open 
triangle with ω1 =  2.51, ω2 =  1.01, ω3 =  1.66; (d) open triangle with ω1 =  1.66, ω2 =  1.01, ω3 =  2.51.

Figure 2.  Behavior of λ λ−c
K

c
SL (color coded) as a function of ω1 and ω3 for ω2 =  1.01 in the closed (a) and 

open (b) triangle. For the closed triangle λ λ−c
K

c
SL is always positive, indicating an enhancement of 

synchronization occurring in this motif for SL oscillators, independently from the frequency distribution. For 
the open triangle, an enhancement is found independently from the specific values of the frequencies, only 
provided that ω1 >  ω2, ω3 (or ω1 <  ω2, ω3, data not shown).
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where A23 =  1 (A23 =  0) in the closed (open) triangle. Eq. (3) are written in compact form as λ=

x f x( ; ) with 

x =  [ρ1, ρ2, ρ3, ϕ12, ϕ13]T, where we have highlighted the dependence on the parameter λ as we perform our analy-
sis with respect to different values of the coupling. The fully synchronized state, denoted as x*, implies stationary 
amplitudes and constant phase differences. Therefore, we compute the solution of λ =f x( *, ) 0 (system 

λ =f x( *, ) 0 admits more than one solution, as it is symmetric with respect to ρi, however, only one solution has 
positive amplitudes) and, then, study the stability of the solution by inspecting the sign of the eigenvalues of the 
Jacobian matrix = ∂

∂ =
H f

x x x*
.

The results for the closed and open triangle are illustrated in Fig. 3 by showing the equilibrium value for the 
first component ρ( *)1  of x* for α =  1, representative of the behavior of amplitude and phase oscillators, and 
α =  100, representative of the limiting K case when the attraction to the limit cycle is strong. The first result 
observed from Fig. 3 is the confirmation that for α =  100 the amplitude, independently of the value of λ, is always 
constrained to its value on the limit cycle ρ α=( * )1 . More importantly, the exact value of λc is represented as the 
boundary between the unstable (dashed lines) and stable (continuous lines) solutions. As shown, for the closed 
triangle [Fig. 3(a)] the transition to stability for α =  1 occurs at a lower value than for α =  100, while for the open 
triangle [Fig. 3(b)] this depends on the frequency distribution: in the main panel of Fig. 3(b) λ λ<c

SL
c
K, while in 

the inset of Fig. 3(b) the opposite holds. Thus, the stability analysis confirms, as shown numerically in Fig. 1, that 
amplitude dynamics favors synchronization in motifs A and B, while in motif C we can find scenarios where it 
does not promote synchronization.

Networks.  We now show that amplitude dynamics, in the proximity of the Hopf bifurcation, may favor phase 
synchronization in large populations of heterogeneous oscillators coupled through random network topologies. 
To illustrate this, we consider two paradigmatic examples of network topologies, scale-free (SF) and Erdös-Rényi 
(ER) networks (see Methods). The results reported below are obtained in ER and SF networks of N =  500 nodes, 
but their consistency has been checked for larger N, up to N =  2000. Without loss of generality, the natural fre-
quencies of the oscillators, {ωj}, are uniformly distributed in the interval [1, 3]. However, once N natural frequen-
cies are randomly generated, they are assigned to the N nodes following one of these two different frameworks: 
(i) the frequencies are randomly assigned (RA) to the nodes, or (ii) the frequencies are first ordered in descend-
ing order and then assigned to the nodes from the highest degree one to the lowest (ordered assignment, OA). 
Orderings based on other centrality measures can be also considered. However, as the networks investigated here 
are undirected and unweighted, measures of centrality based on node degree, eigenvector centrality, page rank 
and betweenness, are strongly correlated each other, thus yielding to almost indistinguishable results.

In Fig. 4 we show r(λ) for SF [Fig. 4(a)] and ER [Fig. 4(b)] networks. The main panels illustrate the OA case, 
while the insets the RA one. Remarkably, in all cases, we observe that λ λ<c

SL
c
K  so that synchronization is 

enhanced for SL oscillators with respect to K ones, being this effect more evident when OA applies.
We now link the macroscopic behavior observed in Fig. 4(a,b) to the microscopic structure of networks. In 

fact, a large network may be decomposed into elementary blocks, that is, the motifs22, and it is known that they 
have a role in the synchronization properties of the network23,24. We consider the 3-node motifs A, B and C, and, 
in order to illustrate their effect on the global behavior of the system, we study their occurrence in the networks 
analyzed. The results of our analysis are shown in Fig. 4(c,d) for both OA and RA frameworks. Obviously, due to 
the low clustering of SF and ER networks, the occurrence of closed triangles (motif A) is relatively low and thus 
the enhancement of synchronization in SL oscillators cannot be explained by the presence of such microscopic 
structure. Instead, such enhancement seems to be rooted in the abundance of motif B with respect to C in both ER 
and SF networks, since (at a microscopic scale) amplitude dynamics benefits from motif B to reach synchronized 
states while the presence of motif C could be detrimental for the synchronization of SL oscillators.

