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Effect of weak measurement on 
entanglement distribution over 
noisy channels
Xin-Wen Wang1,2, Sixia Yu2, Deng-Yu Zhang1 & C. H. Oh2

Being able to implement effective entanglement distribution in noisy environments is a key step 
towards practical quantum communication, and long-term efforts have been made on the development 
of it. Recently, it has been found that the null-result weak measurement (NRWM) can be used to 
enhance probabilistically the entanglement of a single copy of amplitude-damped entangled state. 
This paper investigates remote distributions of bipartite and multipartite entangled states in the 
amplitudedamping environment by combining NRWMs and entanglement distillation protocols (EDPs). 
We show that the NRWM has no positive effect on the distribution of bipartite maximally entangled 
states and multipartite Greenberger-Horne-Zeilinger states, although it is able to increase the amount 
of entanglement of each source state (noisy entangled state) of EDPs with a certain probability. 
However, we find that the NRWM would contribute to remote distributions of multipartite W states. We 
demonstrate that the NRWM can not only reduce the fidelity thresholds for distillability of decohered 
W states, but also raise the distillation efficiencies of W states. Our results suggest a new idea for 
quantifying the ability of a local filtering operation in protecting entanglement from decoherence.

It is well known that establishment of quantum entanglement among distant parties is a prerequisite for many 
quantum information protocols. Moreover, a necessary condition for perfectly implementing these tasks is that 
the shared entangled states among the users are maximally entangled pure states. In practice, however, unavoida-
ble interactions of the entangled systems with environments during their distributions or storages would result in 
degradation of the entanglement among the users. In other words, the entanglement resources actually available 
are usually entangled mixed states, which would decrease the fidelities and efficiencies of quantum information 
processes.

To accomplish the aforementioned quantum information processing tasks, the communicators need to trans-
form the noisy entangled states into maximally entangled pure states in advance. This raises a problem which is 
also of theoretical interest: How can maximally entangled pure states be extracted from shared entangled mixed 
states by local operations? One solution, at least in principle, is to use entanglement distillation protocols (EDPs) 
which function as distilling a small number of entangled pure or nearly pure states from a large number of entan-
gled mixed states1–5. This means perfect or nearly perfect entanglement-based quantum information processing 
would be possible even in noisy environments by utilizing the idea of entanglement purification.

However, the EDPs do not work for the inseparable states whose fidelities or singlet fractions (which quantify 
how close the states are to maximally entangled states1,6) are less than some thresholds (e.g., 1/2 for two-qubit 
states1,2), except that they have some special forms or are hyperentangled6–11. Fortunately, Gisin12 discovered 
that the amount of entanglement of an entangled mixed state could be raised probabilistically by local filter-
ing operations, which has been proven in the experiment13. Moreover, local filtering could be used to make 
trace-preserving local operations assisted by classical communication so as to increase limitedly the fidelities of 
some low-fidelity entangled mixed states with entanglement unchanged14–18. These findings enable the entangle-
ment of little-entangled particles (even with fidelities less than the thresholds) to be distillable, because they can 
be put through local filters, such that their fidelities are over the related thresholds, prior to being subjected to 
EDPs19.
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Recently, purification of a single-copy entangled mixed state by local filtering operations has attracted consid-
erable interest20–39, due to the fact that it does not involve multiparticle collective operations on multiple copies of 
source states and thus may reduce the experimental difficulty, as well as can act as a complement to entanglement 
distillation. The null-result weak measurement (NRWM, a local filtering operation)40 is widely used to enhance 
the entanglement of various decohered states in amplitude-damping (AD) or generalized AD environments20–28. 
The experimental viability of implementing a NRWM and its reversal21,41–47 indeed makes it an elegant approach 
to protecting entanglement. However, the filtering method cannot be applied for the direct production of entan-
gled pure states48,49. To obtain maximally entangled pure states for perfect remote quantum information process-
ing, EDPs are required. Then, a question arises, namely, is the NRWM beneficial to entanglement distribution 
among distant parties in terms of the efficiency of extracting maximally entangled states, although it can improve 
with a certain probability the entanglement of each source state (initial noisy entangled state) of the EDP? This 
paper is addressing such an issue.

We consider entanglement distribution over AD channels. The aim of the users is to share maximally entan-
gled states. As mentioned before, to achieve remote distribution of maximally entangled states, we resort to the 
entanglement distillation. In previous literatures20–23, the NRWM was introduced to raise the amount of entan-
glement of a single-copy decohered state in AD environments. We here investigate the impact of the NRWM 
on entanglement distribution efficiencies (i.e., the efficiencies of distilling maximally entangled states) by using 
it to enhance the entanglement of each decohered state before starting the distillation procedures. We show 
that NRWMs would decrease distillation efficiencies of bipartite maximally entangled states and multipartite 
Greenberger-Horne-Zeilinger (GHZ) states50. The efficiency (also known as yield in literature) of an EDP is con-
ventionally defined as the ratio of the number of obtained maximally entangled states to that of source states 
(inputs). Multipartite W-state51 distribution, however, exhibits different behaviors and features. That is to say, the 
NRWM would contribute to increasing the efficiency of W-state distribution with the existing EDP or its gener-
alization and reducing the fidelity threshold for distillability of the decohered W state. Our results indicate that 
the NRWM is not necessarily helpful to practical entanglement distributions, although it is able to increase the 
amount of entanglement of a single-copy noisy entangled state, and thus suggest a new approach to quantify the 
ability of a local filtering operation in protecting entanglement from decoherence.

