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ClusterViSu, a method for 
clustering of protein complexes 
by Voronoi tessellation in super-
resolution microscopy
Leonid Andronov1,2,3,4, Igor Orlov1,2,3,4, Yves Lutz1,2,3,4, Jean-Luc Vonesch1,2,3,4 & 
Bruno P. Klaholz1,2,3,4

Super-resolution microscopy (PALM, STORM etc.) provides a plethora of fluorescent signals in dense 
cellular environments which can be difficult to interpret. Here we describe ClusterViSu, a method for 
image reconstruction, visualization and quantification of labelled protein clusters, based on Voronoi 
tessellation of the individual fluorescence events. The general applicability of this clustering approach 
for the segmentation of super-resolution microscopy data, including for co-localization, is illustrated 
on a series of important biological objects such as chromatin complexes, RNA polymerase, nuclear pore 
complexes and microtubules.

Single-molecule super-resolution microscopy recently brought fluorescence imaging into unprecedented levels 
of details by reaching the nanometer range of localization precision1 and the ~30 nm range of actual resolution as 
estimated by Fourier ring correlation (FRC)2,3. As opposed to classical confocal microscopy, the data of stochastic 
super-resolution is essentially discontinuous because it comprises a set of points with molecular coordinates 
of the localization events, and hence it does not allow a direct segmentation. Special processing methods have 
been developed recently, including drift correction, visualization and estimation of co-localization4–7. However, 
considering the plethora of fluorescent signals in dense environments such as chromatin, the interpretation of 
localization data can become rather challenging with regards to image segmentation and cluster analysis. This 
is particularly true with respect to identifying and quantifying differently concentrated regions of labeled com-
plexes. In some cases, super-resolution clustering on chromatin8, neurons, lymphocytes and cell-surface recep-
tors9–11 has used Ripley’s analysis for global overview of cluster properties in a given region; alternatively, pair 
correlation analysis12 has been used, e.g. for studies of plasma membrane proteins13. For the estimation of local 
densities, for segmentation and cluster analysis methods such as Ripley’s L function9,10,14, median or Gaussian 
filtering of histogram images, k-means8 and DBSCAN15 clustering can provide some degree of visual clustering, 
but quantification is not straightforward. Recently, a Bayesian approach was developed for identification of clus-
ters from a set of cluster proposals from Ripley’s analysis16. Here we describe a method that we call ClusterViSu, 
which is based on Voronoi diagrams and tessellation of the individual fluorescence events for visual and quanti-
tative clustering analysis of super-resolution microscopy data. When this manuscript was under review a simi-
lar method appeared using the same concept of segmentation based on Voronoi diagrams, called SR-Tesseler17. 
While ClusterViSu comprises additional features both studies complement each other; a more detailed compari-
son of the two methods including similarities and differences is made towards the end of this manuscript.

A Voronoi diagram, also known as Dirichlet decomposition, is a tessellation where a tile corresponding to a 
given data point is a locus of all points of space closest to this data point18. Applications of Voronoi tessellations 
are found in various fields from mathematics to natural sciences19, e.g. for cluster detection in atom probe micros-
copy20. In the context of super-resolution microscopy as introduced here the Voronoi sites would correspond to 
the experimentally determined molecular coordinates of individual fluorophores. A Voronoi cell represents an 
area of influence of the data point it contains, and thus the local density in the proximity of a given point can be 
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determined as the inverse of the cell area. This provides a direct precise measurement of the local density, unlike 
Ripley’s analysis where the result depends on the chosen search radius. The values of local densities, interpolated 
to a regular grid, create a density map, which can be used for a direct image reconstruction and visualization of 
super-resolution data in the same manner as do standard histogram21 or Gaussian22 representation modes (Figs 1 
and 2). The graphical properties of Voronoi diagrams and their mathematical propensity for potential quantifica-
tion calculations prompted us to develop a method for clustering analysis based on Voronoi tessellations.

