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Multiple oligomeric structures of a 
bacterial small heat shock protein
Nandini Mani1, Spraha Bhandari1, Rodolfo Moreno2, Liya Hu2, B. V. Venkataram Prasad2 & 
Kaza Suguna1

Small heat shock proteins are ubiquitous molecular chaperones that form the first line of defence 
against the detrimental effects of cellular stress. Under conditions of stress they undergo drastic 
conformational rearrangements in order to bind to misfolded substrate proteins and prevent cellular 
protein aggregation. Owing to the dynamic nature of small heat shock protein oligomers, elucidating 
the structural basis of chaperone action and oligomerization still remains a challenge. In order to 
understand the organization of sHSP oligomers, we have determined crystal structures of a small 
heat shock protein from Salmonella typhimurium in a dimeric form and two higher oligomeric forms: 
an 18-mer and a 24-mer. Though the core dimer structure is conserved in all the forms, structural 
heterogeneity arises due to variation in the terminal regions.

Small Heat Shock Proteins (sHSPs) are ATP-independent chaperones which prevent irreversible protein aggre-
gation by binding to misfolded substrate proteins. Their drastic upregulation during stress, combined with their 
propensity to bind non-native states of substrate proteins renders them the first line of defence against the dele-
terious effects of cellular stress1. sHSPs thus play pivotal roles in modulating key cellular processes such as signal 
transduction, apoptosis, host-pathogen interactions and inhibition of protein aggregation and fibrillation2. Most 
sHSPs exist as large oligomers which undergo drastic rearrangement or dissociation into dimers upon activation 
during stress, in order to execute their chaperone function. Mechanistic insight into this conformational change 
and subsequent substrate binding is lacking, primarily due to the limited number of oligomeric structures 
determined. Amongst the different protein families, sHSPs probably exhibit the most diversity in oligomeriza-
tion. Oligomeric assemblies vary not only across different species, but also within sHSPs of the same organism. 
Many sHSPs have been shown to co-exist in different oligomeric states in solution, either in dynamic equi-
librium or upon varying experimental conditions1. Crystal structures of three different oligomeric assemblies 
have been reported so far: Octahedral 24-mers of Methanococcus jannaschii Hsp16.5 and Sulfolobus tokodaii 
Hsp14, double-disc dodecamer of wheat Hsp16.9, and ellipsoidal 16-mer of Schizosaccharomyces pombe Hsp16. 
Two other oligomeric assemblies have been reported from electron microscopy studies: tetrahedral dodeca-
mer of Mycobacterium tuberculosis Hsp16.3 and cubic 24-mer of yeast Hsp261. Monomers from all five distinct  
oligomeric assemblies contain a central, conserved α -crystallin domain (ACD) which adopts a β -sandwich fold, 
flanked by highly variable N- and C-terminal regions. In non-metazoans, the basic building unit is a symmetric 
dimer formed by strand exchange in the ACD. Though the mode of dimerization is different in metazoans and 
non-metazoans, in all archaeal, bacterial and eukaryotic high-resolution sHSP structures reported till date, 
a conserved arginine from one ACD forms an inter-subunit ionic interaction with a conserved aspartate or 
glutamate3. In all oligomeric structures, an IXI motif in the C-terminus binds in a hydrophobic groove on the 
ACD of a neighbouring dimer, to facilitate the formation of higher-order oligomers4–6. The ordered N-terminal 
arms of wheat Hsp16.9 and S. pombe Hsp16 also participate in inter-dimer interactions. However, the lack of 
defined electron density for the N-terminal regions in other structures points to its flexible nature and has hin-
dered the understanding of its role in oligomerization. Despite the presence of the conserved motifs described 
above, sHSPs can adopt a wide range of quaternary structures and exist in solution as an ensemble of different 
oligomers1. The underlying dynamic nature of sHSP oligomers is highlighted by recent findings that different 
oligomeric forms of human HspB1 may interact with different substrates, and that the dodecamer of the wheat 
Hsp16.9 is likely to adopt several structural assemblies7.