The rest of this paper is organized as follows. In the Results section, we first demonstrate the uselessness of 
NRWMs to distributions of bipartite entangled states and multipartite GHZ states, and then discuss the effect of 
the NRWM on W-state distribution. We offer our conclusions in the Discussion section. Some technical bits are 
deferred to the Methods section.

Results
Bipartite entanglement distribution.  The quantum channel considered in this paper is the AD chan-
nel. AD decoherence is applicable to many practical qubit systems, including vacuum-single-photon qubit with 
photon loss, photon-polarization qubit traveling through a polarizing optical fiber or a set of glass plates oriented 
at the Brewster angle, atomic qubit with spontaneous decay, and superconducting qubit with zero-temperature 
energy relaxation. The action of the AD channel on a qubit l can be described by two Krauss operators52
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Assume the initial entangled state to be distributed to Alice and Bob is a 2-qubit Bell state given by
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During the process of distributing or storing, the two qubits would experience AD decoherence with decoherence 
strength d1 and d2, respectively. The original entangled pure state then degrades into a mixed state
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where the superscripts of Ki,j denote the qubit indices. The concurrence (a universal entanglement measure for 
2-qubit states53) of ρd is

ρ = .C d d( ) (4)d 1 2

As claimed and demonstrated in recently reports20–23, the concurrence of the decohered state ρd can be 
improved probabilistically by performing locally each qubit a weak measurement, accompanied by a bit flip oper-
ation before and after the weak measurement, respectively. The weak measurement is a kind of measurement 
that does not totally collapse the measured system. Practically, the weak measurement on a qubit can be done by 
monitoring its environment using a detector21,41–47. Whenever the detector registers an “excitation”, one knows 
that the qubit has totally collapsed into its ground state; if, however, there is no “excitation” (null result), one 
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knows that the qubit state is just renormalized. Mathematically, such a measurement can be described by two 
positive operators

= − | | + | |
= | |.

M w
M w

1 1 1 0 0 ,
1 1 (5)

0

1

If we discard the outcome of M1, then M0 denotes the NRWM (null-result weak measurement) of strength w 
(0 ⩽  w <  1), that partially collapses the system to the ground state. The NRWM in fact uses post-selection to selec-
tively map the state of a qubit. If no outcome is discarded, the two operators M1 and M0 will describe a noisy 
effect. Considering that a flip operation σ x (conventional Pauli operator) is preformed on the system before and 
after the NRWM M0, respectively, the total process can be described by the operator

σ σ= = | | + | |M M w 0 0 1 1 , (6)w
x x

0

where = −w w1 . For convenience, Mw will be directly referred to as the NRWM operator. After Alice (holds the 
first qubit) and Bob (holds the second qubit) performing NRWMs of strength w1 and w2 on the entangled pairs, 
respectively, the state ρd becomes
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where Pw is the probability of getting the outcome of ⊗M Mw w1 2
, i.e. the probability of successful event, given by
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Evidently, ρw is equivalent to ρd for = =w w 01 2  that means no weak measurement is made. Naturally, Pw is then 
equal to 1. The concurrence of ρw can be calculated as

ρ = .C
d d w w

P
( )

(9)w
w

1 2 1 2

C(ρw) is larger than ρC ( )d  provided that >w w Pw1 2 . Such a condition can be satisfied for any d1 and d2 by choos-
ing suitable w1 and w2. For instance, the inequality always holds for =w w1 2. It is easy to see that when C(ρw) →  1 
(corresponding to →w 1), the success probability →P 0w .

Although the entanglement established between Alice and Bob was improved by NRWMs, the shared entan-
gled state is still not a maximally entangled pure state that is a prerequisite for some perfect quantum communi-
cations (e.g., teleportation). As mentioned before, the filtering operations cannot be, even in principle, applied 
for the direct production of maximally entangled states48,49. To obtain maximally entangled states, Alice and Bob 
need further to utilize EDPs.

Next, we investigate whether the NRWM can help Alice and Bob to raise the efficiency of getting maximally 
entangled states by transforming the decohered state ρd to ρw using NRWMs before starting the EDP. We will 
employ two EDPs, both of which enable bipartite maximally entangled pure states to be extracted from finite 
copies of ρw or ρd (corresponding to = =w w 01 2  in ρ )w . The first EDP will be called a two-copy EDP, because 
each round of distillation only involves two copies of input states6. The second EDP will be referred to as a bisec-
tion EDP, because each round of distillation except the first round divides the pairs of qubits into two blocks of 
equal length54. The bisection EDP is up to now the most efficient theoretical scheme for the amplitude-damped 
state ρd or ρw

54, although it is much more difficult than the two-copy EDP in the experiment.

Two-copy EDP.  Suppose there is a collection of groups of source entangled pairs ρw. Each group contains two 
pairs, one as the control pair and the other as the target pair. Each party of Alice and Bob holds one qubit of each 
pair. The EDP works as follows: (i) Alice and Bob apply, respectively, a local controlled-not (CNOT) gate between 
the two pairs of each group (i.e., the bilateral CNOT operation6), where the control pair comprises the two control 
qubits and the target one the two target qubits; (ii) they measure locally the target pair in the computational basis 
| |{ 0 , 1 }; (iii) they keep the control pair if they get the outcomes “11” (this means the success of extracting a max-

imally entangled state) and “00” (in this case, the control pair can be used for the second round of distillation), 
and discard it otherwise.

