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Five-year changes in soil organic 
carbon and total nitrogen in coastal 
wetlands affected by flow-sediment 
regulation in a Chinese delta
Junjing Wang, Junhong Bai, Qingqing Zhao, Qiongqiong Lu & Zhijian Xia

Changes in the sources and sinks of soil organic carbon (SOC) and total nitrogen (TN) in wetland soils 
as indicators of soil quality and climate change have received attention worldwide. Soil samples were 
collected in 2007 and 2012 in the coastal wetlands of the Yellow River Delta and the SOC and TN were 
determined to investigate a five-year change in their content and stock in these wetlands as affected 
by flow-sediment regulation. Our results revealed that the soils in 2007 exhibited greater electrical 
conductivities, SOC content and density, and ammonium nitrogen (NH4

+-N) levels in the top 10 cm 
soils (p < 0.05) compared with the soils in 2012. In general, the SOC and TN contents decreased with 
increasing soil depth. However, the highest ratios of soil organic carbon and total nitrogen (molar C/N 
ratios) were observed in the 30–40 cm soil layer. A significant SOC loss occurred (p < 0.05) in top 10 cm 
soils, but only a small change in SOC in the top 50 cm soils. Comparatively, TN levels did not show 
significant differences in the study period.

As one important pool of soil organic matter in natural wetland ecosystems, wetland soils serve as sources, sinks 
and transfers of nutrients and chemical pollutants1–3. Soil carbon and nitrogen are the important components of 
sustainable soil fertility and productivity and can substantially affect climate change through carbon and nitrogen 
emissions (including CO2, CH4 and N2O). However, anthropogenic activities, including deforestation, biomass 
burning and land use changes4,5 might alter soil C and N levels6. Mitsch and Gosselink7 reported that any var-
iations in the distributions and abundances of soil C and N exert important effects on the carbon and nitrogen 
cycles at regional or global scales. Therefore, the accurate estimations of soil organic carbon (SOC) and total 
nitrogen (TN) are essential for the detection of potential carbon and nitrogen sequestrations and emissions in 
wetlands8. Some researchers have focused on SOC and TN contents and stocks in different ecosystems including 
wetlands9–11. It is estimated that 20–30% of the earth’s soil carbon pool of 2,500 Pg is stored in wetlands because 
wetlands provide an optimum natural environment for the sequestration and long-term storage of carbon12. 
However, the dynamics of carbon and nitrogen pools in wetland soils are still poorly understood, particularly in 
coastal wetlands.

Although salt marsh wetlands are blue carbon sinks that will contain carbon accumulations for millennia14, 
they have been seriously lost or degraded due to human activities4,6,13. Among the effects of major human activi-
ties on riparian and estuarine ecosystems, large dams and reservoirs on rivers or streams have remarkably affected 
the wetland ecosystems of the lower reaches and altered many ecological processes, structures and functions15–17. 
Magilligan and Nislow15 documented the types, magnitudes and directions of hydrological shifts and climatic 
regimes due to the impoundment of the National Inventory of Dams. Barros et al.18 also concluded that future 
carbon emissions would be highly dependent on the locations of reservoirs because the reservoirs contain large 
stores of organic carbon transported from terrestrial ecosystems which might enhance greenhouse gas emissions.

Changes in the hydrological regime of wetlands can have substantial effects on soil properties, particularly car-
bon and nitrogen accumulation and release due to alterations in their chemical forms and spatial movements19,20. 
The rewetting of dried soils could stimulate denitrification, whereas N mineralization didn’t significantly decrease 
in wetland soils21. However, multiple drying and wetting cycles would enhance the decomposition of SOC22. 
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Additionally, Wang et al.23 reported that freshwater restoration could elevate SOC and TN contents in degraded 
coastal wetlands. Although Bai et al.9 and Zhao et al.24 investigated the seasonal changes in SOC and TN contents 
and stocks in coastal wetlands and the influence of flow-sediment regulation on these parameters, little infor-
mation is available about the medium-term (e.g., five-year) influences of flow-sediment regulation on changes 
in SOC and TN in downstream wetlands. Thus, an improved understanding of the quantitative medium-term 
dynamic changes in soil carbon and nitrogen will contribute to the evaluation and identification of sources and 
sinks of soil carbon and nitrogen and guide the flow-sediment regulation.

