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Controllable chaos in hybrid 
electro-optomechanical systems
Mei Wang, Xin-You Lü, Jin-Yong Ma, Hao Xiong, Liu-Gang Si & Ying Wu

We investigate the nonlinear dynamics of a hybrid electro-optomechanical system (EOMS) that 
allows us to realize the controllable opto-mechanical nonlinearity by driving the microwave LC 
resonator with a tunable electric field. A controllable optical chaos is realized even without changing 
the optical pumping. The threshold and lifetime of the chaos could be optimized by adjusting the 
strength, frequency, or phase of the electric field. This study provides a method of manipulating optical 
chaos with an electric field. It may offer the prospect of exploring the controllable chaos in on-chip 
optoelectronic devices and its applications in secret communication.

Cavity optomechanics has attracted wide interests in the fields of quantum optics and nonlinear optics in the past 
a few years1–8. It explores the intrinsic radiation-pressure interaction between the optical and mechanical modes 
in the cavity optomechanical system (OMS). Focusing on the classical domain, the nonlinear opto-mechanical 
interaction can make the mechanical oscillator enter into the regime of self-induced oscillations9–13, where the 
backaction-induced mechanical gain overcomes mechanical loss, under the condition of blue-detuned driving. 
Increasing the driving strength, chaotic motion emerges both in the optical and mechanical modes14–18. It is 
shown that this chaos originally comes from the intrinsic optomechanical nonlinearity and does not need peri-
odic perturbation, external feedback, modulation, or delay. This is useful for generating random numbers19 and 
implementing secret information processing20–22. However, to apply the generated chaotic signal into the secret 
communication scheme, good controllability and design flexibility are necessary23,24.

Hybrid electro-optomechanical system (EOMS)25–40 contains a mechanical oscillator coupled to both an opti-
cal cavity and a microwave LC resonator (see Fig. 1), and offers an alternative platform for controlling the optical 
signal via an electric field. The mechanical oscillator in the EOMS acts as a quantum or classical interface between 
the optical and microwave modes. Theoretically, it is possible to realize the electric-controlled optomechanically 
induced transparency29, optical nonlinearity35 and quantum state transfer between an optical and microwave 
modes30,32,34 based on this phonon-interface in the hybrid EOMS. Recently, the hybrid EOMS also has been real-
ized experimentally41–43, which will inspire the further investigations regarding its basic physical property and the 
corresponding applications. A natural question is whether we could realize the electric-controlled optical chaos 
in the hybrid EOMS by using its phonon-interface, which has potential applications in implementing on-chip 
secret communication.

Here we propose a method to realize the controllable optical chaos in a hybrid EOMS consisting a mechanical 
oscillator coupled to both an optical cavity and a microwave LC resonator. The microwave resonator is driven by 
a tunable electric field, which acts as a control part and is separated from the generation part of the chaotic signal. 
Comparing with the normal OMS, the opto-mechanical nonlinearity in the hybrid EOMS is controllable without 
changing the optical pumping. Then the switching between the periodic and chaotic motions of the optical field 
could be realized by only adjusting the electric driving field. Physically, the opto-mechanical nonlinearity will 
be changed when one drives the LC resonator under different conditions. This ultimately leads to the fact that 
the chaotic threshold, degree, and lifetime are controllable with respect to an electric field. This study provides a 
new avenues of manipulating the chaotic signal in on-chip optoelectronic devices, and could effectively avoid the 
crosstalk between the control field and the chaotic signal in the single-cavity OMS.

Results
Hybrid electro-optomechanical system.  We consider a hybrid EOMS depicted in Fig. 1, a mechanical 
oscillator couples to both an optical cavity and a LC resonator with coupling strengths ħga and ħgc. In our pro-
posal, the EOMS is in the weak coupling regime and the values of ga and gc have been chosen according to the 
optomechanical experiment44. The microwave resonator (with frequency ω = LC1/c ) acts as the control port, 
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and is driven by a tunable electric field with amplitude Ωc and frequency ωlc. Here Ωc is related to the input micro-
wave power Pc and decay rate κc by κ ωP2 /c c lc . The optical cavity (with frequency ωa) acts as the generation port 
of chaotic signal, and is pumped by a fixed laser with amplitude Ωa and frequency ωla. Here Ωa is related to the 
input optical power Pa and decay rate κa by κ ωΩ = P2 /a a a la . In a frame rotating with frequencies ωla, ωlc, the 
Hamiltonian for this hybrid system reads
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where â +â( ), ĉ  +ĉ( ) are the corresponding annihilation (creation) operators of the optical and microwave fields, 
and Δa =  ωa −  ωla (Δc =  ωc −  ωlc) is the frequency detuning between the optical cavity (microwave resonator) and 
the pumping laser (driving electric field). We also have used q̂, p to denote the displacement and momentum of 
the mechanical oscillator. Here the relative phase φ between the control and pumping fields is retained since the 
chaotic motion is usually sensitive to the initial conditions of system.