It can be easily verified that if the outcome of this measurement on a given target pair is “11”, then the corre-
sponding control pair is left in the Bell state ψ  which can be used for faithful teleportation, etc. The probability 
of this event is

=
+ + +
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Since each target pair has to be sacrificed for the measurement, the yield from this procedure is =Y P /2r 11
. As 

for the measurement outcome “00” of the target pair, the corresponding control pair is left in the state
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The probability of this event is
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Evidently, two copies of ρr1
 can be used for the second round of distillation following the procedure above. Then 

after m rounds of distillation procedure, the efficiency (total yield) of this EDP becomes
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Naturally, for a given EDP, the more entangled the source states are, the higher efficiency would be obtained. As a 
consequence, the value of ′Ef  in a general case (i.e., w1 and w2 are not simultaneously equal to zero) can always be 
larger than that of it in the case = =w w 01 2  for given d1 and d2, because the source state ρw can be more entan-
gled than ρd.

What will happen when considering the fact that the probability of getting ρw from ρd by NRWMs is not one 
but Pw given in Eq. (8)? Under this situation, the efficiency of the above entanglement distribution scheme, with 
NRWMs being performed in advance on each copy of ρd, should be

ρ ρ= ′ .E P E( ) ( ) (14)f d w f w

That is, the final efficiency is the product of the efficiencies of two stages: filtering and distillation protocol. If one 
does not recycle the state ρr1

 corresponding to the aforementioned measurement outcome “00”, the efficiency 
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d1 and d2. This means that the efficiency of the distillation scheme with NRWM is lower than that of the scheme 
without NRWM. Such a conclusion is still tenable in the case of any m rounds of distillation. As an example, we 
plot the efficiency ρE ( )f d  for =m 10 in Fig. 1. It can be seen from Fig. 1 that ρE ( )f d  takes the maximum only when 
= =w w 01 2  (that means no weak measurement) for any d1 and d2. All the above results imply that the NRWM 

does not increase but decreases the efficiency of bipartite entanglement distribution, i.e., the efficiency of extract-
ing the Bell state ψ  from the amplitude-damped state ρd. Thus, the NRWM would generate a negative impact on 
the bipartite entanglement distribution. The same conclusion will be obtained for the bisection EDP as shown in 
the next subsetion.

We notice that some 2-qubit partially entangled pure states are more robust than the Bell state ψ  in terms of 
the singlet fractions of the decohered states when just one qubit interacts with the AD channel17,18. In this case, 
the efficiency of establishing maximally entangled states between Alice and Bob may be slightly improved  
by substituting the input Bell state ψ  for an appropriate 2-qubit partially entangled pure state. However,  
it will make no difference to the conclusion that the NRWM would reduce the efficiency of preparing  
nonlocal Bell states. As an example, we replace the initial Bell state ψ  by the nonmaximally entangled pure state 
ψ′ = +

−
−
−

01 10
d

d
d

1
2

1
2

 from which the maximum singlet fraction is obtained when only one qubit suf-
fers from the AD noise17,18. By the same procedure as before and setting =d 02  (or =d 0)1 , we obtain the final 
efficiency of establishing Bell states between Alice and Bob, as displayed in Fig. 2. Figure 2 indicates that the 
no-NRWM-scheme =w( 0) still outperforms the NRWM-scheme (w >  0) even using ψ′  as the initial state.

Bisection EDP.  Let Alice and Bob share n copies of state ρw, where n is the power of two. For simplicity, we 
assume = =d d d1 2  and = =w w w1 2 . Then ρ⊗w

n can be conveniently written as

ρ ψ ψ ψ ψ
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= −t t1 , and “
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” in each square bracket denotes all permutations of the first term in the square bracket.
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Now both Alice and Bob project her/his part of the state ρ⊗w
n on a subspace spanned by vectors with definite 

number of “1”. That is, they perform their particles von Neumann measurements given by the sets of projectors

∑







=





= =

M x x ,
(17)

a
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x n x a
a a

[ ] ,a a

Figure 1.  Variation in the bipartite entanglement distribution efficiency Ef with weak measurement 
strengths (w1, w2) and channel damping rates (d1, d2). Here the number of rounds is taken =m 10.  
(a) d2 =  0 =  w2; (b) d1 =  d2 =  d and w1 =  w2 = w; (c) d1 =  0.3 and d2 =  0.7; (d) d1 =  d2 =  0.5.