The Yellow River Delta is a coastal wetland with a heavy burden of anthropogenic activities, which has 
been severely affected by sediment deposition and land-ocean interactions relative to other river deltas4,25. In 
order to control soil erosion and degradation and improve soil productivity, huge amounts of efforts have been 
expended on the Yellow River Delta. Flow-sediment regulations of the upstream Xiaolangdi reservoir have been 
implemented in late June and early July of each year since 200226. Thus, in the last decade, the freshwater input 
from flow-sediment regulation has been shown to be an effective method for reconstructing or restoring the 
degraded estuarine wetlands27. Moreover, the freshwater input has significantly enhanced SOC accumulation in 
the degraded coastal wetlands due to the restoration of wetland vegetation23. Yu et al.4 reported a slight increase 
in SOC stock in the top 30 cm soils from 2000 to 2009 based on land use changes using a method of replacing 
time with space, but the estimated results exhibited a substantial uncertainty due to the lack of reference SOC data 
from 2000. Therefore, an investigation of the accurate medium-term dynamic changes in SOC and TN stocks are 
still needed in these coastal wetlands to identify the effects of flow-sediment regulation of the upstream reservoir. 
The primary objectives of the present study were: 1) to investigate the five-year (from 2007 to 2012) changes in the 
SOC and TN contents and stocks in the coastal wetlands in the Yellow River Delta as affected by flow-sediment 
regulation, and (2) to identify the key factors influencing the soil carbon and nitrogen levels.

Results and Discussion
Soil characterization in 2007 and 2012. Selected physical-chemical properties of the top 10 cm soils 
from the coastal wetlands in the Yellow River Delta in 2007 and 2012 are summarized in Table 1. No significant 
differences in soil pH, bulk density (BD) and soil water content (SWC) in the top 10 cm soils were observed 
between 2007 and 2012 due to the counterbalance of consistent flow and sediment variations. However, the top 
10 cm soils contained lower SOCDs in 2012 than in 2007, which was associated with lower SOC contents in 
2012 (p <  0.05; Table 1). The electrical conductivity (EC) and NH4

+-N contents in the top 10 cm soils were sig-
nificantly higher in 2007 than those in 2012 (p <  0.05), but no significant differences in the TN, TN density 
(TND) and nitrate nitrogen (NO3

−-N) contents were observed (p >  0.05). Higher nitrogen deposition levels, 
i.e., ~2264.24  mg /m2 in this region28,29, might have supplemented the nitrogen loss during the study period. 
Additionally, a decrease in NH4

+-N content from 2007 to 2012 (p <  0.05) might be explained by the fact that plant 
uptake or ammonia volatilization under medium alkaline environment in this region as well as the conversion to 
NO3

−-N through nitrification, although nitrate could be leached into deeper soils30,31.

SOC content and stock. The SOC content and SOCD generally exhibited decreasing tendencies with 
depth along the soil profiles at each sampling site (Fig. 1). The top 10 cm soils contained significantly higher 
SOC content (6.41 ±  0.28 g/kg) and SOCD (1155.80 ±  50.46 g/m2) than deeper soils (SOC, 3.52–4.86 g/kg; SOCD, 
663.07–868.46 g/m2) in 2007 (p <  0.05). Although no significant differences were observed (p >  0.05), the SOC 
content (5.23 ±  0.44 g/kg) and SOCD (919.67 ±  77.58 g/m2) in the top 10  cm soils were slightly higher than those 
in deeper soils (SOC, 4.43–4.63 g/kg; SOCD, 793.02–831.20 g/m2) in 2012. The contributions of SOCD in the top 
10 cm soils accounted for 26.57% and 22.05% in 2007 and 2012, respectively. With the exception of a significant 
SOC loss in the top 10 cm soils, the SOC and SOCD exhibited only small changes in deeper soils (i.e., 10–50 cm 
soils). Plant cycling could explain the higher levels of SOC and SOCD in the top soils32. Qin et al.33 also found 
that carbon inputs from plant roots and plant residues were often accumulated in the surface soil. Compared with 
surface soils, only a small decrease in SOCD (4.12%) in the top 50 cm soils occurred from 2007 to 2012 in this 
study, although Yu et al.4 observed a slight increase in SOC storage in the top 30 cm soils in the entire Yellow River 
Delta from 2000 to 2009. This finding indicated that there was a five-year effect on SOC content and stock in the 
top 10 cm soils in coastal wetlands. This might be associated with the long-term soil organic matter (SOM) break-
down due to freshwater input, which has been affected by the flow-sediment regulation since 200234. The freshwa-
ter input could increase SOC loss through changing soil salinity since soil salinity was strong negatively correlated 
with microbial biomass carbon and soil organic matter content35,36. Chambers et al.37 also found that CO2 flux was 