To validate the usage of the Voronoi diagram concept for super-resolution imaging, we first performed com-
parisons of image reconstructions using histogram21 or Gaussian22, and the Voronoi representation mode intro-
duced here. Voronoi-based visualization both reduces visible noise and emphasizes features (Fig. 1A–D), and 
preserves the resolution upon image rendering equally well or better as compared to histogram and Gaussian 
mode image representations (Fig. 1F). The reason for this is that low-density and randomly distributed signals 
of the noise generate huge Voronoi cells, and the corresponding density values are much lower than those of 
highly dense regions. On the other hand, localizations at borders of dense areas have Voronoi cells significantly 
bigger than those of inner localization. This effect leads to muting of border localizations compared to inter-
nal ones, which is seen as effective increase of sharpness and contrast of the reconstructed image. On a test of 
visual resolution of a simulated structure with a linear density comparable to that of a labelled biological object 
(0.5 nm−1), the Voronoi visualization exhibits the best overall perception of the structure, discrimination between 
two closely located objects and complete suppression of noise (Figs 1A–E and S1). FRC curves calculated from 
Voronoi-density images lie at slightly higher frequencies than those of histogram- or Gaussian-mode images 
(Figs 1F and S1E–G). This resolution quantification indicates that the Voronoi-based visualization preserves 
the amount of useful information upon image rendering; this could be related with the fact that Voronoi-based 
reconstructions provide a better continuity of the signal (Fig. 1C), notably as compared to histogram-based 
reconstructions (Fig. 1A), which leads to a stronger correlation in FRC calculations.

Next, we extended the concept of Voronoi diagrams to perform cluster analysis, taking advantage of the intrin-
sic presence of Voronoi tessellations during the image reconstructions process (Fig. 2). A cluster is generally 
defined as a set of objects that are more similar to each other compared to objects in other sets. The proper-
ties of Voronoi cells (morphometric parameters such as shape, surface area, eccentricity etc.19,23) can be used as 
criteria for the association of several cells into clusters. We used intensity and spatial proximity parameters as 

Figure 1.  Comparison of different representation methods of localization events in super-resolution 
microscopy, showing that image representation by Voronoi diagrams fully preserves the resolution. 
(A–C) Simulated images of two lines separated by 40 nm and composed of localization events with a 
standard deviation of 10 nm in histogram (A), Gaussian (B) and Voronoi-based interpolated (C) local density 
representations. (D) Corresponding image projections generate back the underlying line structure – sum of two 
Gaussians (black dashed line); for line profiles see Fig. S1D. Each graph is normalized on its peak value; pixel 
size is 5 nm. (E) Voronoi density map of β -tubulin detected with Alexa-647 conjugated secondary antibodies. 
Pixel size is 10 nm, scale bar is 1 μm. (F) FRC curves calculated from a larger image containing (E) in histogram 
(blue), Gaussian (green) and Voronoi (red) representations with corresponding resolutions RH, RG and RV 
obtained by the 1/7th FRC criterion, showing that the best resolution is obtained by Voronoi representation. The 
dataset used for calculation of FRC contained 2.3 · 105 localizations, the images in the three representations were 
reconstructed using a pixel size of 10 nm.
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determinants for clustering, allowing closely located fluorophore locations to be grouped according to the local 
fluorophore density. Thus, we define a cluster as a collection of neighboring Voronoi zones with areas smaller than 
a given threshold.

To test whether an experimental data set is significantly different from a spatially random distribution that has 
fluctuations of local density for a finite number of points, we performed Monte-Carlo simulations of randomly 
distributed points through the same experimental area using the same average density (Fig. 2; see methods). The 
probability distribution functions were calculated for experimental and for randomized data (including the mean 
value and associated 95% confidence interval; Fig. 2D). The comparison of distributions of Voronoi cell sizes 
of clustered and randomly distributed datasets reveals three characteristic regions (Fig. 2D): (i) small cell areas 
with an occurrence higher than in the random data set (cells describing clusters), (ii) intermediate regions with 
lower occurrence (containing Voronoi cell sizes similar to those of randomly distributed data), and (iii) regions 
of large Voronoi cells with higher occurrence corresponding to low-density event regions between clusters. The 
intermediate region (ii) can serve to define the boundaries of the clusters (i). The first intersection between the 
two density probability distribution functions (Fig. 2D) corresponds to the maximal cell size in the clusters, and 
this value can be used as a threshold value to automatically define regions of clustered polygons. Furthermore, 
calculation of the total area of the clustered polygons provides a direct measure of cluster occurrence which allows 
quantification of the fluorescence events within a given region. The inverse value of the obtained threshold can 
be used for binarization of the interpolated density map producing results similar to segmentation of Voronoi 
diagram (Fig. 2E,F). The difference is that clusters originated from the density map have smooth borders as the 
underlying Voronoi polygons are not displayed (Fig. 2F).