Figure 2.  Dependence of the bipartite entanglement distribution efficiency Ef on the weak measurement 
strength w and channel damping rate d when using ψ′ = +| 〉 | 〉 | 〉

−
−
−

01 10
d

d
d

1
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 as the initial state and 

just one qubit of it suffers from the AD noise.
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respectively, where | | | |x y( )a b  denotes the Hamming weight of the string x y( )a b  of = =x n y n[ ] ([ ] )a b  qubits and 
∈ a b n, {0,1, , }. If Alice obtains the measurement outcome Ma

n and Bob obtains Mb
n, the state of the n pairs 

collapses into

∑ρ = ⊗
= = = =

= = = =
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with ⊕ = +x x xa b a b  and | ⊕ | = | |+y y ya b a b , where “⊕” standing for modulo-2 sum of the bitwise of two strings 
xa y( )a  and xb y( )b , e.g., + =1000 0100 1100. The sign “⊗” in the above equation denotes the partition “Alice:Bob” 
of n2  qubits and p n a b( , , ) is given by

= +
+ .( )( )p n a b n

a b
a b

a( , , ) (20)

The probability of this event is

= .− − + − −P n a b t t p n a b( , , ) 2 ( , , ) (21)a b a b n a b

If + =a b n, then Alice and Bob share a maximally entangled pure state of the rank

= ( )r n
a , (22)a

n

which is equivalent to \log ra
n

2  maximally entangled pairs of qubits. If any one of the equalities 
= = = =a a n b b n{ 0, , 0, } holds, Alice and Bob share a separable state. In the remaining cases, the state ρa b

n n
,
,  is 

inseparable in terms of the partition “Alice:Bob”, that is reusable in the second round of distillation. Using the 
bisection method (Alice and Bob divide the pairs of qubits into two blocks of equal length) in the following 
rounds of distillation, the total yield of such an EDP starting from the state ρw is given by54

∑ρ′ = −
=

−E t H H( ) [ (2 ) (2 )],
(23)s w
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m
k k
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2 1k

where =m nlog2  and
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x
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(24)x
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Considering the fact that the probability of obtaining ρw from the original decohered state ρd is Pw as Eq. (8) with 
d1 =  d2 =  d and = =w w w1 2 , the final efficiency of Alice and Bob sharing maximally entangled pure states 
should be

ρ ρ= ′ .E P E( ) ( ) (25)s d w s w

The efficiency ρE ( )s d  as a function of d and w with =n 32 is exhibited in Fig. 3. It can be seen that ρE ( )s d  takes the 
maximum only when =w 0 (that means no weak measurement) for an arbitrarily given d, and that the larger w, 
the lower ρE ( )s d . This result further justifies the fact that NRWMs would decrease the efficiency of distributing 
maximally entangled pairs to two distant parties. Note that although the total yield of the bisection EDP could be 
further improved by combining one-way hashing method after the first round of distillation54, it will not change 
the conclusion above, due to the fact that the yields of all rounds except the first round of distillation procedure 
are not related with the weak measurement parameter w. In addition, we can see from Figs. 1 and 3 that the 
decrease of ρE ( )s d  caused by NRWMs in the bisection protocol is larger than that in the two-copy protocol. It 
implies that the more efficient the EDP is, the larger adverse impact the NRWM will have.

The negative influence of the NRWM on the above-mentioned bipartite entanglement distribution could be 
partly understood from that as follows. If putting the source states (original noisy states) through local filters 
prior to starting distillation procedure, then the final entanglement distribution efficiency is the product of the 
efficiencies of two stages: filtering and distilling. Although the NRWM could increase the yield of the second 
stage, it will decrease the success probability of the first stage (the probability is one when no weak measurement 
is performed). The competition of two opposite effects in two stages leads to the result above.

What is the case for multipartite entanglement distribution? In the next two sections, we will elucidate such a 
problem by discussing the impact of the NRWM on GHZ-state and W-state distributions, respectively.

Multipartite GHZ-state distribution.  In this section, we investigate the effect of the NRWM on the effi-
ciency of GHZ-state distribution in the AD environment based on multipartite EDPs. The existing GHZ-state 
distillation protocols only deal with “Werner-type” or GHZ-diagonal states and work in asymptotic ways55–58. It is 
not clear whether these protocols can be applied to amplitude-damped GHZ states which are not GHZ-diagonal 
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states. We here present an efficient GHZ-state distillation protocol which is suitable for the scenario considered 
here. This protocol works out of asymptotic way, and can be regarded as a generalization of the aforementioned 
two-copy EDP for two qubits to a multipartite case. For clarity and simplicity, we here just discuss the case of 
3-qubit GHZ-state distillation and distribution, and the obtained results can be extended to N-qubit GHZ states.

Suppose the initial 3-qubit GHZ state to be distributed to three distant parties is in the form

| 〉 = | 〉 + | 〉GHZ 1
2

( 001 110 ),
(26)

where the three qubits are not all parallel. After each qubit independently suffering the AD decoherence during 
the process of distribution or storage, the state GHZ  will degrade into an entangled mixed state denoted by ρ′d. If 
assume the decoherence strength of every qubit is the same, the noisy GHZ state is in the form

ρ′ = + | | + | | + | |

+ | 〉〈 | + | 〉〈 | + | 〉〈 | + | 〉〈 | .

d d d dd

dd d d d

1
2
[ (1 ) 000 000 001 001 010 010

100 100 110 110 001 110 110 001 ] (27)

d

2 3 3

We now perform each qubit a NRWM described by the operator Mw given in (6). Under the successful event, the 
noisy GHZ state becomes ρ′w

 which can be obtained by multiplying each ‘|0 ’ or ‘ |0 ’ of ρ′d by the factor w  
(e.g.,| | → | |w000 000 000 000 )

3 . The success probability is

′ = + + + + .P w d d w dw ddw d
2

[ (1 ) 2 ] (28)w
2 2

According to the analysis in ref. 25, ρ′w could be more entangled than ρ′d  in terms of the measures of negativity and 
multipartite concurrence, and thus the fidelity of the former could also be higher than that of the latter29.