EC SWC BD SOC SOCD TN TND NH4
+-N NO3

−-N

Sampling period pH ms/cm % g/cm3 g/kg g/m2 mg/kg g/m2 mg/kg mg/kg

2007

Mean ±  SE 8.41 ±  0.05a 2.33 ±  0.30a 26.95 ±  0.80a 1.81 ±  0.01a 6.41 ±  0.28a 1155.80 ±  50.46a 239.28 ±  14.18a 43.04 ±  2.54a 4.52 ±  0.32a 1.72 ±  0.16a

Min. 7.66 0.38 19.86 1.60 2.72 496.40 58.05 11.48 1.17 0.91

Max. 9.03 8.01 41.83 1.98 11.12 2051.87 424.95 78.39 9.96 8.25

2012

Mean ±  SE 8.34 ±  0.06a 1.57 ±  0.11b 26.36 ±  0.56a 1.79 ±  0.04a 5.23 ±  0.44b 919.67 ±  770.58b 238.16 ±  15.03a 43.04 ±  30.07a 3.13 ±  0.43b 1.56 ±  0.08a

Min. 7.65 0.49 21.00 1.18 2.12 396.44 69.69 13.10 0.31 1.20

Max. 8.99 2.51 33.13 2.00 8.65 1642.53 378.47 71.15 7.06 3.34

Table 1.  Mean values of selected soil properties in the top 10 cm soil in 2007 and 2012. a,bThe different 
letters represent significant differences between 2007 and 2012.
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higher in the freshwater marsh than brackish and salt marshes in a 53-day laboratory experiment. Moreover, the 
drying and wetting cycles dominated by the overbank flow from the flow-sediment regulation might increase the 
SOC loss. Xu et al.22 reported that multiple drying and wetting cycles would enhance the decomposition of SOC 
in paddy soils. Aerts and Ludwig38 observed that periodical changes in aeration or the water table could increase 
cumulative C mineralization rates in laboratory columns of peatland soils. Additionally, small additional dissolve 
organic carbon inputs have been observed from the upper organic horizons to the deeper mineral soils due to 
drying and wetting cycles39.

TN content and TND. The distributions of TN content and TND in the two sampling periods of 2007 and 
2012 are shown in Fig. 2. Similar to the SOC content and SOCD, the TN content and TND generally exhibited 
decreasing tendencies with depth, with the exception of accumulations at the 20–30 cm soil depth in 2012. This 
observation agrees with the previous results9 in which the TN content was observed to decrease with increasing 
depth, and TN accumulation was observed in the deeper soils of coastal wetlands in the Yellow River Delta. Wang 
et al.40 also observed a decrease trend in soil nitrogen sequestration with soil depth. The top 10 cm soils contained 
significantly higher TN level and TNDs compared to the deeper soils (with the exception of the 20–30 cm soil 
depth in 2012) in both sampling periods (p <  0.05) that accounted for 27.48–30.89% of the total TND in the 
whole soil profiles. This is attributed to the fact that nitrogen can return to surface soils through plant cycling32. 
Moreover, greater nitrogen deposition in this region would contribute to elevated N levels in the surface soils4. 
Nitrogen accumulation at the 20–30 cm soil depth might be associated with the leaching of dissolved organic 
nitrogen and inorganic nitrogen because plants and microbes cannot prevent dissolved organic matter losses41. 
Ammonia nitrogen also exhibited a substantial accumulation at the 20–30 cm soil depth, but only a small decrease 
in nitrate nitrogen was observed with soil depth. These findings could be explained by leaching and the rapid 
transformation rates of nitrate nitrogen in surface soils (0–10 cm)42.

