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Discovery and characterisation 
of a novel toxin from Dendroaspis 
angusticeps, named Tx7335, that 
activates the potassium channel 
KcsA
Iván O. Rivera-Torres2,†, Tony B. Jin1, Martine Cadene3,‡, Brian T. Chait3 & Sébastien F. Poget1

Due to their central role in essential physiological processes, potassium channels are common targets 
for animal toxins. These toxins in turn are of great value as tools for studying channel function and as 
lead compounds for drug development. Here, we used a direct toxin pull-down assay with immobilised 
KcsA potassium channel to isolate a novel KcsA-binding toxin (called Tx7335) from eastern green 
mamba snake (Dendroaspis angusticeps) venom. Sequencing of the toxin by Edman degradation and 
mass spectrometry revealed a 63 amino acid residue peptide with 4 disulphide bonds that belongs to 
the three-finger toxin family, but with a unique modification of its disulphide-bridge scaffold. The toxin 
induces a dose-dependent increase in both open probabilities and mean open times on KcsA in artificial 
bilayers. Thus, it unexpectedly behaves as a channel activator rather than an inhibitor. A charybdotoxin-
sensitive mutant of KcsA exhibits similar susceptibility to Tx7335 as wild-type, indicating that the 
binding site for Tx7335 is distinct from that of canonical pore-blocker toxins. Based on the extracellular 
location of the toxin binding site (far away from the intracellular pH gate), we propose that Tx7335 
increases potassium flow through KcsA by allosterically reducing inactivation of the channel.

The potassium ion (K+) channel from Streptomyces lividans (KcsA) is a member of the family of ion-selective 
pores called tetrameric cation channels and the archetype for a K+-selective ion channel pore1,2. K+ channels 
are highly relevant to various biological processes such as cardiac and neuronal electrical signalling, and their 
malfunction has been linked to diseases such as cardiac3 and neuronal4–6 disease and cancer7. The study of K+ 
channels, and in particular the study of how K+ permeation through the membrane is regulated in these chan-
nels, therefore offers the potential to develop therapeutic applications towards a large range of important human 
diseases.

Ion flow through K+ channels is generally regulated by two processes: activation in response to a stimulus 
(voltage, ligand binding), and inactivation from the activated state in a stimulus-independent manner8,9. In KcsA, 
which is gated by pH, the activation gate is controlled by a number of ionisable residues on the cytosolic side 
of the channel. Upon protonation at low pH, several critical ionic interactions are lost, leading to an outward 
movement of the C-terminal helix (TM2) of each of the four subunits and the opening of a pathway for the 
potassium ions10–13. However, channels opened by lowering of the pH stop conducting potassium ion currents 
within 1–3 seconds due to slow (or C-type) inactivation, a conformational transition happening at the level of the 
selectivity filter14–17, the narrowest part of the ion permeation pathway.

In spite of this mechanistic knowledge of conformational gating in KcsA, the availability of further tools for 
directly studying the regulation of inactivation would be very useful. Animal peptide toxins may serve as such 
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tools and have been used to study functional and regulatory aspects of channel behaviour, but their usefulness is 
somewhat reduced by the fact that most toxins affecting potassium channels act as pore blockers, thus inhibiting 
potassium flow18. Indeed, an NMR structure of KcsA bound to the antagonist scorpion toxin charybdotoxin 
reveals that this toxin binds to KcsA without inducing any structural changes, instead making specific contacts 
with the extracellular surface of the ion channel that result in pore blockage19. This lock-and-key mechanism 
of toxin block has been confirmed in a recent crystal structure of the same toxin in complex with a eukaryotic 
voltage-gated potassium channel20. Therefore, the availability of toxins acting through a different mechanism or 
having an activating effect would greatly enhance the tool kit of K+ channel mechanistic research.