We applied the Voronoi tessellation strategy to visualize and quantify clustering observed in several impor-
tant biological objects. A first example is the imaging of nuclear pore complexes (NPC; Fig. 3). Using Voronoi 
tessellation, individual NPCs (with a measured diameter of 114 ±  22 nm which corresponds to its known size24) 
can be distinguished even from sparse labeling (Fig. 3C,D), while this would not be obvious visually from a 

Figure 2.  Principle of Voronoi-based image segmentation which allows visualization and quantification 
of clusters. (A) A region of simulated pointillist data with random distribution. (B) Simulated clustered 
distribution of the same number of points as in the random dataset. (C) Clustering obtained after direct 
segmentation of the Voronoi diagram allowing visualization of the clusters. (D) Distribution of Voronoi polygon 
areas of the clustered dataset (blue) and mean Voronoi polygon distribution of a random dataset (green) with 
confidence envelope (red) obtained from Monte-Carlo simulations which allows defining a threshold value for 
automated segmentation. The three characteristic regions: small clustered polygons (I, green); intermediate 
polygons corresponding to the random distribution (II, yellow); huge polygons corresponding to background 
in the clustered distribution (III, gray). (E) Interpolation of the local densities to pixel grid produces local 
density map. (F) Clusters, obtained by thresholding of the density map. The simulated dataset contained 48 
clusters with a radius of 50 nm consisting of ~27 events each. After segmentation, the Voronoi tessellation allows 
quantification of the clusters (35 were detected, excluding small clusters that contained only one localization 
event, with 29 ±  16 events each and with equivalent radius of 49 ±  11 nm). The blue frames in (C,E,F) 
correspond to the region shown in panel (B).
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histogram-based representation (Fig. 3B). The quantification shows that an average density of ~5.4 NPC com-
plexes per μm2 is found which is consistent with previous data24,25.

We next extended the Voronoi tessellation method to multi-color super-resolution data to address the pos-
sibility of co-localization analysis (Fig. 4). For segmented multi-color images the co-localization value S/Si for a 
given species i is defined by the ratio of the superposed area S between two colors relative to the total area Si of 
clusters of a given species; this value is further compared with the confidence range for randomly distributed 
clusters Srand/Si. Thus, an S/Si value in the interval from 0 to the lower boundary of the confidence range means 
anti-localization or mutual exclusion, and a value in the interval from the upper boundary of the confidence range 
to 1 corresponds to co-localization. To demonstrate the applicability of our co-localization method to a biolog-
ical object we used tubulin simultaneously labeled with two dyes (Alexa Fluor-555 and Alexa Fluor-647). The 
Voronoi tessellation diagram calculated for each color mode separately or merged shows clusters along the micro-
tubule fibers (Fig. 4A). For the tubulin sample, we observed relatively high co-localization values (S/Sred =  0.416,  
S/Sgreen =  0.405) compared to a random distribution (Srand/Sred =  0.123 ±  0.021, Srand/Sgreen =  0.120 ±  0.020) which 
confirms the visual impression of overlapping fiber structures. This, together with the simulations of different 
co-localization scenarios (Fig. S2), shows the validity of the Voronoi tessellation approach for co-localization 
analysis, as an alternative to coordinate-based methods6,7.