Aggregation Suppressing Protein A (AgsA), an sHSP from the pathogenic bacterium Salmonella enterica has 
been reported to form dynamic oligomers8. S. enterica serovars typhi and typhimurium express three sHSPs: IbpA, 
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IbpB and AgsA9. At temperatures higher than 42 °C, the most strongly induced sHSP in S. typhimurium is AgsA. 
Unlike most other sHSPs, at high temperatures AgsA forms fibrils, the length and thickness of which increase 
with temperature8. Further, the AgsA sequence lacks the highly conserved arginine and the aspartate/glutamate 
which mediate a key intra-dimer interaction (Fig. 1). An earlier study on AgsA from S. typhimurium has demon-
strated the in vivo chaperone activity of the wild type protein and several of its truncation mutants. When dele-
tions were confined to the first 23 residues on the N-terminus and the last 11 residues on the C-terminus, the 
protein was found to be active in vivo10. Investigations in vitro have revealed that both the chaperone activity and 
oligomerization of AgsA vary drastically with small changes in the lengths of the termini that flank the ACD10. 
Different truncation constructs adopt diverse oligomeric states, ranging from dimers, trimers and tetramers to 
15-, 21- and 22-mers. Constructs that cannot form oligomers higher than dimers are deficient in chaperone 
activity towards highly denatured substrates. Further experiments revealed that an equilibrium between different 
oligomeric forms of AgsA is essential for its chaperone activity8,10. In order to enhance our understanding of sHSP 
oligomerization and to probe the roles played by both termini in mediating oligomer assembly, we undertook the 
structural characterization of AgsA.

Results
Along with the wild type protein, we cloned different truncation constructs: AgsA:DelC lacking 9 residues at the 
C-terminus, double deletion AgsA:DD lacking 11 residues at the N-terminus and 9 residues at the C-terminus, 
and AgsA:His-DD, a hexa-histidine tagged double deletion construct (Fig. 1). These truncations do not extend 
into the amino acid range defined to be indispensable for chaperone activity10. We investigated the multimeric 
nature exhibited by AgsA and its mutants in solution and in crystalline state, and also studied their chaperone 
activity by lysozyme aggregation assay.

Oligomeric states of different AgsA constructs.  In solution, the wild type protein exhibited poly-
dispersity, as demonstrated by the dynamic light scattering and gel filtration profiles (Fig. 2a,b). Experiments 
with size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS) revealed that the wild 
type protein was composed of two oligomers: A major fraction (78%) of 18-mers and a minor fraction (22%) of 
24-mers (Fig. 2c,d). These two fractions, obtained after size exclusion chromatography, were separately subjected 
to SEC-MALS analysis. The 18-mer which is a major species retained its oligomeric state whereas the 24-mer 
further dissociated into a major fraction of 18-mers (87%) and a minor fraction of 24-mers (13%) (Fig. 2e,f).

Cryo-electron microscopy (Cryo-EM) studies confirmed that the major species present in the sample was a 
higher-order oligomeric structure. The wild type protein could not be crystallized. In contrast to the wild type 
protein, each of the deletion constructs was monodisperse and adopted a single oligomeric state. The construct 
AgsA:DelC formed only 24-mers in solution. The only difference between AgsA:His-DD and AgsA:DD is the 
presence of an N-terminal tag on the former. However, in solution, they formed 24-mers and 18-mers, respec-
tively (Fig. 3 and Table 1).

In the following sections we report the dimeric crystal structure of the core ACD of AgsA:His-DD at 2.0 Å 
resolution and low resolution (4.1 Å and 7.5 Å) oligomeric crystal structures of truncation constructs AgsA:DelC 
and AgsA:DD, respectively. AgsA:DD formed symmetric 18-mers, an oligomeric assembly not reported previ-
ously. AgsA:DelC, differing from AgsA:DD only in the N-terminus, formed 24-mers similar to those formed by 

Figure 1.  Structure-based sequence alignment of AgsA, M. jannaschii Hsp16.5 (Mj_Hsp16.5), wheat 
Hsp16.9 (Ta_Hsp16.9) and S. pombe Hsp16 (Sp_Hsp16). Identical residues are indicated in red, similar 
residues in pink. Conserved arginine is highlighted in lavender, glutamate in green, IXI motif shown in 
box. Arrowheads indicate N-terminus of AgsA:DelC (green), AgsA:DD (orange), degraded fragment of 
AgsA:His-DD (yellow). Blue arrowhead indicates C-termini of all three. Secondary structure elements of 
AgsA:His-DD are indicated above alignment.
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M. jannaschii Hsp16.5 (MjHsp16.5). Cryo-EM studies of the wild type protein showed that the 18-meric oligomer 
of AgsA:DD could be easily fitted into the reconstructed envelope.