One potential source for K+ channel toxins are the venoms of mamba snakes, which contain two main groups 
of neurotoxins. The three-finger toxins mainly act upon ligand-gated channels and G protein coupled receptors; 
and the dendrotoxins target K+ channels21. The dendrotoxins are small proteins, containing 57–60 amino acid 
residues cross-linked by three disulphide bridges. Although they adopt a Kunitz-type protease inhibitor fold, 
they show little or no anti-protease activity but block particular subtypes of voltage-dependent potassium chan-
nels of the Kv1 subfamily in neurons22. Studies with cloned K+ channels demonstrated that α -dendrotoxin from 
Dendroaspis angusticeps blocks voltage-gated Kv1.1, Kv1.2 and Kv1.6 channels in the nanomolar range, whereas 
toxin K from Dendroaspis polylepis preferentially blocks Kv1.1 channels22. The details of the pore blocking effect of 
δ -dendrotoxin on a shaker-type potassium channel have been functionally elucidated by mutant-cycle analysis23, 
and a structural model showing presumed binding contacts for the pore blocker δ -dendrotoxin in complex with 
this channel was generated24. However, to our knowledge no channel-activating toxins from mamba venom have 
been reported so far.

Here, we present the discovery, isolation and functional characterisation of a distinct channel-opener toxin 
obtained from eastern green mamba venom. This toxin, named Tx7335, increases channel opening events in 
a dose-dependent manner if added to the extracellular side of a planar bilayer system with reconstituted KcsA 
single channels. This observation means that the channel-opener toxin does not directly affect the intracellular 
pH gate, and the likely mode of action is through a shift in equilibrium towards the conductive state of the inacti-
vation gate. The discovery of this toxin offers a unique experimental tool to study the allosteric regulation of inac-
tivation in KcsA. It also offers the opportunity for further studying the underlying conformational and dynamic 
processes involved in potassium channel inactivation through the use of a direct agonist peptide.

Results
Toxin pull-down assay and identification of Tx7335.  In order to identify toxins in Dendroaspis angusticeps  
(eastern green mamba) venom that interact with KcsA, we set up toxin pull-down experiments from crude venom 
with immobilised KcsA. A Co2+-based affinity resin was used to immobilise the polyhistidine-tagged full-length 
KcsA in n-decyl maltoside (DM) micelles. After incubation of KcsA resin and several washing steps, any bound 
toxins were released by elution of the channel with a high imidazole buffer. In initial experiments, the negative 
control pull-down performed with KcsA-free Co2+-resin showed that even after extensive washes, a significant 
number of false positives remained in the elution buffer. Therefore, we proceeded to pre-depleting the crude 
venom of most non-specific binders by eluting it over free Co2+-resin before using it in toxin pull-down exper-
iments. With this pre-depletion step, false positives were no longer observed, and a single, previously unknown 
toxin with an observed molecular mass of 7333.5 Da was identified as a specific binder by mass spectrometry and 
HPLC analysis (Fig. 1). This toxin was named Tx7335 (based on the theoretical mass of the subsequently derived 
amino acid sequence taking into account the presence of four disulphide bonds). Tx7335 was also pulled down 
when we used the Q58A, T61S, R64D KcsA triple mutant (data not shown). This mutant form of KcsA, referred to 
as pmut3, had been generated to mimic the outer pore of eukaryotic Kv1 family members and is able to bind pore-
blocker toxins like charybdotoxin and agitoxin25. The fact that Tx7335 binds both wild-type and pmut3 KcsA 
suggests that this toxin has a mechanism of action that differs from the classical pore-blocker toxins.

Tx7335 direct purification from crude venom by HPLC chromatography.  In order to obtain suf-
ficient quantities of Tx7335 for further characterisation, we directly purified the toxin from crude Dendroaspis 
angusticeps venom via HPLC using a reverse-phase C-18 column. We collected the fraction at the Tx7335 reten-
tion time and confirmed the identity of the purified toxin by measuring its mass and observing its ability to bind 
to KcsA immobilised on Co2+-resin as above.

Determination of amino acid sequence of Tx7335.  HPLC-purified toxin was reduced and alkylated 
with DTT (dithiothreitol) and iodoacetamide, respectively, and N-terminal sequencing of the intact peptide 
revealed the sequence of the first 46 amino acids up to Lys 46, with a single E/C ambiguity at position 39. MS/MS 
analysis on a 2001 Da LysC cleavage product confirmed the end of the Edman-derived sequence, clearing up the 
ambiguity at position 39 (see Supplementary Fig. S1). Additionally, LysC cleavage also yielded a product with a 
mass corresponding exactly to the remaining C-terminal region beyond K46. This product was purified by HPLC 
and used for further N-terminal sequencing, yielding the sequence from position 47 to 61. Ion-trap MS fragmen-
tation of this peptide allowed for the identification of the remaining two residues (see Supplementary Fig. S2). The 
final peptide sequence for Tx7335 (see Fig. 2) consists of 63 amino acid residues and contains 8 cysteines, which, 
based on the mass of the native peptide, are all involved in disulphide bridges in the native structure. Sequence 
alignment revealed that Tx7335 belongs to the family of three-finger toxins (Fig. 2).