Water table fluctuation is the primary determinant of N dynamics and their end products, which controls the 
aerobic/anaerobic conditions in the soil43. Venterink et al.21 also found that repeated drying and wetting increased 
the cumulative NH4

+-N but reduced NO3
−-N, which is indicative of a reduction in net nitrification in deeper 

soils. However, no significant changes in the TN contents or TNDs were observed along the soil profiles between 
2007 and 2012 (p >  0.05). Similarly, the TND values in the top 50 cm soils also did not significantly change from 
2007 to 2012 although an increment was observed (p > 0.05). Therefore, there were no significant five-year effects 
on the TN contents or TNDs in the coastal wetlands.

Soil molar C/N ratios. The molar C/N ratios are a good indicator and useful tool for identifying the 
terrestrial-based or marine-based sources of soil organic matter and nitrogen limitation of plants in terrestrial 
ecosystems44,45. Figure 3 illustrates the variations in soil C/N ratios with soil depth in 2007 and 2012. Generally, 
the soil C/N ratios in 2012 increased significantly with soil depths (p <  0.05) and the values ranged from 28.25 to 
50.27. Comparatively, the highest C/N ratio (50.96) was observed at the 30–40 cm soil depth in 2007, no signif-
icant differences were found between soil depths (p > 0.05). However, Lu et al.46 found that C/N ratios decrease 
gradually with increasing soil depth in reed wetlands. This might be associated with the freshwater input from 

Figure 1. Depth distributions of SOC content and SOCD in 2007 and 2012. abcDifferent letters at the depths 
indicate significant differences at p <  0.05. The error bars represent the standard deviations.
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the flow-sediment regulation, which limited microbial activity in the deeper soils47 and led to a slow decompo-
sition rate of organic matter. Additionally, the C/N ratio was lowest in the 0–10 cm soils (p <  0.05) in both years. 
The average soil C/N ratios in the top 50 cm soils were 43.24 in 2007 and 38.69 in 2012. Soil C/N ratios as the 
mineralization potential index were greater than 25 to 30 which is associated with N contents limit decomposi-
tion23,48. The C/N ratios remained >  25 implies that the SOM in this region was primarily from terrestrial sources 
(terrestrial-based organic matter has a C/N ratios greater than 20)47 and that the SOM decomposition would be 
limited by nitrogen availability due to higher C/N ratios (exceeding 25)23. A slight decrease in the C/N ratios was 

Figure 2. Depth distributions of the TN content and TNDs in 2007 and 2012. abcDifferent letters at the 
depths indicate significant differences at p <  0.05. The error bars represent the standard deviations.

Figure 3. Depth distributions of the C/N ratios in 2007 and 2012. abcDifferent letters at the depths indicate 
significant differences at p <  0.05. The error bars represent the standard deviations.
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observed from 2007 to 2012, which might be an indication of more decomposed residues because less minerali-
zation occurred in 2007 than in 2012 (p <  0.05; Table 1).

Relationships between carbon, nitrogen and selected soil properties. The results of Pearson cor-
relation analysis indicated that there were significant relationships among the SOC, SOCD, TN, and TND in the 
top 20 cm soils in both periods (p <  0.01; Table 2). Consistent changes in the SOC and TN levels in many different 
wetlands have been reported by the majority of researchers4,9,11. Significant positive correlations between pH values 
and soil C and N indicated that higher pH ranges (i.e., medium alkaline) prohibited soil C and N decomposition 
through influencing microbial activity48. Soil moisture might be a dominant factor in the determination of SOM 
decomposition49,50. The SOC, TN, and TND exhibited significant correlations with the soil moisture in this study, 
which indicates that higher soil moisture in coastal wetlands contributed to C and N accumulation due to anaerobic 
conditions21,43,51. Soil bulk density exhibited a significant negative correlation with SOC (p <  0.01), which is consist-
ent with the results reported by Addis et al.52 because bulk density is generally negatively correlated with soil mois-
ture. Additionally, NH4

+-N was significantly correlated with SOC, SOCD, TN and TND (p <  0.01), which implies 
that organic nitrogen mineralization was dominated by the C and N contents in the soil53. The negative correlations 
of TN and TND with the C/N ratios demonstrated that the higher C/N ratios in the coastal wetlands enhanced 
nitrogen loss because SOC could act as an electron donor in the denitrification of NO3