Figure 3.  Stability of the solution of Eq. (3) for two different values of α (α =  1, SL and α =  100, K oscillators) 
and two motifs: (a) closed triangle; (b) open triangle. Dashed (continuous) line indicates unstable (stable) 
solutions. The natural frequencies are fixed as ω1 =  2.51, ω2 =  1.01, ω3 =  1.66 (and as ω1 =  1.66, ω2 =  1.01, 
ω3 =  2.51 in the inset).
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The occurrence of motifs clearly depends on two factors: the topology of the network and the way in which 
the natural frequencies are assigned to the nodes. In particular, the number of closed (motif A) or open triangles 
(motifs B and C) is only determined by the network topology, while the algorithm for the frequency-node assign-
ment is the responsible for the differences between the occurrences of motifs B and C. For instance, in the case of 
OA it is clear that motif B is favored over motif C as OA assigns larger frequencies to higher degree nodes. Thus, 
in the case of open triangles, OA automatically sets ω1 >  ω2, ω3.

Contrary to what can be expected at a first glance, RA also favors the occurrence of motif B over motif C, 
thus producing an enhancement of synchronization in networks of SL oscillators. In this case the reasons behind 
the under-representation of motif C are purely combinatorial. Consider the open triangle and three frequencies 
ωa, ωb and ωc such that ωa <  ωb <  ωc. The six possible ways to distribute ωa, ωb and ωc to the three nodes labeled 
as 1 (the central one), 2 and 3 lead to four motifs of type B and two of class C. Hence, as in the case of OA, in a 
random network with the natural frequencies assigned according to RA, the higher occurrence of motif B with 
respect to motif C, results in the enhancement of synchronization when the oscillators have their amplitude as a 
free variable (SL case).

We have so far considered networks with relatively low connectivity, 〈 k〉  =  8. As the mean connectivity 
increases one expects that the number of closed triangles (motif A) grows while the ratio between the occurrence 
of motif B and C remains unaltered. Thus, considering that motif A also acts as a synchronization promoter, one 
expects a further synchronization enhancement as 〈 k〉  increases. This effect is shown in Fig. 5(a), which reports 
λc

SL and λc
K for random ER networks with increasing values of the mean degree 〈 k〉 . Importantly, the curve of λc

SL 
is always below that of λc

K. Figure 5(b) illustrates the full connectivity case, i.e. the all-to-all topology, confirming 
that synchronization enhancement due to the amplitude dynamics also holds in this asymptotic case. Thus, syn-
chronization enhancement due to the amplitude dynamics is also evident in networks with higher connectivity, 
including the full connectivity case. Additionally, Fig. 5(a) also shows that both thresholds decrease with the 
connectivity. This is consistent with Fig. 1(b–d) where it can be seen that both λc

SL and λc
K are lower for closed 

than for open triangles. We also note that in Fig. 5(a) the clustering coefficient increases with 〈 k〉 , leading to an 
enhancement of synchronization. However, a large increase of clustering implies the appearance of higher order 
network motifs, thus demanding a study about the role that such fundamental structures play in the global behav-
ior of the system.

To round off, we now explore the effects that two dynamical ingredients, α and the frequency heterogeneity, 
play in the onset of synchronized states. Up to now, our analysis has been performed by focusing on a fixed value 
of α, that is, α =  1 (α =  100) for the SL (K) oscillator, and a uniform distribution of natural frequencies within a 
fixed interval (ωj ∈  [1, 3]). However, the critical value λc

SL depends on both factors, and, in particular, it decreases 
with α, i.e., as the amplitude dynamics becomes more relevant. This result becomes clear in Fig. 6(a) where the 

Figure 4.  Synchronization for a network of K and SL oscillators: order parameter r vs. λ for a SF topology (a) 
and an ER topology (b); occurrence of motifs for the SF network (c) and the ER network (d). The main panels of 
(a,b) refer to networks with a frequency-node assignment ruled by OA, while the insets to RA. Networks have 
N =  500 and mean degree 〈 k〉  =  8.
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curves of λc
SL (solid line) and of λc