To test the performance of Voronoi tessellation on dual-color labeling of different proteins we acquired 
super-resolution data on the cell nucleus (Fig. 4B) with RNA polymerase labeled with Alexa Fluor-488 and his-
tone protein H2B labeled with Alexa Fluor-647. Interestingly, RNA polymerase is found more clustered in dif-
ferent regions of the cell nucleus (Fig. 4C), while histone H2B distribution (as compared to RNA polymerase) is 
more random within a given region (as illustrated by a shift of the density distribution compared to the random 

Figure 3.  Segmentation and cluster analysis of nucleoporin protein TPR. (A) Histogram-based image 
reconstruction of TPR distribution at the nuclear envelope with a magnified region (white box) in (B).  
(C) Segmented Voronoi diagram calculated from the image in (A) with magnified region of the diagram shown 
in (D) which allows visualization and quantification of the TPR clusters present in the magnified region of the 
original image (panel B) in which quantification was not straightforward. (E) Voronoi polygon distribution 
of TPR (blue) demonstrating clustering as compared to random distributions (green and red). The clusters 
contain 9.7 ±  7.3 events with an equivalent radius of 57 ±  11 nm. Small clusters containing 2 or less events were 
excluded for this quantification. Scale bars correspond to 500 nm (A–C), pixel size is 20 nm (A,B).
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Figure 4.  Co-localization analysis using Voronoi tessellations. (A) Segmented Voronoi diagram of β -tubulin, 
labelled with two different fluorophores (Alexa Fluor-555, green, and Alexa Fluor-647, red) demonstrating 
strong co-localization (S/Sred =  0.416, S/Sgreen =  0.405) compared to randomly distributed clusters (Srand/
Sred =  0.123 ±  0.021, Srand/Sgreen =  0.120 ±  0.020). (B) A cell nucleus with labelled RNA Pol II (green) and 
histone H2B (red), represented as Voronoi local density map. (C) Example of Voronoi diagrams for RNA Pol II, 
H2B and their overlay, revealing no co-localization. (D) Segmented Voronoi diagram, used for determination 
of cluster properties (average cluster size: RNA Pol II 1818 nm2, H2B 3058 nm2) and for calculation of co-
localization (S/SPol =  0.090, S/SH2B =  0.106; random: Srand/SPol =  0.096 ±  0.013, Srand/SH2B =  0.113 ±  0.015) 
revealing no correlation between the two distributions of clusters. (E) Voronoi polygon distributions of the 
clustered dataset (blue) and mean density distribution of the random datasets (green) with confidence envelopes 
(red) obtained from Monte-Carlo simulations for the RNA Pol II and H2B data. Scale bars 300 nm (A), 2 μm (B),  
500 nm (D); panel (D) corresponds to the frame in panel (B) and (C) to that in panel (D).
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distribution function, Fig. 4E). The clustering analysis and quantification using the Voronoi cell areas show that 
histone H2B labeling exhibits very weak co-localization with RNA polymerase II (S/SPol =  0.090; S/SH2B =  0.106), 
equivalent to uncorrelated simulated data (Srand/SPol =  0.096 ±  0.013; Srand/SH2B =  0.113 ±  0.015). Figure 4C shows 
that the clusters of the two proteins do not overlap. This observation appears consistent with the idea that DNA 
transcription by RNA polymerase occurs at H2A/H2B-depleted regions of less tightly compact chromatin26–28, 
but this particular aspect would need to be analyzed in more detail in future studies, for example by H3 or H4 
labeling. The Voronoi tessellation reveals an interesting non-random distribution of RNA polymerase molecules 
with a nearest neighbor distance between clusters (d =  76 ±  32 nm). This suggests that they form some sort of 
superstructures which could correspond to actively transcribing regions in the cell nucleus.

An important property for super-resolution microscopy of Voronoi diagram is its geometric stability with 
respect to small changes of its sites29, meaning that imprecise molecular localizations do not strongly influence 
results of segmentation. Indeed, we observed full retrieval of the number of clusters and their size in data with 
localization error σ loc  3 · δ−1/2 and visually recognizable clustering with σ loc  6 · δ−1/2 (estimated empirically) 
where σ loc is the standard deviation of localization precision and δ is the density of clustered molecules (Fig. S3).

Multiple localizations of the same fluorescent molecules (through re-activation, blinking or multiple anti-
bodies/fluorophores) may affect cluster analysis. By testing different simulated conditions we show that multiple 
localization (for example 2–6x more points distributed around a localization event) can improve the robustness of 
the segmentation under conditions of low background density (Fig. S4A) because more points are being used for 
defining clusters (i.e. the Voronoi cells become smaller and clusters show up better). In contrast, re-localizations 
of clusters with strong background lead to detection of spurious clusters in background regions (assuming mul-
tiple localization both for clustered points and for the background; Fig. S4B). Multiple localizations of randomly 
distributed points demonstrate false positive results in the Monte-Carlo simulations (Fig. S5), but if the number 
of re-localizations is known, it can be incorporated into the simulations leading to the correct results both in the 
evaluation of distributions for randomness and in segmentation (Fig. S5B,C).