Disulphide bonding pattern of Tx7335.  The disulphide bridge connectivities were partially deter-
mined by complete LysC cleavage of native toxin. The resulting disulphide-connected peptides were identified 
by MALDI mass spectrometry (Fig. 3). Two major cysteine-containing cleavage products were observed. One 
peak of mass 1939.2 Da represents the disulphide-linked peptides I15-K20 and I31-K41. Since both of these 
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peptides only contain one cysteine residue, it can be unambiguously determined that C17 is connected to C39. 
The other observed peak of mass 3170.5 Da is consistent with a product containing the linked L1-K14, T15-K20 
and C55-T63 peptides. Since these three cleavage peptides contain all six remaining cysteines, further disulphide 
bridging information was obtained from the observation of a prompt fragmentation at the S-S bonds in the spec-
trum as well as from a separate ion-trap MS/MS analysis of the same 3170.5 Da species. In both cases, the L1-K14/
T22-K26 and T22-K26/C55-T63 pairs were found, whereas no fragments containing linked L1-K14 and C55-T63 
could be observed. This shows that C3 is connected to either C24 or C25, with the other cysteine in fragment 
T22-K26 forming a disulphide bond with C55, C56 or C61, and an additional disulphide bond existing between 
the other two cysteine residues in the C-terminal cleavage peptide (Fig. 3).

Sequence homology of Tx7335 with other snake toxins.  The sequence of Tx7335 consists of 63 resi-
dues, and sequence similarity searches indicate that it belongs to the three-finger snake toxin family (Fig. 2). The 
most closely related three-finger toxin is bucandin (61% amino acid identity) from the malayan krait (Bungarus 
candidus), a toxin that enhances presynaptic acetylcholine release through an unknown mechanism26.

Functional characterisation of Tx7335.  In order to observe the functional effects of Tx7335 on channel 
activity, we reconstituted KcsA into planar lipid bilayers and measured the changes in single-channel activity 
upon addition of the toxin. Full-length KcsA was reconstituted into 3:1 1-palmitoyl-2- oleoylphosphatidylglycer-
ol/1-palmitoyl-2-oleoylphosphatidylethanolamine (POPG/POPE) vesicles by dialysis. Lipid planar bilayers were 
painted with the same lipid composition, and the buffers were adjusted to pH 7 on the cis side and pH 4 on the 
trans side. Since KcsA only opens when the cytosolic C-terminal domain experiences low pH, this arrangement 
allows the observation of channels of a single orientation in an artificial bilayer1. The reconstitution concentra-
tion in vesicles was chosen such that only one to a few channels were present in each membrane. When we added 
Tx7335 to the outside bath, an increase in channel openings could be observed in a dose-dependent manner 
both for WT and pmut3 (see representative traces in Fig. 4, and all-point histograms in Supplementary Fig. S3).  
Mean open- and closed-time analyses of all traces were performed using the maximum interval likelihood 
(MIL) method with the software package QuB27, and results are summarised in Table 1 (data fits are shown in 
Supplementary Figs 4 and 5 ). It can be noted that the addition of 2.0 μM Tx7335 induces an ~ 8-fold increase 
in mean open times for wild-type KcsA and a ~ 13-fold increase for pmut3 KcsA (see Table 1). The correlated 
increases in open probability of about 40-fold for wild-type and about 90-fold for pmut3 channels reveal that 
there is an increase in the frequency of openings in addition to the increase in open times. Because of the pres-
ence of at least three (WT) or four (pmut3) individual channels in the analysed bilayers that only became evident 
after addition of toxin (see Fig. 4), the open probabilities cannot be directly interpreted as single-channel values. 
However, the relative differences of open probability in the absence and presence of toxin are a valid indicator 
of toxin effect since all toxin addition series are performed on the same bilayer. For calculation of the open time 
values, any segments of the traces that showed simultaneous opening of multiple channels were omitted from the 
MIL analysis. In order to ensure that the observed effect is due to the polypeptide itself and not an artefact due to 