K (dashed line) are reported in the plane λ −  α for an ER network (similar 
results are obtained for motifs and SF networks). When α is large, the behavior of SL oscillators is similar to that 
of K ones, and the curve of λc

SL superimposes to that of λc
K. On the contrary, the smaller becomes α, the closer are 

SL oscillators to the Hopf bifurcation, a condition that favors synchronization. In particular, Fig. 6(a) shows that, 
soon after α =  10 the critical couplings λc

SL and λc
K become different, so that synchronization is significantly 

favored for SL oscillators (outside the region of amplitude death). The threshold gap λ λ−c
K

c
SL is fitted by 

λ λ α− ≈ γ−cc
K

c
SL

1 1 with c1 =  0.048 ±  0.005, γ1 =  0.76 ±  0.1. The fitting is also reported in Fig. 6(a).
We have also studied the behavior with respect to distributions in [1, 1 +  Δ ω] and observed that larger values 

of Δ ω further promote the enhancement of synchronization in networks of SL oscillators with respect to those 
with K units. In particular, Fig. 6(b) illustrates λ λ−c

K
c
SL vs. Δ ω. The curve is functionally fitted by 

λ λ ω− ≈ ∆ γcc
K

c
SL

2 2 with c2 =  0.014 ±  0.0025 and γ2 =  1.75 ±  0.12. The parameter Δ ω quantifies the degree of 
heterogeneity in the node dynamics. Increasing Δ ω makes more difficult to achieve synchronization in the net-
work, thus generally increasing the synchronization threshold (for the case of two oscillators, the analytical for-
mula λ = ω ω−

c 2
1 2  clearly shows this). However, the increase in the threshold for the Kuramoto oscillators is 

greater than for SL, thus resulting in the larger gap λ λ−c
K

c
SL observed. This positive effect of heterogeneity is 

also found in the motifs (see Fig. 2), where the greater is the difference between the oscillator frequencies the 
larger is the gap between the two thresholds.

Figure 5.  Effect of the connectivity in ER networks on λc
SL and λc

K (a) and order parameter r vs. λ for a fully 
connected (all-to-all) topology (b). The network size is N =  500.

Figure 6.  (a) Critical values λc
K (dashed line), λc

SL (solid line) and fitting of λc
SL (red, dash-dot line) in the plane 

λ −  α. AD indicates the region of amplitude death. (b) λ λ−c
K

c
SL as a function of Δ ω, showing how larger 

heterogeneities increase the gap between the two thresholds. The inset illustrates the order parameter r for SL 
(continuous line) and K (dashed line) oscillators for three different values of Δ ω (Δ ω =  1 green line, Δ ω =  2 
red line and Δ ω =  4 blue line). Data refer to an ER network with N =  500 and 〈 k〉  =  8, where the frequencies are 
assigned according to RA.
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Discussion
Since the seminal paper by Rosenblum, Pikovsky and Kurths25, it is well established that amplitude affects syn-
chronization. In fact, in a general framework, the phase of an oscillator (chaotic or periodic) may be written26 as:

θ
ω ρ λ ρ ρ θ θ= + +

d
dt

F G( ) ( , , , ) (4)
i

i i i j i j

where ∈j i and i  is the set of first neighbors of i. If the oscillator is chaotic, then in phase synchronization 
amplitudes are not correlated and the contribution F(ρi) may be viewed as a stochastic term26. As noise can 
enhance synchronization, then, it could be argued that ultimately the phenomenon reported in our work is due to 
the beneficial presence of noisy signals. However, in the case of Stuart-Landau equations, Eq. (4) can be explicitly 
written as:

∑
θ

ω λ
ρ

ρ
θ θ= + −

d
dt

sin ( )
(5)

i
i

j

j

i
j i

from where it is recognized that

ρ =F ( ) 0, (6)i

∑ρ ρ θ θ
ρ

ρ
θ θ= − .G ( , , , ) sin ( )

(7)
i j i j

j

j

i
j i

As F(ρi) =  0, the observed phenomenon cannot be ascribed to an effect of noise terms. Instead, it is rooted in the 
dependence of the coupling function, G(ρi, ρj, θi, θj), on the amplitude and, moreover, is clearly a network effect 
as it does not appear for a pair of oscillators (Fig. 1(a)). The dependence of the coupling on the amplitude is not 
trivial and generates the behavior that is captured from the study of the full system (Eq. 1) performed through the 
stability analysis of its solutions. In fact, when the system synchronizes the amplitudes assume stationary values 
which depend on the model parameters (λ, α and frequency distribution). In particular, a stronger contribution 
of amplitude variations is obtained for oscillators closer to the Hopf bifurcation, as controlled by the parameter 
α. This is a generic mechanism that we have illustrated with SL equations, representing the normal form of Hopf 
bifurcation27. For this reason we expect that our findings are universal and are observed in other systems near the 
Hopf bifurcation.