Taken together, we present a robust method based on Voronoi tessellation for the convenient visualization 
and quantification of the localization and distribution of fluorescently labeled complexes, which allows segmen-
tation, cluster analysis and estimation of the amount of co-localization. We show that image reconstruction using 
Voronoi diagrams preserves resolution equally well or better than Gaussian or histogram modes at the level of 
image rendering, as quantified by FRC. Voronoi tessellation allows performing a statistical analysis of the clus-
ters, their occurrence and inter-cluster distance distribution, and works well including for the analysis of weak 
signals. Indeed, the general applicability of the method is illustrated here on a series of important biological 
objects including chromatin complexes, RNA polymerase, NPCs and microtubules. One of the advantages of the 
Voronoi tessellation method is that it does not require any a priori knowledge for the clustering (e.g. user-defined 
parameters such as the search radius for Ripley’s analysis, the number of clusters in the case of k-means clustering 
or search distance and number of points for DBSCAN; these methods do not assign an area of influence to data 
points such as Voronoi tessellation does which also provides boundaries between clusters). Because the clustering 
uses an internal reference generated from randomized data to automatically determine the threshold value for 
forming clusters between neighboring Voronoi zones, it is fully automated for a given region of interest. We have 
implemented the Voronoi tessellation method as a ClusterViSu standalone software which can also be interfaced 
as a plugin with an interactive open-source software for processing of super-resolution fluorescence microscopy 
data (SharpViSu; ref. 30; https://github.com/andronovl/SharpViSu) which includes other standard tools such 
as corrections for drift and chromatic aberration and resolution estimation by FRC. In the future, the approach 
could be extended to 3D super-resolution data because Voronoi diagrams are also defined for multi-dimensional 
cases.

To our knowledge, this is the first application of Voronoi tessellation for the clustering analysis of 
super-resolution microscopy data, together with a related method published by Levet et al.17 while the pres-
ent manuscript was under review. To quantify differences between ClusterViSu and SR-Tesseler we run some 
simulations (see methods; Fig. S6). When compared with SR-Tesseler17, our method shows a more complete 
detection of the cluster numbers and retrieval of their size and homogenous shape (Fig. S6A–E), especially at 
conditions of weak density of clustered points or weak background (Fig. S6C–E). In ClusterViSu, the detec-
tion of clusters is insensitive to background densities, while SR-Tesseler shows some artefacts for weak densities 
(Fig. S6E). The segmentation threshold determined automatically by Monte-Carlo simulations as proposed in 
our work is more stable over a large range of background densities (Fig. S6F) as opposed to thresholds deter-
mined by the average localization density17. In ClusterViSu, the threshold diminishes slightly with increasing 
background which favorably reduces spurious detection of clusters (Fig. S6F), while the increasing threshold 
values can lead to under/overestimation of the cluster number at low/high densities in SR-Tesseler. The usage of 
complete spatially random distributions of the background in our study as opposed to uniform distributions17 
provides more realistic simulations and explains the occurrence of spurious clusters that contain small numbers 
of events (in ClusterViSu these can be removed with a filter). ClusterViSu uses zero-rank density calculations, 
while SR-Tesseler uses first-rank as defined in ref. 17 which is more resistant to false detections at high cluster 
and high background densities (Fig. S6D) due to averaging of neighboring Voronoi polygons. ClusterViSu is 
also compatible with multiscale segmentation17 (further segmentation of detected clusters), which can be useful 
for sub-classification of cellular structures. Additional differences are that our implementation already allows 
double-labeling and quantitative co-localization analysis using Voronoi-tessellation (Fig. 4) which is an important 
feature for super-resolution studies. In addition, we quantify the resolution of image rendering using Voronoi dia-
grams and show that it is at least as good as that of Gaussian and histogram mode reconstructions. Furthermore, 
the four biological examples that we give in this work extend the field of applications of Voronoi-based tessella-
tion, segmentation and quantification of data.