Chaperone activity of all constructs.  All four constructs were able to prevent chemically denatured 
lysozyme from aggregating (Fig. 4a). Constructs possessing an intact N-terminal domain (AgsA wild type and 
AgsA:DelC) were better at preventing the aggregation of chemically denatured lysozyme. This result is consist-
ent with previous studies on MjHsp16.5 and human α B-crystallin, which implicated the N-terminal domain 
in lysozyme recognition, binding and sequestration11,12. The two oligomeric fractions present in the wild type 
protein were separated and the chaperone activity of each fraction was measured. The activities of the separated 
populations showed considerable reduction compared to the wild type protein (Fig. 4b). These results, along with 
the SEC-MALS study clearly indicate that the 24-mers coexist with the 18-mers in dynamic equilibrium and this 
equilibrium is important for chaperone activity.

Crystal structures.  (i) AgsA:His-DD–a dimer.  The core ACD fragment of AgsA:His-DD crystallized as 
a symmetric dimer in the space group P41212 (Table 2). Mass spectrometry of the crystals revealed that the full 
length protein (size 17.1 kDa, 150 amino acids) had degraded in the crystallization condition to a fragment with 
mass 12.7 kDa, which corresponds to residues 35–147 (Figs 1 and 3c). Further truncations at the C-terminus 
account for the masses of other peaks in the mass spectrum. Continuous electron density could be traced for res-
idues 40–132 (Fig. 5a), and the monomer adopts an α -crystallin-like fold, with residues 83–103 forming a long 
loop which separates two β -sheets. Residues 93–98 of this loop in subunit 1, form part of a β -sheet in subunit 2 
(Fig. 5b). Terminal segments are required for the formation of higher oligomers of sHSPs and their truncation led 
to the formation of dimers.

Figure 2.  Solution studies of AgsA wild type (a) Radius distribution from dynamic light scattering. (b) Size 
exclusion profile. Fractions collected separately have been marked as fraction 1 and fraction 2. (c) SEC-MALS 
profile with peaks highlighted in grey for unseparated wild type protein, (d) SDS-PAGE profile of intact injected 
protein, with molecular weight marker (e) SEC-MALS profile of separated fraction 1 and (f) separated fraction 2. 
Expected mass for 18-mer: 318 kDa, 24-mer: 424 kDa.
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The IXI motif in the C-terminal tail of sHSPs is known to mediate higher order oligomerization by binding 
in a hydrophobic cleft formed between strands β 4 and β 8 in an adjacent dimer. This inter-dimer interaction is 
observed between dimers in the oligomeric MjHsp16.5, S. tokodaii Hsp14, S. pombe Hsp16 and wheat Hsp16.9. 
In the dimeric structures of D. radiodurans Hsp17.7 and S. tokodaii Hsp14 double mutant13,14, similar interations 
are observed between symmetry related dimers. In the AgsA:His-DD dimer, this groove is occupied by the dimer-
ization loop of a subunit belonging to a neighbouring dimer (Fig. 5c). This interaction buries 434 Å2 of surface 
area and involves five hydrogen bonds and one salt bridge. The hydrophobic cleft is known to be a substrate bind-
ing site15 and the binding of the eight residue stretch from the dimerization loop may represent the interaction 
between a sHSP and its substrate.

The dimerization loop of AgsA is wider than those of other sHSPs (Fig. 5d), while the buried surface area at 
the dimeric interface is the least. Unlike all other non-metazoan sHSP dimers which form 3–4 intra-dimer salt 
bridges, there are no salt bridges between the two subunits of the AgsA ACD dimer. A highly conserved feature of 
the dimerization loop in all non-metazoan sHSP dimers is the formation of an inter-subunit salt bridge between 
an arginine on the β 7 strand and a glutamate in the loop. This strand participates in dimerization, stabilization 

Figure 3.  For AgsA:HisDD (top panel), AgsA:DD (middle panel) and AgsA:DelC (bottom panel): (a) Size 
exclusion chromatography with inset of standard curve (b) Picture of crystal (c) MALDI/TOF spectrum of 
crystal.