Generally, the optomechanical interaction in Eq. (1) (i.e., − †
^ ^^g a aqa ) can lead to the chaotic motions of the 

optical and mechanical modes at a very high-power laser-pumping (~10 milliwatt) in the normal single-cavity 
OMS14. However, here we will demonstrate the generation of the optical chaos in a “weak” pumping regime, i.e., 
the pumping power Pa =  0.5 mW, which is well below the threshold of chaos in an single-cavity OMS for almost 2 
order. Moreover, in our proposal, the mechanical oscillator in the hybrid EOMS couples to both an optical cavity 
and a microwave resonator. This effectively separates the control and generation ports of the chaotic signal, and 
increases the controllability of the chaos generation. To present this controllability, in the following sections, we 
explore the nonlinear dynamics of system by numerically calculating Eqs (2–13) of the Methods. Note that here 
the electric driving field is tunable and the optical pumping field is fixed. We define = +I a ar i

2 2 as the intensity 
of the optical cavity, whose spectrum S(ω) can be got by using fast Fourier transform.

Dependence of system dynamics on control-field-power.  First of all, in Fig. 2, we present the evo-
lutions of the intensity I, the power spectrum LnS(ω) of the intracavity field as well as the optical trajectories in 
phase space (i.e., the first derivation of I versus I) under different powers of the control field. It shows that the sys-
tem dynamics experiences regular to chaotic behaviors when one increases the power Pc of the control field from 
5.79 μW to 13 μW. The power spectrum of I goes through period, period doubling to a continuum as increasing 
Pc, which characterizes the route to chaos. Accordingly, the optical trajectories in phase space are limited into the 
regular circles with periodically varying radius under the condition of weak driving, and they become more and 
more complicated in the strong-driving-regime. The above results show that the generation of the optical chaos 
can be controlled by adjusting the power of an electric-control-field, which does not interact with the optical 
cavity.

To further explore the influence of Pc on the chaotic dynamics, we present the evolution of a nearby point of 
I (i.e., I +  εI shown in Methods) in Fig. 3. The calculated exponential variation of εI indicates how the states of 
intracavity field vary in temporal domain and phase space. Specifically, the decrease of Ln(εI) over time indi-
cates that all the nearby points of I in phase space will finally oscillate in the limited circles. The flat evolution of 
Ln(εI) implies the period-doubling bifurcation. The exponential divergence of Ln(εI) corresponds to the chaotic 
dynamics, which reveals that the chaotic regime is extremely sensitive to initial conditions. Figure 3 presents that 
enhancing the driving power could increase the lifetimes of chaos, which is denoted by τ1, τ2, τ3 and defined by 
the last time of the chaotic motion, and the degree of chaos corresponding the gradients of Ln(εI).

Figure 1.  Schematic diagram of the hybrid electro-optomechanical system. The schematic diagram of a 
hybrid electro-optomechanical system. A mechanical oscillator is parametrically coupled to both an optical 
cavity and a microwave resonator. The electromechanical subsystem (shaded area) acts as the control port of 
generating chaos.
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Dependence of system dynamics on driving frequency.  In our proposal, another tunable system 
parameter is the frequency ωlc of the electric driving field. In Fig. 4, we present the influence of the frequency 
detuning Δc (Δc =  ωc −  ωlc) on the system dynamics, characterized by the evolutions of I, the power spectrum 
LnS(ω), and the optical trajectories in phase space. It shows that the optical trajectory changes to chaotic motion 
from periodic motion going by the period-doubling when we adjust Δc from blue-detuning to red-detuning. In 
other words, the red-detuning favors the chaotic dynamics, which is different from the case in the single-mode 
OMS. Physically, here the optical chaos originally comes from the opto-mechanical nonlinearity, which is decided 
by the excitation of the mechanical oscillator. The mechanical oscillator is easily excited when the electromechan-
ical subsystem is driven under the condition of red-detuning. Moreover, in Fig. 5, we also present the evolution 
of a nearby point (I +  εI) of I under the condition of blue- and red-detuning driving. The exponential divergence 
of Ln(εI) under the condition of red-detuning displays the same conclusion. The red-detuning driving could 
enhance the opto-mechanical nonlinearity and lead to the generation of chaos with the lower optical threshold.