https://github.com/andronovl/SharpViSu
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Methods
Super-resolution imaging.  HeLa cells were plated in a 4-compartment glass-bottom petri dish (CELLView, 
Greiner Bio-One) and fixed with 4% formaldehyde for 20 min in phosphate-buffered saline solution (PBS). After 
permeabilization with 0.1% Triton in PBS (PBS/Tx) twice for 10 min, the primary antibody (anti-β -tubulin mon-
oclonal (1Tub-2A2, in house IGBMC) was used as mouse ascites fluid diluted 500× in PBS/Tx; RNA Pol II 
monoclonal antibody (1PB-7C2, in house IGBMC), directed against the CTD of the largest subunit of RNA Pol II 
(RPB I) was used as a purified IgG at 5 μg/ml in PBS/Tx; histone H2B monoclonal antibody (LG11-2) was used as 
a 500×  dilution of mouse ascites fluid in PBS/Tx) was incubated overnight at 4 °C. The sample was then washed 
with PBS/Tx three times over 2 hours, and the secondary antibody (goat anti-mouse Alexa Fluor-647 or Alexa 
Fluor-555 conjugated, Invitrogen) in dilution 4 μg/ml in PBS/Tx was incubated for 2 hours at room tempera-
ture. Subsequently, the cells were washed in PBS/Tx three times for 2 hours, then briefly three times in PBS. For 
the TPR sample, cells were cultured on coverslips and fixed in 4% paraformaldehyde for 10 min, permeabilized 
in 0.5% Triton for 10 min, blocked in 1% BSA for 30 min, and incubated with primary antibodies (TPR rabbit 
polyclonal antibody, Abcam, ab84516) for 1h and with secondary antibodies (goat anti-rabbit Alexa Fluor-647) 
for 45 min14. The double-labelled β -tubulin sample was mounted in an imaging buffer31 that contained 20% of 
Vectashield (Vector Laboratories), 70% of 2,2′ -thiodiethanol (also known as thiodiglycol or TDE) and 10% of PBS 
10×  (the measured refractive index of this mounting medium is 1.491). The H2B/RNA Pol II, the TPR and the 
β -tubulin sample used for Fig. 1 were mounted in a PBS buffer with addition of 10 mM of cysteamine (also known 
as β -mercaptoethylamine or MEA) and 25 mM of HEPES (pH 7.5).

The super-resolution experiments were performed on a Leica SR GSD system built on a base of DMI6000 B 
inverted wide-field microscope. We used the HCX PL APO 100× /1.47 Oil CORR TIRF PIFOC objective with 
a 1.6×  magnification lens that provides an equivalent pixel size of 100 nm on the Andor iXon3 DU-897U-CS0-
#BV EMCCD camera with a field of view of 18 ×  18 μm in super-resolution mode. Continuous wave fiber lasers 
(MPBC Inc., 488 nm 300 mW, 532 nm 1000 mW, 642 nm 500 mW) and a diode laser (405 nm 30 mW) were uti-
lized for excitation. The microscope is also equipped with a suppressed motion (SuMo) sample stage, which 
reduces drift but does not eliminate it (typical values 20–50 nm over 10 min). The residual drift was corrected by 
data processing (see below).

The samples were first illuminated with the 100% power of the appropriate laser to quickly send the fluoro-
phores into the dark state. The acquisition started after beginning of observation of single-fluorophore events 
(“blinking”) that corresponded to the drop of the correlation value of consecutive frames to approximately 0.2 in 
the corresponding wizard in the LAS AF software. The time of exposition of a frame was 6.34 ms (H2B and RNA 
Pol II data) or 50 ms (β -tubulin and TPR data); the electron multiplying gain of the camera was 300 for H2B, RNA 
Pol II, TPR, 150 for β -tubulin-Alexa 647 and 63 for β -tubulin-Alexa 555; the laser power during the acquisition 
was 30% (H2B), 50% (TPR) or 100% (RNA Pol II and β -tubulin). After a few minutes, as the number of blinking 
evens dropped, the sample started to be illuminated additionally by a 405 nm laser with gradual increase of its 
intensity in order to keep a nearly constant rate of single-molecular returns into the ground state. The acquisition 
was stopped after almost complete bleaching of the fluorophore.