To verify whether the phenomenon is generic, we have analyzed the FitzHugh-Nagumo (FHN) equations, 
which are able to capture the spiking dynamics of neurons and serve as fundamental model of excitable behavior 
in neural communication28,29. We have performed numerical simulations on N coupled FHN units:

∑

∑
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=
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N
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l

N

jl l j

3

1

1

where ε, a, b, ωi are constant parameters. In particular, ωi sets the frequency of oscillation of the unit i when 
uncoupled from the others and a controls the distance to the critical Hopf bifurcation point (ac =  0). We have 
analyzed system (8) under conditions similar to those defined for the study of the SL oscillators, starting from 
3-node motifs to larger networks, and found consistent results. For example, Fig. 7 illustrates the order parameter 

Figure 7.  Synchronization for a network of FHN oscillators with N = 500. Order parameter r vs. λ for: 
(a) SF topology, (b) ER topology, (c) fully connected (all-to-all) topology. The main panels of (a,b) refer to 
networks with a frequency-node assignment ruled by OA, while the insets to RA. The parameters have been 
set as: ε =  0.01; b =  0.2; ωi such that the natural oscillation frequencies are randomly distributed (with uniform 
distribution) in the interval [1, 3]; a is set to a =  0.3 (red line) or to a =  1 (blue line) to study oscillators at 
different distances from the Hopf bifurcation occurring at ac =  0.
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r calculated for SF, ER and fully connected (all-to-all) topologies, showing that oscillators closer to the bifurcation 
(curve for a =  0.3) have a synchronization threshold lower than those far from the critical point (curve for a =  1).

Summarizing, the study of synchronization in networks of oscillators is often carried out by assuming that 
the motion is described by a phase variable only or, equivalently, that the attraction to the limit cycle is strong 
compared to the coupling strength. However, we have shown that, when this simplification is dropped, phase syn-
chronization is enhanced. This important result holds for generic systems near the Hopf bifurcation and therefore 
may be relevant for neuroscience, nanoscale resonators, electronic circuits, and many other fields where synchro-
nization arises in a spontaneous or intentionally induced way. The result also appears to be quite robust under 
changes of macroscopic structural features of the networks, such as their degree heterogeneity, as it is rooted in 
the dynamical behavior of the microscopic building blocks of the network. Thus, our results show that, despite of 
the simplicity of limit cycle oscillators, new effects are to be observed in the synchronization of complex networks 
when important dynamical features, such as amplitude dynamics, are taken into account.

Methods
Numerical simulations.  Eqs. (1) are integrated with a 4th order Runge-Kutta algorithm with fixed step size 
Δ t =  0.01 for Ts =  1000, and Eq. (8) with Δ t =  0.001 for Ts =  500.

Synchronization order parameter.  To quantify the degree of phase synchronization of a pair of network 
oscillators, j and l, the time averaged order parameter = |〈 〉|θ θ

 − 
r ejl

t t
T

i ( ) ( )j l , where θj(t) is the phase variable of 
oscillator j at time t, and 〈 ·〉 T is the average over the time interval T, is considered. Furthermore, the degree of 
global synchronization in the whole network is measured through the parameter = ∑− =r r

N N j l
N

jl
1

( 1) , 1 , which 
takes values close to 1 when all the pairs of oscillators are phase synchronized, whereas r =  0 in the absence of 
synchronization. Provided that the time interval T is large enough, the measure is robust to changes in it. In our 
simulations, we have set T =  Ts/2.

Networks’ construction.  We consider Erdos-Renyi (ER) networks, that is, networks having a connectivity 
distribution (the probability that a given node has a given number of links) following a Poisson-like distribution, 
and scale-free (SF) networks, that is, networks with a heterogeneous degree distribution (a power-law distribu-
tion). Both networks are generated by means of the model introduced in ref. 30 that allows to control the mean 
connectivity, 〈 k〉 , in order to be exactly the same. The model has a single tunable parameter which allows to inter-
polate between ER and SF networks as far as the degree distribution is concerned. Networks with N =  500 nodes 
have been used, and the consistency of results has been checked for larger N up to N =  2000.
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