Construct
Oligomeric 

state in solution
Hydrodynamic diameter from 
dynamic light scattering (nm)

Oligomeric state in 
crystal structure

Dimensions from 
crystal structure (nm)

AgsA:DD 18 13.9 18 8.5 ×  8.5 ×  13.2

AgsA:DelC 24 11.4 24 11.2 ×  11.2 ×  11.2

AgsA:His-DD 24 10.2 2 (Residues 40–132)

Table 1.   Oligomeric states of different constructs of AgsA.
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of the β -sheet, and in chaperone function16. Mutations of this arginine in human sHSPs have been implicated in 
several diseases like cataracts, myopathies and axonal Charcot–Marie–Tooth disease3. Mutating the arginine to 
glycine in MjHsp16.5 and human α B-crystallin resulted in oligomers that were larger and more polydisperse than 
the wild type17. Structural and sequence alignments reveal that in AgsA, the equivalent residues to Arginine and 
Glutamate are Leu106 and Gly98, respectively (Fig. 1). Leu106 of subunit 1 makes no contact with the dimeriza-
tion loop of subunit 2, whereas Gly98 of subunit 1 participates in the formation of two hydrogen bonds, one each 
with Tyr44 and Asp45 on the β 2 strand of subunit 2 (Fig. 6).

(ii) AgsA:DD–an 18-mer.  AgsA:DD crystallized in the R32 space group with 3 dimers in the asymmetric unit 
(ASU) (Table 2). The application of the crystallographic 3-fold axis yields a closed 18-mer, with a dimer lying 

Figure 4.  (a) Aggregation of 10 mM lysozyme (black), and 10 mM lysozyme in the presence of 10 mM of AgsA 
wild type (blue), AgsA:DD (green), AgsA:DelC (red) and AgsA:His-DD (orange). (b) Aggregation of 8 mM 
lysozyme (black), and 8 mM lysozyme in the presence of 8 mM of unseparated AgsA wild type (blue), separated 
18-meric fraction of wild type (green) and separated 24-meric fraction of wild type (red).

AgsA:His-DD AgsA:DD AgsA:DelC

Data collection

  Space group P41212 R32# I23

Cell dimensions  

  a, b, c (Å) 53.07, 53.07, 81.84 89.78, 89.78, 707.48 126.40, 126.40, 126.40

  α , β , γ   (°) 90, 90, 90 90, 90, 120 90, 90, 90

  Resolution (Å) 34.12–2.00 (2.11–2.00)* 78.61–7.50 (7.91–7.50) 63.20–4.10 (4.32–4.10)

  Rsym or Rmerge (%) 6.4 (71.9) 8.9 (94.8) 8.0 (103.7)

  I/σ I 22.9 (4.1) 8.0 (1.7) 14.8 (2.5)

  Completeness (%) 99.8 (100) 100 (100) 100 (100)

  Redundancy 13.8 (14.1) 4.9 (5.2) 10.6 (10.9)

Refinement

  Resolution (Å) 2.00 7.50 4.10

  No. reflections 8413 (1189) 1625 (220) 2757 (387)

  Rwork/Rfree (%) 21.99/25.43 35.15/39.58 38.58/41.27

No. atoms

  Protein 717 4294 1599

  Ligand/ion 8 0 0

  Water 29 0 0

B-factors (Å2)