However, we shall show that the NRWM is not good for distilling pure GHZ states from noisy GHZ states. The 
proposed distillation protocol works as follows: (i) All the three parties take two copies of the input state ρ′w (or ρ′d  
with =w 0); (ii) each one labels the first qubit control and the second target and perform a CNOT-gate operation 
on his/her two qubits; (iii) they measure their target qubits in the basis | |{ 0 , 1 }; (iv) they keep the control qubits 
if they get the outcome “111” (this means the success of extracting the pure GHZ state GHZ ) or “000” (in this 
case, the control copy can be used for the second round of distillation), and discard it otherwise. Following the 
same processing as the bipartite two-copy EDP introduced above, we obtain the formula of the final distribution 
efficiency of the GHZ state GHZ ,

= ′ + + +

=
′

=
+ + + +

>
⋅

−
−

− − − −

E P Y Y Y

Y d w
P

Y dw Y

d d w dw ddw d w
m

( ),

4( )
,

( )

2{[ (1 ) ] ( ) 2( ) ( ) }
, ( 1),

(29)

w m

w

m
m

1 2

1

3 3

2

3 2
1

3 2 2 2 2 2 2 2

m

m m m m

2

1 1 1 1

where m denotes the number of rounds. The specific dependence of the efficiency E on the parameters d and w for 
=m 10 is exhibited in Fig. 4. From Fig. 4, we can see that E takes the maximum value only when =w 0 (that 

means no weak measurement) for any d. This result means that the NRWM is bad for the distribution of the 

Figure 3.  Variation in the bipartite entanglement distribution efficiency Es with d and w. Here we take the 
number of source pairs n  =  32.
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3-qubit GHZ state. We believe the conclusion is also applicable to N-qubit GHZ states. The origin of the negative 
influence of the NRWM on the GHZ-state distribution may be the same as that of Bell-state distribution.

Multipartite W-state distribution.  Next, we discuss the role of the NRWM in the distribution of W states 
and show different phenomena from that observed before. The W state is a peculiar type of multipartite entangled 
state, and has attracted particular interest on its properties and applications51,59–64. Entanglement distillation of 
3-qubit dephased and depolarized W states was studied in ref. 65. A EDP for the 3-qubit amplitude-damped W 
state has been proposed in ref. 66. Here, we show that the EDP in ref. 66 can be generalized to N-qubit W states, 
and that the yields of W-state distillation schemes could be improved by the aforementioned NRWM. Moreover, 
the fidelity thresholds for distillability of decohered W states could be reduced to near zero.

Suppose the perfect N-qubit W state

| 〉 = | 〉 + | 〉 + + | 〉   W
N
1 ( 0 01 0 010 10 0 )

(30)N N N N

is distributed to N parties (Alice, Bob, Charlie, ), but suffers typical decoherence as described by the local AD 
channel with the same damping rate d. Then the N parties initially share a noisy W state given by

ρ = + | . d W W d 0 0 0 0 (31)d N N

The fidelity of this noisy W state relative to the original pure W state is =F d.
We show that the fidelity of ρd can be improved probabilistically by performing each qubit a NRWM described 

in Eq. (6). After each of the N parties performing a NRWM on the qubit he/she holds with a successful event, the 
state ρd becomes

ρ = | 〉〈 | + | 〉〈 | F W W F 0 0 0 0 , (32)w w N N w

where the fidelity = +F d dw d/( )w  is the same as t in Eq. (16) and = −F F1w w. The success probability is

= + .−p w d dw( ) (33)w
N 1

Obviously, >F Fw  as long as the weak measurement strength ≠w 0. Thus the fidelity of a single copy of noisy W 
state ρd can be indeed enhanced by NRWMs by sacrificing a reduction in the probability. It is easy to see that when 
→F 1w  (corresponding to →w 1), the success probability →p 0w .
We now demonstrate that the NRWM can improve the efficiency of distributing the N-qubit W state WN  in 

the AD environment by employing the EDP for amplitude-damped W states. Suppose there are many groups of 
N-qubit amplitude-damped W states ρw. Each group contains two copies, one as the control copy and the other as 
the target copy. N qubits of each copy belong to N users (Alice, Bob, Charlie, ), respectively. The W-state distil-
lation protocol is as follows: (i) the N users first perform, respectively, a local CNOT gate between two copies of 
each group, the control copy consists of the N control qubits and the target one the N target qubits; (ii) they then 
measure locally the qubits of the target copy in the computational basis | |{ 0 , 1 }; (iii) they keep the control copy 
if they get the measurement outcome “ 00 0”, and discard it otherwise. Depending on the outcome “ 00 0” 
known through classical communication, the N parties share another entangled mixed state

ρ = +  F W W F 0 0 0 0 , (34)N N1 1 1

where the fidelity F1 of the noisy W state after the first step of distillation is given by

Figure 4.  Dependence of the 3-qubit GHZ-state distribution efficiency E on the weak measurement 
strength w and channel damping rate d. 
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=
+