Data processing.  The localization and fitting of single-molecule events were performed in real time during 
acquisitions in Leica LAS AF 3.2.0.9652 software with the “center of mass” fitting method. To reduce the number 
of localizations of the same fluorophore and improve localization precision the data were processed by averaging 
the coordinates of consecutive events within a radius of 50 nm around each localization. Subsequently, the data 
were processed in SharpViSu (ref. 30, in press; https://github.com/andronovl/SharpViSu). The drift was detected 
and corrected using cross-correlation-based approach. Briefly, the dataset was divided on several consecutive sub-
sets, from each of them a histogram image with pixelation of 20–40 nm was build, the shift between these images 
was detected with subpixel precision and interpolated linearly throughout intermediate frames. The shift was then 
subtracted from every frame. The procedure was repeated iteratively 4 times assuring absence of detectable resid-
ual drift. For correction for the chromatic aberrations, the aberrations were detected beforehand with Tetraspeck 
multi-color beads, interpolated through the field of view with 2-order polynomial functions and subtracted from 
the molecular coordinates obtained from either 488 nm or 532 nm imaging channels. Regions of interest (ROI) 
for Voronoi analysis were selected manually allowing faster computations and more homogeneous distributions 
compared to the entire field of view.

The following analysis was performed in Matlab using customized code that is included as modules in the 
ClusterViSu software. Voronoi diagrams (vertices of polygons and connectivity order) were retrieved with either 
‘voronoi’ or ‘voronoin’ functions. Areas of the cells were determined from the vertices with the function ‘polyarea’, 
the local density in each data point was defined as the inverse value of the area of the corresponding Voronoi 
polygon. To have a smooth appearance that can be used for visualization (Fig. 1C–E) or segmentation (Fig. 2E,F) 
the values of the local density were interpolated to a regular grid (pixels) using the ‘griddata’ function and the 
‘natural’ interpolation method32. The spacing of the grid corresponds to the desired pixel size (in range of 2 to 
20 nm in our case, it is indicated in the figure legends; at least 3–4 times smaller than the expected resolution to 
satisfy the Nyquist theorem).

For the comparison of visualization techniques, we used a Gaussian distribution of points arranged as two 
parallel lines, with a distance of 40 nm between the centers of the distributions and the standard deviation of 
each distribution σ  =  10 nm in the X direction (Fig. 1A–D). The linear density of localization in each line was 
0.5 nm−1. To this dataset we added localizations with random (x, y) coordinates, with overall density of 400 μm−2, 
comparable to background density at experimental data. The photon counts for all events were distributed with 
Gaussian distribution around the mean value of 1000 photons with standard deviation of 300. This is similar to a 
procedure described by Baddeley et al.4 with following modifications: linear densities were chosen to be similar 
to those of typical experimental data, noise was added, and single line profiles (Fig. S1D) were used along with 

https://github.com/andronovl/SharpViSu


www.nature.com/scientificreports/

8Scientific Reports | 6:24084 | DOI: 10.1038/srep24084

projections (Fig. 1D; even though projections tend to not reflect discontinuities in the data, i.e. they generate back 
the underlying line structure). The Gaussian mode image was built representing each event as a Gaussian filter 
kernel with σ  =  A/(Nph)1/2, where A =  240 nm (experimentally determined value for our system), and Nph is the 
number of photons. The FRC curves were calculated in 90 concentric rings (resulting in 90 frequency values in 
the FRC graphs) using the corresponding type of image representation for half-datasets3. For statistics, the FRC 
curves and the resolution values were calculated 50 times for each localization table, using different random sep-
arations of the dataset on two parts. Standard deviations of the obtained values are shown in error bar for each 
frequency point. The FRC curves for histogram, Gaussian and Voronoi representations were also calculated by the 
FSC program (Image Science Software GmbH)33 confirming the results obtained with our method.