Figure 1.  Pull-down of Tx7335 with immobilised KcsA as shown by MALDI and HPLC analysis. The main 
spectrum shows a MALDI mass spectrum of KcsA eluted from a metal affinity resin column after incubation 
with D. angusticeps venom. The peaks correspond to the triply-charged KcsA species, to the ubiquitin used 
as an internal calibrant and to the novel toxin Tx7335 that was pulled down by the channel. The insert shows 
an HPLC chromatogram of the purification of Tx7335 from the affinity column eluate via reverse-phase 
chromatography.
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some contaminating molecule from the HPLC purification, we collected an HPLC fraction of the same volume 
immediately following the Tx7335 peak. This fraction was lyophilized and re-solubilized in the same volume and 
buffer as the 200 μM toxin stock solution (leading to a solution of the same neutral pH as toxin stocks, since most 
TFA from the HPLC running buffer was removed during lyophylisation and any remaining traces were neutral-
ized by the excess buffer in the stock solution). We performed this experiment both with WT and pmut3 KcsA, 
and showed that much smaller if any changes were observed in either case (Fig. 5, Supplementary Figs S6 and S7, 
and Table 1). While a roughly three-fold change in open probability was found with WT KcsA, this is much less 
than that observed in any experiments with toxin, and mean open times remained constant. With pmut3 KcsA, an 
even smaller increase in open probability of about 1.5-fold was observed with a mean open time increase of about 
1.2-fold (see Table 1). Since the observed changes are at least an order of magnitude smaller than those seen with 
toxin and there is no significant effect on mean open times in these negative controls, we can conclude that the 
observed activating effect of the toxin is indeed due to the polypeptide and not an artefact of toxin purification or 
sample preparation. The small change in open probability that is observed for WT with HPLC blank is most likely 
due to normal variability in single-channel activity on the time scale of the experiment. We also attempted to add 
the toxin to the inside chamber to make sure that the observed activating effect is due to a specific interaction 
between toxin and extracellular channel surface. Indeed, toxin delivered to the inside did not cause any change in 
the channel open probabilities or mean open times (data not shown).

Figure 2.  Sequence alignment of Tx7335 with other three-finger toxins. The sequence conservation at 
individual positions in the alignment is indicated by the darkness of the shading. Cysteine residues are printed 
in bold yellow. The residues differing from the canonical three-finger toxin cysteine scaffold are highlighted 
in magenta in Tx7335. Toxins are labelled with their Swiss-Prot sequence identifiers except for bucandin from 
Malayan krait26 and TxS6C6 from eastern Jameson’s mamba51.

Figure 3.  Determination of disulphide bond connectivities in Tx7335. A MALDI-TOF mass spectrum of 
LysC-cleaved native Tx7335 is shown, and peaks originating from cysteine-containing cleavage products are 
labelled. The peptide sequences of Tx7335 and bucandin are shown, and cysteine residues are highlighted in 
yellow. The Tx7335 sequence shows the Cys-containing peptide species in the same colours as the labels of the 
corresponding peaks in the mass spectrum. The bucandin sequence shows the disulphide connectivities as 
observed in the crystal structure26, and the Tx7335 sequence shows the disulphide bridges as experimentally 
determined with remaining ambiguities indicated.
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In addition to WT and pmut3 KcsA, we also tested the effect of Tx7335 on the KcsA A98G mutant, which 
shows significantly increased mean open times28 while retaining the ability to inactivate29. In this mutant, the 
addition of Tx7335 again induced a dose-dependent increase in mean open times, but because the single-channel 
traces showed long periods of inactivity between bursts of channel opening events, this did not correlate with a 
large effect on open probabilities (see Table 1, Fig. 6 and Supplementary Fig. S8). MIL analysis of the traces was 
performed omitting the long interburst periods. The traces could be fit with a model consisting of a single open 
and two closed states (Fig. 6). Within the tested toxin concentrations, the dependence of mean open times on 
the toxin concentration followed a roughly linear trend (Supplementary Fig. S9), indicating that saturation of the 
activating effect is not achieved with 0.9 μM toxin.

Figure 4.  Single-channel traces of wild-type and mutant KcsA in artificial bilayers show the activating 
effect of adding the indicated concentrations of Tx7335 to the outside bath solution. Shown are 15 s 
representative traces of 2 minute recordings for each condition. All traces for each channel are from a single 
bilayer, and recordings were started 2 minutes after each addition of toxin.