.F F
F N F (35)

w

w w
1

2

2 2

The success probability is

= + .p
N

F F1
(36)w w1

2 2

It is easy to prove that >F Fw1  for > +F N N/( 1)w . If =w 0, meaning that no NRWM has been performed prior 
to the distillation operations, only < +d N1/( 1) can ensure > = =F F w F( 0)w1 . It indicates that the EDP does 
not work if one directly use the decohered state ρd, instead of ρw >w( 0), as the input of it when +⩾d N1/( 1). 
As to the case of >w 0, however, the condition of >F Fw1  (i.e., >

+ )Fw
N

N 1
 is < +d Nw1/( 1). Evidently, the 

upper bound of d in this case could be close to unit by modulating w to be near to one. In other words, for any 
damping rate d, the NRWM would enable the above EDP to work, at least in principle, by meeting

>
+ −

.w N d
Nd

( 1) 1
(37)

Note that the degree of weak measurement w can take any value from 0 to 1, and that the inequality (37) naturally 
holds for d  < 1/(N +  1). Moreover, when d  ⩾ 1/(N +  1), the larger d is, the larger w is required for satisfying the 
inequality (37).

So, for the case of d  ⩾  1/(N +  1), the NRWM is evidently beneficial to the distribution of the N-qubit W state 
W N , due to the fact that it can decrease the fidelity threshold for distillability of the decoehred W state ρd from 

+N N/( 1) to an arbitrarily small number. Whether the NRWM could still bring benefits in the regime of d <  1/
(N +  1) (keeping it in mind that the EDP can work with the absence of the NRWM under this case)? We next 
focus on discussing such a problem. It will be shown that the NRWM would contribute to raising the efficiency of 
the W-state distillation protocol for most values of d even in the range 

+( )0,
N

1
1

, which indicates that the entan-
glement distribution scheme with NRWM could outperform the scheme without NRWM in most region of 
d  ∈

+( )0,
N

1
1

.
Based on the success of the first distillation step, the users can carry out the second recurrence step by using ρ1 

as the input state. By the same token, they can carry on with the third, the fourth, and up to the mth recurrence 
step so that obtaining the nearly perfect W state. In each step, the input states are the states that are kept in the 
former step with successful events. The fidelity and success probability in each step comply with the recursion 
formulas (35) and (36) with Fw being substituted by the fidelity in the former step. Then after m steps, the fidelity 
Fm of the obtained state relative to the initial perfect W state WN  and the corresponding efficiency Em

N( ) are given 
by

λ
=
+

F 1
1

,
(38)m

m

∏ ∏λ
λ

λ
λ

λ

= ⋅ = +
+

=
+
+

=

=






 = .

=

−

=

−

−





E p
p

w d
N

p
N

i m

N
Nwd

d
i m

2
(1 ) 1

2 (1 )
,

1
(1 )

( 1, 2, , ),

1 ( 0, 1, , )
(39)

m
N

w
i

m
i N

m
i

m

i

i
i

i

i

( )

1

1

0

1

1
2

2i

Here pi denotes the success probability in the ith step. If the fidelity Fm  ⩾  1 −  ε, it means the users obtain a nearly 
perfect W state denoted by εWN  and the W-state distribution succeeds. Following the iteration process as 
described above, the distribution of the N-qubit W state would be accomplished in several steps with finite copies 
of noisy W state ρd.

We now take ε ε= = −100
6 as an example for detailed analysis. For clarity, we first consider =N 3. The 

required number of distillation steps m for getting the aim state εW3
0  is given in Fig. 5 (see also Methods). From 

Fig. 5, we can see that for a given d, there always exists a region of >w 0 in which the required distillation steps 
are less than that for the case with =w 0. It means that the NRWM can reduce the number of the distillation steps 
for obtaining the same expected state. The step-wise behavior in Fig. 5 implies that to arrive at the given fidelity 
threshold, those initial fidelities in a certain region need the same number of iteration steps. This is due to the fact 
that a smaller initial fidelity may lead to a faster increase in fidelity of the distilled state, which should result from 
nonlinearity of the iteration formula of fidelity (given in Eq. (35)) and the initial fidelity F d w( , )w  with respect to 
d and w. The advantage of the NRWM-scheme in distillation steps can not ensure its efficiency being higher than 
that of the no-NRWM-scheme. To judge whether the NRWM-scheme could be superior to the 
no-NRWM-scheme, we need to observe the ratio of the efficiency of the NRWM-scheme ≠E w( 0)m

(3)  to that of 
the no-NRWM-scheme =′E w( 0)m

(3) , i.e.,
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=
≠

=′

R E w
E w

( 0)
( 0)

,
(40)

m

m

(3)
(3)

(3)

note that ′⩽m m  as shown in Fig. 5. The dependence of R(3) on d and w is exhibited in Fig. 6, where the region 
with denotation ′m m( , ) denotes that the no-NRWM-scheme and the NRWM-scheme at least involve, respec-
tively, ′m  and m steps of distillation so that the final fidelity of the noisy W state exceeds the threshold ε−1 0. It 
can been seen from Fig. 6 that the regions of >R 1(3)  are as follows: (i) (m′  >  6, m >  2); (ii) (m′  =  6, 6 >  m  ⩾  3); (iii) 
most part of (m′  =  5, 5 >  m ⩾  3); (iv) about half of (4,3); (v) part of (m′  ⩾  3, m =  2). It implies that when = ′m m  
with ′m  being less than a threshold, R(3) ⩽  1. In other cases, however, the regularity of the sign of −R 1(3)  seems to 
be not clear. It is worth pointing out that the zig-zag behavior in Fig. 6 is well correspondent with the step-wise 
behavior in Fig. 5. Moreover, the non-ordered phenomenon in Fig. 6 should be related to the fact that Fm is non-
linear with respect to d and w, and that Em and thus R(3) are nonmonotonic with respect to w. In a word, the ratio 
R(3) could be larger than one for most values of d in the range (0, 1/4). Thus the NRWM-scheme can indeed out-
perform the no-NRWM-scheme in most region of 0 <  d <  1/4 in terms of the efficiency. Generally, the larger the 
degree of decoherence is, the clearer the superiority of the NRWM-scheme. Moreover, the fact that the NRWM is 
helpful to distributing W states does not mean the larger w the better. The optimal weak measurement strength 
wo