−-N3.
The relationships of the soil carbon and nitrogen (i.e., the SOC, SOCD, TN and TND) with the selected soil 

factors at these sampling sites are summarized in a bioplot of RDA of the two sampling periods (Fig. 4). In this 
biplot diagram, the blue arrows represent the soil carbon and nitrogen, and the red arrows represent the influ-
encing factors. The circles indicate the sampling sites, and the lengths of the arrows represent the strengths of the 
influences of the selected soil parameters on the SOC and TN. The first two axes of the RDA explained a high 
proportion of the variance (i.e., 42.55% and 14.34% for axes 1 and 2, respectively). The results also revealed the 
relationship between the sampling sites, which were clustered in the RDA diagram. The samples collected in 2007 

SOC SOCD TN TND
C/N 

ratios pH EC SWC BD NH4
+-N NO3

−-N

SOC 1.000

SOCD 0.560** 1.000

TN 0.731** 0.382** 1.000

TND 0.701** 0.371** 0.992** 1.000

C/N ratios − 0.139 0.002 − 0.617** − 0.624** 1.000

pH 0.272** 0.227** 0.362** 0.353** − 0.231** 1.000

EC 0.094 0.200* − 0.107 − 0.092 0.255** − 0.334** 1.000

SWC 0.369** 0.164 0.415** 0.392** − 0.229** 0.200* − 0.162 1.000

BD − 0.267** − 0.022 − 0.099 0.023 − 0.006 − 0.044 0.104 − 0.179* 1.000

NH4
+

-N 0.410** 0.355** 0.260** 0.287** − 0.022 0.058 0.211* 0.094 0.240** 1.000

NO3
−-N 0.014 0.061 − 0.096 − 0.106 0.147 0.010 0.298** 0.033 − 0.025 − 0.058 1.000

Table 2.  Correlation analysis of the soil nutrients and soil environmental parameters. *Significant 
correlation at p <  0.05; **Significant correlation at p <  0.01.

Figure 4. Bioplot of RDA for the relationships between SOC and TN contents and stocks and selected soil 
properties in surface soils in 2007 (Sites1–44) and 2012 (Sites 45–71). 
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(S1–S44) were closely distributed along the first axis, which reflected the significant effects of pH and SWC. The 
samples collected in 2012 (S45–S71) were closely distributed along the second axis, which indicated that the soil 
C and N were dominantly affected by the soil C/N ratio and NH4

+-N.

Conclusions
We investigated the temporal changes in soil organic carbon and total nitrogen in the riparian wetlands of the 
Yellow River Delta from 2007 to 2012. The results clearly illustrated a negative effect of flow-sediment regulation 
on the soil C content in the surface soil over the five- year period. A significant SOC loss of 20.43% in the top 
10 cm soils were observed from 2007 to 2012, however, only a small change in SOC stock in the top 50 cm soils 
were observed, indicating great effects of environmental factors on surface soils. Comparatively, no significant 
changes in TN content and stock were observed in the study period. The SOC and TN contents and stocks gen-
erally decreased along the soil profiles, and they were significantly higher in the top 10 cm soils than the deeper 
soils with the exception of the SOC and SOCD in 2012. The soil pH and SWC exhibited the strongest effects on 
soil C and N in 2007, whereas the soil C/N ratios and NH4

+-N were the dominant influencing factors in 2012. The 
findings of this study will contribute to guiding freshwater restoration and flow-sediment regulation to enhance 
the ecological functions of carbon and nitrogen pools and provide basic data regarding global C and N cycles. 
However, further studies involving the dynamic monitoring of soil C and N are still needed to determine their 
long-term changing patterns in coastal wetlands that are affected by freshwater input and seawater intrusion.