Number of events Po (%) Single-channel conductance (pS) τ c (ms) τ o (ms)

WT KcsA (no Tx) 1618 0.76 96 ±  23 145 1.06

WT KcsA (0.9 μM Tx) 6795 11.6 126 ±  45 26.6 3.40

WT KcsA (2.0 μM Tx) 4883 42.3 128 ±  17 12.4 9.06

pmut3 KcsA (no Tx) 2436 0.74 87 ±  24 100 0.64

pmut3 KcsA (0.9 μM Tx) 6922 39.6 99 ±  22 6.02 3.91

pmut3 KcsA (2.0 μM Tx) 5079 58.1 91 ±  20 5.91 8.25

A98G KcsA 4511 36.4 115 ±  20 1.16/30.2 13.2

A98G KcsA (0.1 μM Tx) 1496 67.8 115 ±  17 0.99/27.5 37.8

A98G KcsA (0.3 μM Tx) 597 74.5 119 ±  17 0.62/27.7 54.9

A98G KcsA (0.9 μM Tx) 349 92.1 120 ±  18 0.53/27.6 204

WT KcsA (no blank) 1577 0.86 95 ±  23 151 1.21

WT KcsA (plus blank) 4745 2.31 88 ±  28 49.2 1.19

pmut3 KcsA (no blank) 1633 0.69 84 ±  32 129 0.80

pmut3 KcsA (plus blank) 2173 1.09 84 ±  27 97.5 0.98

Table 1.   Single-channel analysis of WT and mutant forms of KcsA in the absence and presence of variable 
concentrations of toxin. Statistics of single-channel analysis of all traces presented in the paper are shown here. 
In all cases, traces were edited before analysis to remove regions with multiple simultaneously open channels. 
For A98G traces, interburst regions without any channel openings lasting longer than 1 s were also removed 
from analysis. The open probability Po and the single-channel conductance were obtained from half-maximum 
amplitude idealization, and the mean open- and closed-times τ o and τ c from MIL fitting. Values have been 
derived from a single 2 min. trace for each condition. The given errors in the single-channel conductances are 
based on the combined standard deviations in actual amplitude values for the open and closed states. A simple 
two-state model was used in MIL fitting except for A98G, which was modelled with two closed and one open 
state.
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Discussion
We have identified and characterized a new mamba toxin Tx7335 from Dendroaspis angusticeps that acts on the 
bacterial potassium channel KcsA and has a unique channel-activating effect. Based on sequence homology, 
Tx7335 belongs to the family of the three-finger snake toxins, named after their characteristic fold that includes 
three beta hairpins sticking out like three fingers (Fig. 7). This family of snake toxins includes the α -neurotoxins 
(acetylcholine receptor inhibitors), the cardiotoxins (which damage cell membranes), the fasciculins (acetylcho-
line esterase inhibitors), the dendroaspins (antagonists of various cell adhesion processes) and L-type calcium 
channel blockers30. The potassium channel-activating function of Tx7335 we have observed is therefore very unu-
sual for this family of toxins. The three-finger toxin family can also be sub-divided based on the sequence length 
and number of cysteine residues into the short-form toxins with 4 disulphide bonds and the long-form toxins that 
show an additional disulphide bond in the loop between first and second beta-strand30. Interestingly, although 
Tx7335 has the highest sequence similarity with members of the long-form three-finger toxins, it markedly differs 
from them in the number and positions of cysteines. First, Tx7335 has only 8 cysteines like the short-form toxins. 
Furthermore, it shows a unique variation in the cysteine scaffold, with the presence of tyrosine 43 at the site of a 
highly conserved cysteine in all three-finger toxins, whereas a cysteine is instead found at position 25 in Tx7335, 
which is a tyrosine in most other three-finger toxins (Fig. 2). The partial disulphide bridge mapping of Tx7335 is 
consistent with that found in bucandin and other three-finger toxins. Comparison with the structure of bucan-
din26,31 shows that cysteine 55 should be able to form a disulphide bridge with cysteine 25 without major disrup-
tions in the structure due to the spatial proximity of the two residues, although this may lead to an increase in the 
flexibility of the “finger” between residues 43 and 55 that is stabilized by a disulphide bond in other three-finger 
toxins (Fig. 7). It is possible that this novel arrangement of linked cysteines in the sequence plays an important 
role in the unique functional effects observed for Tx7335.