(3) that maximizes the efficiency Em
(3) for a given channel damping rate d ∈  (0, 1/4) is displayed in Fig. 7, where 

the inset gives the number of steps m needed for getting the aim state εW3
0  under the case of =w wo

(3). The jump 

Figure 5.  The number of distillation steps m needed for finally getting the aim state εW3
0 .

Figure 6.  The ranges of d and w in which R(3) >1 (yellow) or ⩽1 (green) under the fidelity threshold 1 − ε0. 
The dashed curve lines and straight lines correspond, respectively, to =

−
wd d C3 / 2 m

 and =
−

d d C3 / 2 m
 

ε ε= −C( 3 /(1 ))0 0  with different m (see Methods). The pair-wise numbers ′ ′ ⩾m m m m( , )( ) denote that the 
no-NRWM-scheme and the NRWM-scheme involve, respectively, ′m  and m steps of distillation so that the final 
fidelity of the noisy W state exceeds the threshold ε−1 0 in the encircled regions (see Methods). Note that the 
no-NRWM-scheme involves only the parameter d in the region of ′m m( , ).
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phenomenon in Fig. 7 is matching to >R 1(3)  in the bottom yellow region of Fig. 6. With the optimal NRWM, we 
can compute the best efficiency of 3-qubit W-state distribution Eo

(3) (see Fig. 8).
As for a general N, one can still verify that the efficiency of the EDP with NRWM could be higher than that of 

the scheme without NRWM for most values of d in the regime of d <  1/(N +  1). Furthermore, we can also find the 
optimal NRWM strength wo

N( ) that maximizes the efficiency of extracting a nearly perfect N-qubit W state εWN
0  

from the decohered state ρd for a given channel damping rate d, and then calculate the corresponding highest 
efficiency Eo

N( ). Note that wo
N( ) may be dependent on N. As examples, we show the optimal efficiencies Eo

N( ) for 
N =  4, 5 in Fig. 8. It can be seen that in the regime of d <  1/(N +  1), the efficiency of the scheme with NRWM is 
indeed higher than that of the scheme without NRWM for most values of d.

Finally, we give a brief discussion on the case of ε → 0. Obviously, ε → 0 would lead to the fact that the 
entailed number of distillation steps tends to infinity. Then we obtain (see Methods)

∫

=
≠

=






+ 





∼

ε

λ

λ

→ ′→∞ ′

−

′

R E w
E w

w ln N u
u u

u

lim lim ( 0)
( 0)

exp 1
ln 2

(2 2 )
ln

d ,
(41)

N

m m
m

N

m
N

N

N

N

0

( )

,

( )

( )

1

0

0

Figure 7.  The optimal weak measurement strength wo
( )3  that maximizes the efficiency of getting the nearly 

perfect W state εW3
0 . The inset shows the required number of distillation steps m for getting εW3

0  under the 
optimal degree of weak measurement wo

(3).

Figure 8.  The efficiency E N
0
( ) of distributing the nearly perfect N-qubit W state εWN

0  to N distant parties in 
the AD environment. The solid lines denote the optimal NRWM-scheme and the dotted lines stand for the no-
NRWM-scheme which works only for d <  1/(N +  1).
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where λ ′ = d d/0 . As an example, we give the ranges of d and w in which 
ε→

Rlim
0

(3) is larger or less than one in Fig. 9. 
Figure 9 indicates that the ratio R(3) of the efficiency of the NRWM-scheme to that of the no-NRWM-scheme 
could also be larger than one under the case of ε → 0 as long as the channel damping rate d is not too small. In 
addition, the larger d is, the clearer the advantage of the NRWM-scheme is. The same results could be obtained 
for N >  3.

The positive impact of the NRWM on the W-state distribution could be partly explained by the fact that its 
positive effect in the distillation phase can surpass its negative effect in the filtering phase when some conditions 
are satisfied.

Discussion
Entanglement distillation is a good tool to prepare entangled pure states among distant parties in noisy environ-
ments by concentrating the entanglement of a large number of decohered states into a small number of entan-
gled states. Local filtering may be another possible solution to overcoming decoherence of quantum systems. 
As claimed, a particular filter could be utilized to increase the amount of entanglement of a single-copy noisy 
entangled state with a ceratin probability. The filtering method, however, cannot be applied for direct production 
of an entangled pure state. The effect of filtering operations on protecting entanglement from decoherence would 
be far more exciting if they can be combined with EDPs to improve the efficiency of distributing entangled pure 
states to distant users who plan to implement remotely faithful quantum information tasks.