Dependence of system dynamics on relative phase.  Now let’s discuss the influence of the relative 
phase φ on the system dynamics (see Fig. 6). Here the relative phase is defined as φ =  φc −  φa and φc (φa) is the 
phase of the electric driving (optical pumping) field. It is shown that the chaotic lifetime (denoted by τj) is period-
ically changed when φ is tuned in the range of 0 to 2π. For example the lifetime of chaos increases from φ =  0 to 

Figure 2.  The system dynamics controlled by the driving field. The intracavity field intensity I versus time 
t, the power spectrum LnS(ω) versus ω/ωm, and the optical trajectory in the phase space (the first derivation 
of I versus I) for different electric-control-field powers (a) Pc =  5.79 μW, (b) Pc =  5.81 μW, (c) Pc =  13 μW. Here 
a fixed time interval 0 →  1/3 μs is chosen, and the system parameters are Pa =  0.5 mW, ga =  gc =  5.59 GHz/nm, 
ωm =  73.5 MHz, ωc =  1.93 GHz, ωa =  100 THz, Δa/ωm =  1, Δc =  0, φ =  0, κa/ωm =  0.4, κc/ωm =  0.8.
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Figure 3.  The dependence of the perturbation evolution on the driving strength. The evolution of the 
intensity perturbation Ln(εI) for different values of Pc. Here τ1, τ2 and τ3 indicate the last times of the chaotic 
motion. The system parameters are same as those in Fig. 2.

Figure 4.  The system dynamics controlled by the frequency detuning. The intracavity field intensity I versus 
time t, the power spectrum LnS(ω) versus ω/ωm, and the optical trajectory in the phase space (the first derivation 
of I versus I) for different frequency detuning (a) Δc/ωm =  − 5, (b) Δc/ωm =  − 1, (c) Δc/ωm =  1. Here the driven 
powers Pc =  20 μW, Pa =  0.5 mW are fixed, and the other system parameters are same as those in Fig. 2.
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φ =  2π/3. However it decreases from φ =  2π/3 to 8π/5. This result originally comes from the periodic dependence 
of the opto-mechanical nonlinearity on the relative phase φ. Such feature provides a new route to manipulate the 
chaotic signal.

Before finishing this section, to illustrate the influences of system parameters on the chaotic dynamics more 
clearly, we present the dependence of the Lyapunov exponents on the driving power Pc, the frequency detuning Δc 
and the relative phase φ in Fig. 7. Here the Lyapunov exponent is defined by the logarithmic slope of the perturba-
tion εI versus time t, and characterizes the separation of trajectories for the identical systems with infinitesimally 
close initial condition. The negative (positive) value of Lyapunov exponent indicates that the dynamics of system 
is periodical (chaotic). The dynamical evolution of system exhibits a period doubling behavior when the value 
of Lyapunov exponent is equal to zero. In Fig. 7(a), the Lyapunov exponent increases (from negative to positive) 
with enhancing the strength of the control field. This clearly shows the emergence of chaos under the condi-
tion of strong electric driving (Pc >  4.5 μW), and it is consistent with the numerical results in Fig. 2. However, 
Fig. 7(b) indicates that the influence of frequency detuning Δc on the optical chaos is not so simple as exhibited in 

Figure 5.  The dependence of the perturbation evolution on the frequency detuning. The evolution of Ln(εI) 
for different values of Δc. The system parameters are same as those in Fig. 4.

Figure 6.  The system dynamics controlled by the relative phase. The evolution of Ln(εI) for different values of 
φ (φ =  φc −  φa). Here τj (j =  1 −  4) indicates the last time of the chaotic motion. The system parameters are same 
as those in Fig. 2 except for Pc =  20 mW.
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Fig. 4. The optical chaos emerges periodically with increasing Δc. This periodic behavior can also be found in the 
dependence of chaos on φ, i.e., Fig. 7(c). Physically, in the hybrid EOMS, the mechanical displacement amplitude 
q is dependent periodically on the frequency (corresponding to Δc) and phase (corresponding to φ) of the electric 
driving-field. It corresponds to a periodical enhancement of the opto-mechanical nonlinearity, which ultimately 
leads to the fact that the chaotic degree dependents periodically on Δc and φ.

To explore the role of the optical pump laser, in Fig. 8, we present the dependence of Lyapunov exponent on 
Pa in the normal OMS and our model, respectively. It clearly shows that the chaotic motion emerges (Lyapunov 
exponent >  0) when the pumping power Pa >  Poth (Poth is defined by the optical pumping power correspond-
ing to the Lyapunov exponent equal to zero). More interestingly, comparing with the normal OMS, the optical 
threshold Poth of chaos is reduced almost two order in our proposal. Physically, this is due to the opto-mechanical 
nonlinearity is enhanced when the electricmechanical subsystem is driven with an electric field. This result 
provides an alternative method to decrease the chaotic threshold in the OMS. Lastly, it should be noted that, in 
Figs 7 and 8, a non-zero optical (or electrical) driving power has been chosen, i.e., Pa =  0.5 mW (or Pc =  10 μW), 
which induces a considerable opto-mechanical nonlinearity even without the electrical (or optical) driving-field. 
This retained opto-mechanical nonlinearity leads to the result that the dynamics of system enters easily into the 
chaotic regime, and then the Lyapunov exponents are almost non-negative in the chosen parameter range of 
Figs 7 and 8.