To understand the functional mechanism of activation of KcsA by Tx7335, it is useful to briefly review the 
current state of knowledge on KcsA conformational gating: KcsA is activated by low intracellular pH conditions 
(pH range =  3.00–4.75) acting on the intracellular side of the channel32,33. pH-jump experiments in KcsA per-
formed both at the ensemble and single-channel level showed a macroscopic activation of KcsA that is suggestive 
of multiple conformational states. These experiments also demonstrated that KcsA channels activate in the milli-
seconds range, and inactivate in the seconds timescale in the continuous presence of protons16. The various con-
formational transitions during activation are not voltage-dependent, whereas inactivation of KcsA is modulated 
by voltage and can occur from the fully open conducting channel or its partial states via a pH-independent man-
ner16. Fluorescence lifetime measurements of the TM2 bundle openings have shown that the low open probability 
observed for KcsA under steady-state conditions in artificial bilayers is not explained by the TM2 movements but 
linked to this inactivation process12. Mutagenesis studies have pinpointed residues around the selectivity filter 
that are involved in this inactivation gate34,35, and recent crystal structures of a constitutively open channel17,36 
and a non-inactivating mutant37, together with molecular dynamics simulations of structural transitions in the 
selectivity filter38,39, have shed light on the structural determinants of inactivation, in particular the importance 
of an extensive hydrogen-bonding network behind the selectivity filter. Given this mechanistic understanding, 
it makes sense to stipulate that Tx7335 functions by affecting KcsA inactivation, since the toxin acts from the 
extracellular side of the membrane, far from the intracellular pH gate.

To our knowledge, Tx7335 is the first peptide toxin that induces an increase in potassium currents via bind-
ing to the extracellular side of the potassium channel pore domain. It has however been reported that in the 
bacterial voltage-gated potassium channel KvLm, where the pore-blocker toxin charybdotoxin leads to a great 
reduction of single-channel currents, this is accompanied by a significant increase in open probability, which the 
authors attribute to a stabilization of the conductive conformation of the selectivity filter40. This link between pore 
blocker toxin binding and stabilization of the conductive selectivity filter conformation has also been observed 
in solid-state NMR and computational studies of the interaction between kaliotoxin and a toxin-sensitive KcsA 
mutant41,42, and may be a general feature of these toxins that is generally not observable due to the complete block 
of potassium currents in the toxin-bound state. A recent study linking the conformational and dynamic state of 
the outer vestibule to the inactivation state of the selectivity filter43 further suggests a mechanism by which toxin 

Figure 5.  Single-channel KcsA traces upon addition of negative control samples (lyophilized HPLC 
baseline aliquots). Representative 10 s traces are shown for both WT and pmut3 KcsA bilayers before and after 
the addition of lyophilized HPLC baseline samples. The same bilayer is shown before and after addition of blank 
for each channel type.
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binding from the extracellular side can shift the equilibrium between conductive and inactivated states. Therefore, 
Tx7335 appears to increase KcsA channel openings by shifting the equilibrium between C-type inactivated and 
conductive conformations of the selectivity filter, either through stabilizing the conductive state or destabilizing 
the C-type inactivated conformation. We originally pulled down Tx7335 at neutral pH in detergent micelles, 
where the channel’s pH gate is closed but the selectivity filter is in the conductive state2. This demonstrates that 
Tx7335 strongly binds to the channel in the conductive state, suggesting that the stabilization of this state is the 
more likely mechanism of action of Tx7335.

The location of the A98G mutation is around the hinge region in TM2 that is involved in the C-terminal helix 
bundle opening in KcsA and other K+ channels28,44. The increased mean open times observed in this mutant are 
further evidence that the C-terminal helix bundle and hinge regions are indeed allosterically linked to the selec-
tivity filter inactivation gate. The fact that even this mutant is further activated by Tx7335 indicates that there is 
a mechanistic difference between the allosteric effects induced by toxin binding from the extracellular side and 
those due to interaction with the intracellular hinge and pH gate. Mechanistically, we postulate that binding of 
the toxin to the extracellular turret region induces conformational or dynamic changes that are allosterically 
coupled to the selectivity filter. The fact that both the WT and pmut3 forms of the channel are susceptible to the 
toxin, with only a slight increase in toxin susceptibility for the charybdotoxin-sensitive mutant, suggests that there 
is only a small overlap in binding sites between the pore-blocker scorpion toxins and Tx7335. However, further 
structural and mutational studies will be required to elucidate the details of the Tx7335 binding site and detailed 
mechanism of activation.