In this paper, we have investigated the possibility of improving the efficiency of distilling maximally entangled 
pure states from entangled mixed states in the AD environment by using the NRWM (a local filtering operation) 
which has recently been shown to be an effective method for enhancing probabilistically the entanglement of a 
single-copy amplitude-damped entangled state. We have shown that NRWMs would lead to the decrease of the 
distillation efficiencies of bipartite maximally entangled states and multipartite GHZ states. However, we found 
that the NRWM is beneficial to remote distributions of multipartite W states. We demonstrated that the NRWM 
can not only reduce the fidelity thresholds for distillability of decohered W states, but also raise the distillation 
efficiencies of W states. The different effects of the NRWM on the distillation efficiencies of W and GHZ states  
(or bipartite maximally entangled states) may be related to the fact that the former works in an asymptotic way 
but the latter does not.

Our results indicate that the NRWM is not necessarily helpful to practical entanglement distributions which 
aim at establishing maximally entangled pure (or nearly pure) states among distant parties, although it can 
increase to some extent the amount of entanglement of a single-copy entangled mixed state with a certain proba-
bility. This leads to a new criterion for measuring the usefulness of a local filter in protecting entanglement from 
decoherence. These findings are expected to inspire widespread interest on investigating the possibility of improv-
ing efficiencies of distributing entangled states in noisy environments by local filtering operations.

Methods
Methods of plotting.  Explanations on plotting Fig. 6 are given below. The purpose of the distillation is to 
make the final fidelity of the mixed W state Fm reach to the threshold ε−1  via the minimum number of distilla-
tion steps m. Thus m satisfies ε− > −⩾ ⩾F F m1 ( 1)m m 1 . Using Eq. (38), one can readily obtain

λ
=















.

ε
ε−m

N
log

ln

ln( ) (42)

N

2
1

0

Figure 9.  The ranges of d and w in which >
ε→

Rlim 1( )

0

3  (yellow region) or ⩽1 (green region).
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Next, we take ε ε= 0 and =N 3 for explaining Fig. 6. With Eq. (42), we can obtain the equations of dashed curve 
lines in Fig. 6,

ε
ε

= =
−

.
−

wd
d

C C3 , 3
1 (43)

2 0

0

m

In the region between neighbored two dashed curve lines with m and −m 1, the required number of distillation 
steps is m for the NRWM-scheme. The dashed straight lines parallel to w axis can be directly obtained by setting 
=w 0 in Eq. (43). Note that =w 0 corresponds to the no-NRWM-scheme. So, if < ′

− ′− − ′
⩽ ⩾C d d C m3 / ( 1)2 2m m( 1)

, 
the required number of distillation steps is ′m  for the no-NRWM-scheme. Then, the region surrounded by neigh-
bored two straight lines and two curve lines satisfies <

− − −
⩽C wd d C3 /2 2m m( 1)

 and <
− ′− − ′

⩽C d d C3 /2 2m m( 1)
, which is 

denoted by the pair-wise numbers ′m m( , ) for short. By the way, the intersection points of curve and straight lines 
satisfy the equation =w d d3 / . In the region with denotation ′m m( , ) < ′m m( , as shown in Fig. 5), the entailed 
numbers of distillation steps are ′m  and m for the no-NRWM-scheme and the NRWM-scheme, respectively. It 
should be pointed out that ′ =m 0 means no purification operation is needed, and that =m 0 means purification 
task can be accomplished by only weak measurements. In the regions on and under the curve =wd d C3 / , =m 0. 
If +⩽d C C/(3 ), ′m  is equal to zero and thus m is also equal to zero. For any given ′m  and m, the boundary of 

⩽R 1(3)  can be obtained by solving, at least in principle, the inequality ′⩽E Em m , i.e.,

∏ ∏+ + + +′−

=

′−

=

−′
⩽x xy y y xy2 [3 ( ) ] (3 ) (3 ) [3 ( ) ],

(44)
m m

i

m

i

m
2 2

0

1
2 2

0

1
2m i m i

where =x w and =y d d3 / . If the inequality has no solution, it means >R 1(3)  within the total region ′m m( , ).

Derivation of equation (41).  The derivation of Eq. (41) is given below. When → ∞m , we have

∫∏ λ λ+ → 

 + 




=

− ∞
N N N x2 (1 ) exp ln(2 2 )d ,

(45)i

m

i x
0

1

0

λ → 0, (46)m

where the inequality Nλ0 <1 (because <
+ )d

N
1

1
 has been utilized. Making two times of variable substitutions 

=y 2x and λ=u N( )y
0 , one will get

∫ ∫λ+ =
+

λ

ε∞
N N x N u

u u
uln(2 2 )d 1

ln 2
ln(2 2 )

ln
d ,

(47)x
N0 0

where ε → 0. By substituting Eqs. (46) and (47) into Eq. (39), we obtain

∫≠ ≈

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
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


.

ε

λ
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−E w w d N u
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d
(48)m
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N N N( ) 1 0

Similarly, we can obtain

∫= ≈






+ 



ε

λ

′→∞
′

′
E w d N u

u u
ulim ( 0) exp 1

ln 2
ln(2 2 )
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d ,

(49)m
m

N N( ) 0

where λ ′ = d d/0 . Eq. (41) can be straightforwardly derived from Eqs. (48) and (49).
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