  Protein 58.79 333.0 187.36

  Ligand/ion 73.11 −  − 

  Water 54.76 −  − 

R.m.s. deviations

  Bond lengths (Å) 0.017 0.016 0.007

  Bond angles (°) 1.991 2.918 1.539

Table 2.   Data collection and refinement statistics for all AgsA constructs. *Values in parentheses are for 
highest-resolution shell. #Data were processed in the hexagonal setting of space group R32.
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along each side of a trigonal bipyramid (Fig. 7a). The long axis of the oligomer that joins both the vertices is coin-
cident with the crystallographic 3-fold axis. Three non-crystallographic 2-fold axes bisect each of the dimers that 
lie along the equatorial plane, perpendicular to the 3-fold axis (Fig. 7b). Thus, the 18-mer formed by nine dimers 
has a 32 symmetry. The only other 18-meric protein structure reported till date is a pore-forming bacterial toxin 
that adopts a doughnut-like arrangement of two nonameric rings18. Due to the low resolution of the data, initial 
molecular replacement (MR) attempts with monomers and dimers from all other known structures failed to yield 
a solution. In the meantime, we determined the structure of AgsA:His-DD dimer at 2 Å resolution, as described in 
the previous section. When this structure was used as a search model, an unambiguous MR solution of 3 dimers 
in the ASU was obtained, with clear and well-defined density for the β -sheets (Fig. 7c,d). The outer surface of 

Figure 5.  (a) Electron density of AgsA:His-DD monomer, contoured at 1.0 σ . (b) Structure of the symmetric 
ACD dimer. Protomers are in red and blue, Methyl Pentanediol molecule in yellow. (c) Binding of dimerization 
loop (green) in β 4–β 8 groove of neighbouring molecule in lattice (red and blue surface) (Left). Close-up 
of boxed region, loop shown in green sticks, groove as electrostatic surface (Right). (d) Superposition of 
AgsA:His-DD dimer (black) with all other non-metazoan sHSP dimers.

Figure 6.  Inter-subunit salt bridge in sHSP dimers. Upper panel: Monomers are shown in green and lavender, 
box indicates region containing conserved arginine. Enlarged view of region in box is shown in lower panel. 
Left: Superposition of ACD dimers of M.jannaschii Hsp16.5 (PDB: 1SHS), wheat Hsp16.9 (PDB: 1GME), 
S. pombe Hsp16.0 (PDB: 3W1Z), X. axonopodis HspA (PDB: 3GLA), S. tokodaii Hsp14 (PDB: 1AAB), D. 
radiodurans Hsp17.7 (PDB: 4FEI). Right: Corresponding region in AgsA:HisDD dimer.
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the oligomer is charged, and its interior is hydrophobic (Fig. 7e). Long, continuous electron density is seen in 
the interior of the oligomer, which could account for the first 39 residues of the N-terminus. Though the IXI 
motifs in the C-termini of the 18-mer could not be defined for any monomer, the positioning of the monomers at 
inter-dimer interfaces indicates that the C-terminal regions are poised to form the hydrophobic interactions with 
the neighbouring β 4–β 8 clefts.

(iii) AgsA:DelC–a 24-mer.  Cubic crystals of AgsA:DelC in the I23 space group diffracted to 4.1 Å resolution 
(Table 2). The application of crystal symmetry on the MR solution of a dimer in the ASU yielded an octahedral 
24-mer, similar to the assembly of MjHsp16.5 and S. tokodaii Hsp14 (Fig. 8a). Though the search model lacked 
both termini for both protomers, successive rounds of refinement yielded clear density into which we could build 
the C-terminal extensions of both subunits (Fig. 8b). These termini containing the IXI motifs (residues 143–145: 
Ile-Ala-Ile), bind in the hydrophobic groove present between strands β 4 and β 8 of a neighbouring dimer related 
by a crystallographic 2-fold axis. As observed for MjHsp16.5 wild type and its N-terminal variant, this AgsA oli-
gomer is also charged on the outside and hydrophobic inside4,19 (Fig. 8c,d).

Cryo-EM reconstruction of AgsA wild type protein.  Cryo-EM studies suggested that the major species 
present in the sample was a higher-order oligomeric structure with its shape and symmetry consistent with the 
crystal structure of AgsA:DD (Fig. 9a,b). The 18-meric oligomer of AgsA:DD could be easily fitted into the recon-
structed envelope (Fig. 9c). These results are also in line with solution studies indicating that the wild type protein 
exists predominantly as an 18-mer. Together, these studies show that wild type AgsA very likely adopts the same 
18-mer oligomeric configuration as observed in the crystal structure of the double deletion construct, AgsA:DD.