The newly identified potassium channel-activating mamba toxin Tx7335 will be a useful tool to obtain more 
information on the mechanism of slow inactivation in KcsA and potentially other potassium channels. In particu-
lar, it will allow the experimental determination of how conformational or dynamic changes at the extracellular 
surface of KcsA are linked to the selectivity filter conductive state. Previous NMR studies have implied the exist-
ence of an allosteric link between the pH gate and the inactivation region45,46, but Tx7335 will offer a new tool for 

Figure 6.  Single-channel traces and open-/closed-time histograms of A98G KcsA in the absence and 
presence of varying amounts of Tx7335. Representative 15 s traces as well as open- and closed-time histograms 
with their associated MIL fits are shown. For MIL fitting, the long, silent interburst segments as well as areas 
with 2 simultaneously open channels were removed from the analysis.
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probing a connection of this allosteric pathway to the extracellular surface. Furthermore, Tx7335 may also serve 
as the starting compound for the development of a new class of drugs against diseases caused by lack-of-function 
mutations, for which channel-activating molecules represent a potential break-through approach.

Methods
Expression and purification of KcsA.  Expression plasmids for wild-type and pmut3 (Q58A, T61S, and 
R64D) KcsA with a 6xHis tag cloned into the pQE60 vector were obtained from Prof. Roderick MacKinnon and 
used to express and purify the channels as previously described2,25. In brief, channels were expressed in Xl1-blue 
E. coli cells, extracted from the membrane with 40 mM DM, purified on a TALON Co2+ resin and exchanged into 
a final buffer of 5 mM DM, 50 mM TRIS pH 7.5, 150 mM KCl for reconstitution into lipid vesicles or toxin pull-
down assays.

Toxin pull-down assay.  10 mg of crude lyophilized Dendroaspis angusticeps venom (Latoxan) was dissolved 
in 1 ml of equilibration buffer (5 mM DM, 50 mM TRIS pH 7.5, 150 mM KCl), filtered, and applied to a 500 μl 
TALON Co2+ column. The venom was then eluted with an additional 4 ml of the same buffer, and the combined 
flow-through was collected and used as the pre-depleted venom fraction in the following pull-down assay: Two 
200 μl TALON Co2+ columns were pre-equilibrated with equilibration buffer, and one of the columns was loaded 
with 1.7 mg of channel in equilibration buffer at a protein concentration of 0.5 mg/ml, whereas the other column 
was left empty and used as a negative control. Both columns were washed with 2 ml of equilibration buffer, and 
then loaded with half of the pre-depleted venom fraction each. Both columns were then washed with 5 ml of 
equilibration buffer, followed by 2.5 ml of 5 mM DM, 50 mM TRIS pH 7.5, 500 mM KCl and 40 mM imidazole. 
Any bound channel and peptides were then eluted from each column with 0.8 ml of 5 mM DM, 50 mM TRIS pH 
7.5, 150 mM KCl and 400 mM imidazole.

Mass spec analysis of pull-down assay eluates.  Eluates were then analysed by MALDI-TOF using the 
ultrathin-layer sample preparation technique47. Eluates were diluted without further purification in a 1:20 ratio 
into a saturated solution of α -cyano-4-hydroxycinnamic acid in 3:1:2 formic acid:water:isopropanol and spotted 
onto a MALDI target pre-coated with an ultrathin layer of the same matrix. As soon as the sample showed a 
homogenous crystal layer, the leftover drop was removed, and the crystallised layer was washed with 5 μl of 0.1% 
trifluoroacetic acid (TFA) for a few seconds. MALDI-TOF spectra were recorded on a Voyager-DE STR spec-
trometer (PE Biosystem, Foster City, CA) operating in linear, delayed extraction mode.