Materials and Methods
Study area. The study area is located in the Yellow River Delta (N37°45′ 57.8″ , E119°11′ 15.2″ ) of the eastern 
part of Shandong Province on the southern bank of the Bohai Gulf. The Yellow River Delta is one of the most 
extensive and youngest regions, and it is also the fastest growing wetland among large river deltas worldwide. This 
region has a warm-temperate and continental monsoon climate with distinct seasons that include a rainy sum-
mer. The annual mean temperature is 11.7–12.9 °C. The annual mean precipitation ranges from 550 to 640 mm, 
and the annual mean evaporation is 1962 mm54, which causes serious drought disasters. The groundwater table 
in this region is shallow with an average depth of 1.14 m, and the groundwater contains TDS in quantities that 
vary from 0.54 to 97.56 g/L (data from the Chinese Institute for Hydrogeology and Engineering Geology Survey, 
CIHEGS, 1986). The dominate vegetation in coastal wetlands in the Yellow River Delta includes herbaceous 
plants (Phragmites australis and Suaeda salsa) and shrubs (Tamarix chinensis)9. Because the frequencies of dry-
ing or ephemeral stream flows have been increasing in the Yellow River since the early 1970s, the Xiaolangdi 
Reservoir began storing water in late 1999, which has substantially controlled the flow of the lower Yellow River; 
indeed this water storage represents the hydrological beginning of the lower Yellow River55. A flow-sediment 
regulation regime has been implemented in the upstream Xiaolangdi Reservoir since 2002 by the Yellow River 
Conservancy Committee to control the discharges of water and sediment.

Sample collection and analysis. The coastal wetlands affected by the flow-sediment regulation were selected 
in the Yellow River Delta. In total, 71 sampling sites were collected to depths of 50 cm in coastal wetlands from May 
to August in the study periods, which included 44 sampling sites in 2007 and 27 sampling sites in 2012. The soil 
profiles with three replicates for each sampling site were sectioned into five depths at 10 cm intervals and mixed with 
the same soil layers to form composite samples. Additional soil cores (4.8 cm diameters) from each soil layer of each 
sampling site were collected to determine the soil moistures and bulk densities. The studied wetlands were consist-
ently affected by the flow-sediment regulation that has been implemented since 2002. Soil samples were collected in 
2007 (affected by the flow-sediment regulation for five years) and in 2012 (affected by the flow-sediment regulation 
for ten years). Thus the five-year changes in SOC and TN were identified by comparisons of the two sampling years. 
The soil samples were obtained and stored at 4 °C in sealed plastic bags to limit microorganism activity for the deter-
mination of the soil carbon and nitrogen. All of the soil samples were air-dried at room temperature for three weeks, 
and coarse debris, roots and stones were removed. Then all soil samples were crushed to pass through a 0.149-mm 
stainless steel mesh and stored for the determination of chemical analyses.

The soil pH were measured using a Hach pH meter (Hach Company, Loveland, CO, USA), and the EC values 
were measured using a conductivity meter (Mettler Toledo, USA) in the supernatants of 1:5 soil:water mixtures. 
The SWC and BD were determined by oven-drying at 105 °C for 24 h. The SOC levels were determined using 
dichromate oxidation56. The TN levels were measured in duplicate using dry combustion with an Elementar Vario 
C/N Analyzer. Additionally, the NO3

−-N and NH4
+-N levels were analyzed using AA3 automated flow injection 

analysis (Bran +  Luebbe GmbH, Germany).
The SOC densities and TN densities at certain soil layer of each sampling site were calculated using Eqs. (1) 

and (2), respectively.

= × × × ( )SOCD SOC BD H 10 1

= × × × ( )TND TN BD H 10 2

where SOCD and TND are the soil organic carbon density (g/m2) and the total nitrogen density (g/cm2), respec-
tively, SOC is the soil organic carbon content (g/kg), TN is the total nitrogen content (g/kg), BD is the soil bulk 
density (g/m3), and H is the thickness of the soil layer (cm). SOCD in the whole soil profile is the sum of SOCD 
at each soil layer.

As for the calculation of C/N ratios, the contents of soil organic carbon and total nitrogen were transformed to 
a unit of mol/kg, thus the C/N ratios were calculated as molar ratio rather than mass ratios.
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Statistical analyses and graphing. The statistical analyses were conducted using SPSS 16.0 software pack-
age. One-way ANOVA was performed to identify the significant differences in the mean values of the soil prop-
erties between the sampling sites, the soil depths and the sampling years. Differences were considered significant 
at the 0.05 level based on least significance difference (LSD) tests. Redundancy analysis (RDA) was conducted 
using the Canoco 5.0 software package (Microcomputer Power, Ithaca, USA) to identify the main factors that 
influenced SOC and TN contents and stocks in the top 10 cm soils between 2007 and 2012. The figures were  
created using the Origin 8.0 (Origin Labs Corporation, Northampton, Massachusetts, United States) and 
Canoco5.0 software packages.
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