The simulated cluster data on Fig. 2 were generated as randomly distributed points in circles with a radius 
of 50 nm. The density of points in the clusters was 3 · 10−3. The positions of clusters and of low-density (4 · 10−4) 
background points were distributed randomly in the field of view (FOV). The distributions of the sizes of the 
Voronoi cells were built as histograms of the areas of the cells, for a range from 0 to 4 times the median value of 
the area, using 2N1/3 bins, where N is the number of the polygons, excluding infinity-sized polygons at the bound-
aries of the ROI. For Monte-Carlo simulations, random coordinates were generated throughout the ROI using 
the ‘rand’ function. To obtain the confidence envelope, the distributions were generated for 50 different random 
sets of points, the boundaries of the envelope were determined as < n>  ±  1.96 σ  for each bin of the histogram, 
where < n>  is the average number of cells within the range of the bin and σ  is the standard deviation of n, cal-
culated from the 50 random datasets. The abscissas of the first and the second intersections between the curves 
of the experimental and the mean value of the randomized distributions were determined from the two points 
around the intersections in the linear approximation. The Voronoi cells smaller than the area corresponding to 
the first intersection were kept, and all touching cells (those that have at least one common vertex) were combined 
together yielding vertices of clusters. The clusters were rasterized with the ‘poly2mask’ function using a pixel size 
of 1 nm. For the nuclear pore data a threshold was used to set the minimum number of events to remove small, 
spurious clusters. In our current implementation calculations for medium-sized datasets, e.g. Monte-Carlo sim-
ulations of 5⋅ 104 localizations, take around a minute; calculations may be parallelized in future software versions.

The simulated data on Figs S3–S6 were generated as 10 ×  10 clusters with radius of 50 nm through a FOV of 
4 ×  4 μm. The positions of the centers of the clusters were distributed regularly in the FOV. The points inside the 
clusters and in background were placed randomly with the indicated average density. For Fig. S3 the positions of 
the points were picked from the normal distribution using the mean defined at the previous step and the standard 
deviation of σ loc. For Figs S4 and S5, n (number of re-localizations) points were picked for every original point 
using the normal distribution with the standard deviation σ loc =  10 nm and the mean value at the position of the 
original point. For Monte-Carlo simulations on Fig. S5 the randomized datasets were formed using N/nsim seeds 
at spatially random positions and distributing nsim points by Gaussian distribution with σ loc =  10 nm around 
the seeds; N is the number of points in the original dataset, nsim is the number of re-localizations used in the 
Monte-Carlo simulations.

For segmented multi-color images, the co-localization value for a given species is defined by the ratio of the 
superposed area S between two colors relative to the total area of clusters of a given species. To compare  
the obtained values with overlapping area Srand of randomly distributed clusters we shuffled the experimentallyde-
termined clusters into randomized positions through the same field of view, independently for each  
color. Firstly, the list of cluster polygons was permutated randomly using Matlab’s ‘randperm’ function.  
Then, we determined the centroids of the clusters by formulas: = ∑ + −=

−
+ + +x x x y x yC ( )( )x A i

n
i i i i i i

1
6 0

1
1 1 1 , 

= ∑ + −=
−

+ + +y y x y x yC ( )( )y A i
n

i i i i i i
1

6 0
1

1 1 1 ; where Cx, Cy are the (x, y) coordinates of the centroid of a given 
polygon, xi, yi are the coordinates of the vertices, n is the number of the vertices, and the vertex i =  0 equals to the 
vertex i =  n. A is the signed area of the polygon: = ∑ −=

−
+ +A x y x y( )i

n
i i i i0

1
1 1 . After subtraction of the centroid 

coordinates from coordinates of the vertices of the polygons, the new coordinates were determined as a random 
number situated in the FOV of the initial size. To avoid overlapping of newly placed clusters, we iteratively 
checked for each cluster being placed at a random spot if it was not overlapping with the previously placed clusters 
of the same color, in which case another random coordinate was chosen. The shuffling procedure was repeated 50 
times with different random positions, and the 95% confidence range for the co-localization in the random case 
was obtained as mean ± 1.96 σ  of the corresponding ratios of the surfaces.

Pair distribution functions were calculated using Matlab’s ‘pdist2’. For the nearest neighbor distance, the small-
est pairwise distance value was chosen for each data point. The equivalent radius of a cluster was calculated as the 
radius of a circle with the same surface area as the cluster. Quantified properties of clusters (number of events, 
equivalent radius, nearest distance between neighboring clusters) are represented as mean ±  standard deviation 
of the corresponding values.
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