HPLC purification of Tx7335 from pull-down eluate and crude venom.  HPLC analysis was 
performed on an Agilent 1100 series instrument using either a Vydac C18 column (5 μm, 4.6 ×  250 mm 
for analytical runs) at a flow rate of 1 mL/min or an Agilent Zorbax C18 column (5 μm, 9.4 ×  250 mm for 
semi-preparative runs) at a flow rate of 3 ml/min, using a two-component mobile phase system in which 
mobile phase A is 0.1% TFA in water and mobile phase B is 90% acetonitrile and 0.1% TFA in water. 

Figure 7.  Ribbon diagram of the X-ray crystal structure of bucandin26. Cysteines that are conserved between 
bucandin and Tx7335 are shown in yellow. The extra N-terminal disulphide bridge that characterizes the long-
form three-finger toxins is shown in blue. Y25 (which is a cysteine in Tx7335) and C43 (tyrosine in Tx7335) are 
shown in cyan. N- and C-termini are labelled.
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Absorbance was monitored at 214 and 280 nm. 400 μl of pull-down eluate were acidified with 2% TFA and 
injected on the above column. Peptides were separated with a 0–73% B gradient run over 40 minutes, and 
collected fractions were analysed by MALDI-TOF as above. For purification of Tx7335 from crude venom, 
20 mg of crude venom were dissolved in 0.5 ml of 50 mM TRIS pH 7.5, 150 mM KCl, filtered, then purified 
on a semi-prep HPLC column using the following gradient: 0–35% B in 20 min, followed by 35–55% B in 
40 min and 55–90% B in 10 min.

Sequence determination of Tx7335.  Reduction and alkylation was carried out on native Tx7335 in 40% 
acetonitrile, 50 mM TRIS pH 7.5 by incubation with 5 mM DTT at 42 °C for 5 min, followed by addition of 20 mM 
iodoacetamide and incubation at 25 °C for 20 min. Reduced and alkylated Tx7335 was then re-purified by HPLC 
for sequencing by Edman degradation (Rockefeller University Protein/DNA Technology Center). Protease cleav-
age experiments were performed on reduced and alkylated Tx7335 in crude reaction mixture by addition of 
10 μg/ml endoproteinase Lys-C (Promega, sequencing grade). Proteolysis products were analysed either directly 
by MALDI-ion trap MS/MS (in 2,5-dihydroxybenzoic acid matrix in 60% methanol, 2% acetic acid in water on a 
Thermo Finnigan LCQ-DECAXP mass spectrometer with a homemade MALDI source48) or purified by HPLC 
after stopping the cleavage with TLCK and pepstatin A. Purified cleavage products were sequenced by Edman 
degradation or ESI-Ion trap MS/MS (on a Thermo LCQ-DECAXP +  instrument). For the determination of disul-
phide connectivities, native Tx7335 in 30% acetonitrile, 50 mM TRIS pH 7.5 was cleaved with Lys-C in a 5:1 
molar toxin:protease ratio at 25 °C for 16 h, and fragments were analysed either by MALDI-TOF or MALDI-ion 
trap as above.

Electrophysiology.  KcsA reconstitution and single-channel analysis was performed as previously 
described by Valiyaveetil el al.49. Purified KcsA was reconstituted into 3:1 POPE:POPG vesicles at a 1:400 
protein:lipid mass ratio in a reconstitution buffer of 10 mM HEPES pH 7.0, 450 mM KCl, and 4 mM 
N-methyl-D-glucamine. Bilayers of the same lipid composition were formed over a 300 μm diameter hole 
in a polystyrene partition between two buffer chambers, and fusion of vesicles was induced by a potassium 
gradient across the bilayer. Upon fusion, the KCl concentrations were adjusted to 150 mM on both sides of 
the membrane. The pH values of 7.0 (cis) and 4.0 (trans) were maintained by 10 mM of HEPES and succi-
nate buffers, respectively. The membrane voltage was controlled to +100 mV and the current recorded by 
an Axopatch 200B amplifier with a Digidata 1322A analog-to-digital converter and Axoclamp software 
(Molecular Devices)1,50. BSA at a concentration of 0.5 mg/ml was added to all solutions prior to addition of 
Tx7335 to prevent non-specific binding of the toxin to any surfaces. Toxin stock solutions at 200 μM concen-
tration were prepared from lyophilized HPLC Tx7335 fraction, either in the cis or trans buffers for addition 
to the respective chambers.
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