Formation of different oligomeric states.  All non-metazoan ACD dimers display the same fold, but 
in spite of the conservation of their dimer structures, assemble into varied types of oligomers. A key difference 
between the reported oligomers lies in the hinge angle between the ACD and the C-terminal extension. The 
C-terminal extension in the AgsA:DelC construct forms crucial interactions to enable its assembly into a 24-mer. 
Upon superposition of the AgsA:DelC dimer on the 18-mer, C-terminal extensions are seen to occur in the 

Figure 7.  (a) 18-mer of AgsA:DD, ASU in shades of purple. (b) Symmetry elements of the 18-mer. (c) Electron 
density map of the ASU, contoured at 1.0 σ . (d) Stereo view of electron density map for the oligomer, contoured 
at 1.0 σ , obtained after molecular replacement. (e) Electrostatic surface representation of outside (left) and 
inside (right) of 18-mer.
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vicinity of the β 4–β 8 groove (Fig. 10a). By varying the hinge angle, the C-terminal extensions of protomers in 
the 18-mer can bind in the hydrophobic grooves of neighbouring dimers. The network of such interactions, sim-
ilar to those observed in wheat Hsp16.9 and S. pombe Hsp16 structures, mediate assembly of the closed 18-mer 
(Fig. 10b,c). sHSPs display remarkable heterogeneity in oligomer structure and here we demonstrate how an sHSP 
can adopt different quaternary structures via changes in the terminal regions.

Discussion
Of late, there has been a paradigm shift in the understanding of sHSPs and their chaperone function. It is now 
accepted that sHSPs populate a range of oligomeric states at equilibrium, forming polydisperse and dynamic 
ensembles. Fluctuations in the terminal regions cause changes in inter-subunit contacts and this leads to a change 
in the distribution of various oligomeric species. Such changes in the population distribution are strongly cor-
related with sHSP chaperone activity and its regulation. However, the exact mechanism of this process, the con-
tribution of different sequence and structural motifs to oligomeric interactions and chaperone function, and the 
cross-talk between the latter two properties are still poorly understood.

In line with the current understanding of sHSP structure and function, our results show that in vivo, the wild 
type protein exists in an equilibrium between two oligomeric states: 18-mer and 24-mer. Further, this equilib-
rium seems important for chaperone activity. The crystal structures we have described represent these oligomeric 
assemblies of the wild type protein.

AgsA:DD and AgsA:DelC crystallized as different oligomers: an 18-meric trigonal bipyramid and a 24-meric 
octahedron, respectively. AgsA:His-DD crystallized as a dimer following the loss of its terminal segments. 
Cryo-EM reconstructions indicate that the major species of wild type AgsA adopts the same 18-mer oligomeric 
configuration as AgsA:DD. The core structures of the dimers that constitute the different oligomers do not appear 
to show significant structural variations from the ACD dimer. This modular architecture of sHSPs facilitates the 
formation of different oligomers from the same building blocks. Our results support a model where multiple weak 
interactions promote oligomeric contacts20 and alterations in the equilibrium oligomer distribution can arise 
from fluctuations confined mainly to the terminal regions.

Methods
Cloning, over-expression and purification of AgsA wild type and truncation constructs.  
Genomic DNA of Salmonella enterica serovar typhimurium LT2 was obtained from BEI Resources, USA. Four 
constructs of AgsA were cloned into the pRSET C vector: 1) Wild type protein, tagless construct harbouring no 
affinity tags at either termini; 2) AgsA:DelC lacking 9 residues at the C-terminus, tagless; 3) Double deletion 
AgsA:DD lacking 11 residues at the N-terminus and 9 residues at the C-terminus, tagless and 4) AgsA:His-DD, a 
hexa-histidine tagged double deletion construct.

Clones were transformed into E. coli BL21 (DE3) and expression was induced by addition of 0.7 mM IPTG at 
37 °C. Following centrifugation of the culture, cell pellets of the tagless constructs (Wild type protein, AgsA:DelC 
and AgsA:DD) were resuspended in buffer containing 20 mM bis-tris, 30 mM NaCl, 1 mM EDTA, 1 mM 
β -mercaptoethanol at pH 6.3. After cell lysis, the soluble cell fraction was purified by anion exchange chromatog-
raphy through a Q-sepharose column. The protein was eluted with an NaCl gradient from 30–300 mM. Fractions 
containing the protein were identified by SDS-PAGE and passed through a GE fast flow Q-Sepharose column 
for a further round of purification. The eluted proteins were subjected to size exclusion chromatography (SEC) 
through a Sephacryl-500 column with buffer containing 20 mM Tris, 500 mM NaCl, 1 mM EDTA at pH 7.5. The 