Figure 7.  The dependence of Lyapunov exponent on three factors. Lyapunov exponent versus (a) Pc, (b) Δc/ωm, 
and (c) φ. The dotted line indicates the value of Pc corresponding to Lyapunov exponent is equal to zero. The 
system parameters are same as those in Fig. 2.

Figure 8.  The chaotic threshold in two different models. Lyapunov exponent versus optical pump-power Pa. 
Here Poth denotes the optical threshold of chaos, and the shaded regions correspond to Lyapunov exponent is 
less than zero. The system parameters are same as those in Fig. 2 except for Pc =  10 μW.



www.nature.com/scientificreports/

7Scientific Reports | 6:22705 | DOI: 10.1038/srep22705

Discussion
We have presented a practical method to achieve the controllable optical chaos in a hybrid EOMS. Via investigat-
ing the nonlinear dynamics of system, we shown that the optical chaos could be switched on and off by driving 
the electromechanical subsystem with a tunable electric field. This is due to that the opto-mechanical nonlinearity 
(the essence of the generation of chaos) can be controlled by an electric field in the hybrid EOMS. We analyzed 
in detail the influences of the frequency, strength and phase of the electric control field on the chaotic dynamics, 
including the degree and the lifetime of chaos. Moreover, we also shown that the optical threshold of chaos is 
reduced dramatically in our model due to the enhanced opto-mechanical nonlinearity when the electromechan-
ical subsystem is driven. This study provides a promising route for controlling the optical nonlinear dynamics, 
especially the generation of the optical chaos, with an electric field, and has potential applications in implement-
ing secret communication on the integrated chips.

Methods
To explore the nonlinear dynamics of system, we employ the semiclassical equations of motion (setting = ^o o , 
ô is any optical or mechanical operator)

=q p m/ , (2)

 γ ω= − − + + + +p p m q g a a g c c( ) ( ), (3)m m a r i c r i
2 2 2 2 2

κ ω= − + ∆ − +a a g q a( ) , (4)r a r a a i a

κ= − − ∆ −a a g q a( ) , (5)i a i a a r

κ ω φ= − + ∆ − +c c g q c( ) cos( ), (6)r c r c c i c

κ ω φ= − − ∆ − −c c g q c( ) sin( ), (7)i c i c c r c

where γm is the damping rate of the mechanical oscillator and we have defined a =  ar +  iai, c =  cr +  ici (ar, ai, cr, ci 
are real numbers) for simplifying the discussion of the chaotic property of system. Therefore, the Eqs (2–7) are 
given by splitting the real and imaginary parts into different equations. Here the quantum correlations of 
photon-phonon have been safely ignored in the semiclassical approximation, which is valid in the concerned 
weak-coupling regime14. Eqs (2–7) show that the intracavity field intensities and the mechanical deformation 
influence each other during the system evolution via the optomechanical interaction. Specifically, Eqs (2) and (3) 
describe the motion of mechanical oscillator, and Eqs (4–7) describe the dynamics of the optical and microwave 
modes. The quadratic terms  +g a a( )a r i

2 2  and  +g c c( )c r i
2 2  in Eq. (3) and the mixed terms − gaqai, gaqar, and 

− gcqci, gcqcr in Eqs (4–7) clearly present the nonlinear interaction between the optical (or microwave) and the 
mechanical modes.

To calculate the Lyapunov exponent of the dynamical evolution, we linearize Eqs (2–7) and introduce the 
evolution of a perturbation ε ε ε ε ε ε ε=

 ( , , , , , )q p a a c cr i r i
,

ε ε= m/ , (8)q p

ε γ ε ω ε ε ε ε ε= − − + + + + m g a a g c c2 ( ) 2 ( ), (9)p m p m q a r a i a c r c i c
2

r i r i
 

ε κ ε ε ε= − − + ∆ − g a g q( ) , (10)a a a a i q a a ar r i

ε κ ε ε ε= − + − ∆ − g a g q( ) , (11)a a a a r q a a ai i r

ε κ ε ε ε= − − + ∆ − g c g q( ) , (12)c c c c i q c c cr r i

ε κ ε ε ε= − + − ∆ − g c g q( ) , (13)c c c c r q c c ci i r

which characterizes the divergence of nearby trajectories in phase space. Here we define 
ε ε ε= + + + −a a I( ) ( )I i a r a

2 2
i r

 and use its logarithm Ln(εI) to show the tendency of the perturbation. Then 
the logarithmic slope of the perturbation εI versus time t is defined as Lyapunov exponent, the negative and pos-
itive values of the Lyapunov exponent, respectively denotes states of the dynamical system, being out of and in the 
chaotic motions.
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