Figure 8.  (a) 24-mer of AgsA:DelC, ASU shown in blue, crystallographic 2-fold axis is indicated. (b) Electron 
density map of ASU contoured at 1.0 σ . C-terminal extensions which were built during refinement are shown in 
green ribbon representation. Electrostatic surface representation of outside (left) and inside (right) of 24-mer viewed 
down (c) 3-fold axis, (d) 2-fold axis.
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protein was subjected to another round of purification by SEC through a Superose 6 10/300 column with buffer 
containing 20 mM Tris, 50 mM NaCl at pH 7.5. At all stages, we checked the purity of the protein by SDS-PAGE.

AgsA:His-DD construct was purified by immobilised metal affinity chromatography. The cell pellet was resus-
pended in buffer containing 20 mM tris, 200 mM NaCl, pH 7.5. Following cell lysis by sonication, the lysate was 
centrifuged and the supernatant was extracted and applied onto a Ni-NTA column pre-equilibrated with the lysis 
buffer. Protein was eluted from the column by passing lysis buffer supplemented with 200 mM imidazole. The 
elution fractions containing AgsA:His-DD were identified by SDS-PAGE and further purified by SEC through a 
Sephacryl-500 column.

Figure 9.  Cryo-EM studies of the wild type full-length AgsA. (a) Individual micrograph. (b) Class averages 
of the particles, white bar indicates scale (100 Å), and (c) Fit of the 18-mer of AgsA:DD crystal structure into the 
cryo-EM map; left and middle panels are views down the 2-fold axes, and right panel is view down the 3-fold 
axis.
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Solution studies.  Dynamic light scattering experiments were performed on an Xtal concepts SpectroSize 
300 instrument, with protein concentrations of 3–4 mg/ml. The hydrodynamic radius and polydispersity were 
determined using Spectrosize 300 software.

Analytical size exclusion chromatography was performed using a Superose 6 10/300 column with buffer con-
taining 20 mM Tris, 50 mM NaCl at pH 7.5. For molecular weight estimation, calibration was performed using 
standard molecular weight markers: Ferritin, amylase, γ -globulin, ovalbumin and myoglobin.

For SEC-MALS, the buffer used was 20 mM Tris, 200 mM NaCl, pH 8.0 (for wild type protein) or 20 mM Tris, 
50 mM NaCl, pH 7.5 (for separated fractions of wild type). The Superose 6 10/300 column (for wild type protein) 
or the Superdex 200 10/300 was connected to Wyatt Treos multi-angle light scattering instrument with an inline 
refractive index detector (Waters 2414 RI detector) and a multi-wavelength UV detector (Shimadzu SPD-10 A vp 
UV-Vis detector). Approximately 100 μL of 2 mg/mL protein solution was injected onto the column. The molar 
mass and mass percent of each fraction was calculated using the ASTRA program (Wyatt Technology).

Figure 10.  Superposition of C-terminal extension of AgsA:DelC on each monomer of AgsA:DD. (a) Residues 
133–145 of AgsA:DelC (blue) occur in the vicinity of the β 4–β 8 groove (magenta) of AgsA:DD (green). The interface 
indicated by a box is enlarged on the right. Other subunits are omitted for clarity. (b) Superposition of C-terminal 
extensions of AgsA:DelC on monomers of AgsA:DD at different junctions in the 18-mer. Colour scheme same 
as that of Fig. 8a. (c) Interaction of C-terminal extension of AgsA:DelC (blue) with β 4–β 8 groove (magenta) of 
neighbouring dimers, at different junctions of 24-mer.
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Chaperone activity assay.  10 μM of lysozyme in 50 mM sodium phosphate buffer, pH 7.1, was denatured 
with 60 mM DTT at 37 °C. The aggregation of lysozyme was monitored for 20 minutes at 360 nm, in a JASCO 
double beam spectrophotometer. To assay chaperone activity of sHSPs, 10 μM of sHSP was added to the sample 
and reference cuvettes, prior to the addition of lysozyme in the sample cuvette. The chaperone activity of the 
separated fractions of the wild type protein were performed with 8 μM lysozyme denatured with 48 mM DTT. All 
other experimental conditions remained identical.

Crystallization and X-Ray data collection.  All crystallization trials were performed in a hanging drop 
vapour-diffusion set-up. 2.5 μl of protein (concentration of 7 mg/ml) was mixed with 2.5 μl of precipitant and 
equilibrated against a reservoir of 0.35 ml of precipitant, at a temperature of 20 °C. Crystals appeared in two weeks. 
The precipitants that yielded crystals for the various constructs were (i) AgsA:His-DD − 25% Pentaerythritol 
Propoxylate (5/4 PO/OH), 0.1 M MES, pH 6.0, 20% MPD; (ii) AgsA:DD − 30% Polypropylene glycol 400, 0.1 M 
NaCl; (iii) AgsA:DelC − 30% Pentaerythritol Propoxylate (5/4 PO/OH), 0.1 M MES, pH 6.0 and 30% Glycerol.

Diffraction data for all crystals were collected at the BM14 beamline of ESRF, at a temperature of 100 K, at 
wavelengths of 0.97856 Å, 0.95372 Å and 0.97625 Å, respectively, for AgsA:His-DD, AgsA:DD and AgsA:DelC.

Structure solution and refinement.  For AgsA:His-DD, molecular replacement (MR) was performed with 
PHASER21, using the template of S. pombe Hsp16 (PDB ID: 3W1Z) without the N- and C-termini and dimer-
ization loop. The solution had a TFZ of 4.4 and LLG 77. Refinement for AgsA:His-DD was completed through 
iterative rounds of manual model building in Coot22 and refinement using REFMAC523. The final model consists 
of a continuous backbone for residues 40–132, of which 95.6% and 4.4% residues are in the favored and allowed 
regions of the Ramachandran plot, respectively24. The crystallization condition contained MPD, and one mole-
cule of MPD was present in the ASU.

The dimer structure of AgsA:His-DD was used as the template for MR for all other data. For the low resolution 
data of AgsA:DD, initial MR trials with monomers, dimers, tetramers and hexamers of all other known structures 
failed to yield a solution. Only after we obtained the dimeric AgsA:HisDD structure, we were able to obtain an 
MR solution for AgsA:DD. A search for 3 copies of the AgsA:His-DD dimer with the program PHASER yielded 
a solution with clear electron densities for the chains and no clashes at the interface. For this solution, the TFZ 
was 5.2 and LLG was 95. A further search with this solution, i.e. combining the three dimers yielded a TFZ of 
8.8 and LLG of 96. The MR solution was subjected to density modification and rebuilding through the programs 
RESOLVE25 and morph_model26 implemented in the PHENIX suite. This was followed by positional, rigid body 
and group B-factor refinement with the program phenix.refine27, while implementing NCS and reference struc-
ture (AgsA:His-DD) restraints.

For AgsA:DelC, MR placed an ACD dimer in the ASU with TFZ of 8.1 and LLG of 134. Though the model 
lacked the C-termini, successive rounds of refinement with phenix.refine yielded clear density for both C-terminal 
extensions, into which we were able to build 15 residues for each chain. NCS and secondary structure restraints 
were implemented through phenix.refine.

Cryo-EM reconstruction.  Cryo-EM experiments were performed on a JEM2010 (200 KV) cryo-electron 
microscope equipped with CCD camera at the National Center for Macromolecular Imaging, Baylor College of 
Medicine, USA. The wild type full-length AgsA was plunge-frozen using a Vitribot (MIV). The frozen specimen 
was imaged at 50000×  magnification, with defocus levels ranging from − 1.8 μm to − 4.0 μm. The processing and 
preliminary three-dimensional reconstructions of the data were carried out using the protocols as implemented 
in the EMAN2 software package28. For the reconstructions of the wild type AgsA, ~5500 particle images (2.18 Å/
pixel) were used, and D3 symmetry was enforced. The estimated resolution based on Fourier shell correlation was 
~20 Å following iterative cycles of refinement starting from an initial model generated by EMAN2. The cryo-EM 
map was viewed with the molecular graphics software UCSF Chimera29. The oligomeric structures were fit into 
the reconstructed map using the ‘Fit in map’ utility of UCSF Chimera.
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