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Tissue Metabonomic Phenotyping 
for Diagnosis and Prognosis of 
Human Colorectal Cancer
Yuan Tian1,*, Tangpeng Xu3,4,*, Jia Huang3,5, Limin Zhang1, Shan Xu1, Bin Xiong3, 
Yulan Wang1,6 & Huiru Tang1,2

Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide and prognosis 
based on the conventional histological grading method for CRC remains poor. To better the situation, 
we analyzed the metabonomic signatures of 50 human CRC tissues and their adjacent non-involved 
tissues (ANIT) using high-resolution magic-angle spinning (HRMAS) 1H NMR spectroscopy together 
with the fatty acid compositions of these tissues using GC-FID/MS. We showed that tissue metabolic 
phenotypes not only discriminated CRC tissues from ANIT, but also distinguished low-grade tumor 
tissues (stages I-II) from the high-grade ones (stages III-IV) with high sensitivity and specificity in both 
cases. Metabonomic phenotypes of CRC tissues differed significantly from that of ANIT in energy 
metabolism, membrane biosynthesis and degradations, osmotic regulations together with the 
metabolism of proteins and nucleotides. Amongst all CRC tissues, the stage I tumors exhibited largest 
differentiations from ANIT. The combination of the differentiating metabolites showed outstanding 
collective power for differentiating cancer from ANIT and for distinguishing CRC tissues at different 
stages. These findings revealed details in the typical metabonomic phenotypes associated with 
CRC tissues nondestructively and demonstrated tissue metabonomic phenotyping as an important 
molecular pathology tool for diagnosis and prognosis of cancerous solid tumors.

Colorectal cancer (CRC) is one of the most prevalent cancers, causing high cancer-related mortality in both 
developed and developing countries1. According to the American Cancer Society, about 1.7 million new cancer 
cases and ~600,000 deaths from cancer are projected to occur in the United States in 2015, among which ~100,000 
new cases and ~50,000 deaths will be from CRC2. In China, CRC mortality rapidly increased to become the fifth 
most common cancer-related deaths in 2012, and  continued to rise3. Whilst proper prognosis for CRC is the key 
for reducing mortality rates, outstanding advances in early diagnosis and surgical treatment of CRC are required 
to improve the prognosis of CRC. Prognostic and improved treatment strategies are determined largely by the 
stages of cancer, therefore determining the stages of CRC is vital in the prevention of CRC-related mortality.

The current “gold standard” for CRC diagnosis is based on the colonoscopy in combined with histopatholog-
ical examination whilst the most  commonly accepted method for staging is based on Tumor Node Metastasis 
(TNM) or the Duke staging system4. These strategies involve detecting the depth of tumor invasion, the extension 
of lymphatic metastasis and distant metastasis microscopically. Although pathological TNM stage is a common 
predictive factor of predicting the prognosis and for planning treatments of CRC patients, heterogeneity of prog-
nosis still exists in the same stage. Therefore, new, robust and reliable diagnostic approaches are urgently needed 
to improve the existing screening strategies.
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Some new noninvasive CRC detection methods are being developed especially stool DNA (sDNA)5 and 
microRNA (miRNA) testing6. Four methylated genes including, a mutant form of KRAS, can be detected by the 
sDNA test which identifies 85% of patients with CRC and 54% of patients with adenomas, with 90% specificity5. 
Fecal miRNAs can be easily detected from both CRC patients and healthy subjects6 which have been used in 
the clinic for the noninvasive detection of CRC. Recently, proteomic7–10 and genomic11–13 studies have provided 
some more insights into the molecular phenotypes of CRC. Several genomic studies have found a number of 
genes responsible for inherited colorectal cancers including mutations in APC (Familial Adenomatous Polyposis), 
hMSH2, hMLH1 (Lynch Syndrome), MYH (MYH polyposis), and STK11 (Peutz-Jegher Syndrome)14–16. 
Proteomic studies have shown upregulations of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 
malate dehydrogenase (MDH) but down-regulations of phosphoenolpyruvate carboxykinase (PEPCK), 
UDP-glucose pyrophosphorylase 2 (UGP2) and aconitate hydratase in CRC tissues compared to these in adja-
cent normal mucosa indicating the CRC-associated alterations in multiple metabolic pathways such as glycolysis/
gluconeogenesis, glucuronate pathway and tricarboxylic acid cycle17–19. While alterations at the genomic and 
proteomic levels reflect the changes of a biological process, metabonomics considers the interaction of these 
processes with environmental factors and provides consequential results related to the biological event. In par-
ticular, 1H high resolution magic-angle spinning (HRMAS) nuclear magnetic resonance (NMR) analysis of tissue 
metabolic profiles ex vivo has shown great potential for cancer research due to the nondestructive nature of this 
technique20–22. Recently, similar metabonomics approaches have also shown potential in cancer diagnosis and 
prognosis23–28. Clinical metabonomic studies based on urine29,30, serum31,32 and tissue33–35 of CRC patients have 
provided some potential biomarkers for CRC detection and prognosis36,37. Despite these advances, there are still 
few studies on how tumor tissue metabonomic phenotypes correlate with the CRC staging especially in a molec-
ular pathology context. Such information would be vital for understanding the processes of tumorigenesis, CRC 
grading, and hence CRC-related mortality reduction.

In this study, we used HRMAS NMR and gas chromatography-mass spectrometer (GC-MS) in combination 
with multivariate data analysis, to elucidate the metabonomic features of human CRC tissues at different stages, as 
well as their corresponding adjacent non-involved tissues (ANIT). The aims of this investigation are to define the 
tissue metabonomic characteristics associated with CRC at different stages and to explore the potentials of these 
molecular phenotypic profiles for diagnosis and prognosis of human colorectal cancer.

Results
1H HRMAS NMR spectra of tissue samples.  The average 1H NMR spectra of both CRC and ANIT sam-
ples (Fig. 1) showed a number of metabolites which were unambiguously assigned (Table S1) based on the litera-
ture data34,35 and further confirmed by a series of 2D NMR spectral data. The spectra of colonic tissues contained 
visible resonances from lipids, organic acids, amino acids and metabolites from choline and nucleosides (Table 
S1). Visual inspection of the spectra of these tissues revealed that the levels of some metabolites such as lipids, 
amino acids, and choline were obviously different between tumor tissues and ANIT (Fig. 1).

Figure 1.  Average 600 MHz 1H HRMAS NMR spectra of ANIT (A), stage I CRC tumor (B) and stage IV CRC 
tumor (C). The region of δ 5.7–8.5 was vertically expanded 16 times compared with δ 0.8–4.2. Metabolite 
keys: 1, isoleucine; 2, leucine; 3, valine; 4, lactate; 5, threonine; 6, alanine; 7, lysine; 8, arginine; 9, proline; 10, 
glutamate; 11, methionine; 12, glutamine; 13, creatine; 14, choline; 15, glycine; 16, tyrosine; 17, phenylalanine; 
18, scyllo-inositol; 19, lipid; 20, aspartate; 21, asparagine; 22, glutathione; 23, cysteine; 24, phosphorylcholine/
glycerophosphocholine; 25, taurine; 26, myo-inositol; 27, phosphoethanolamine; 28, uracil; 29, cytosine; 30, 
isocytosine; 31, acetate; 32, fumarate; 33, inosine; 34, formate.
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Metabonomic characteristics of tumor tissues.  Principal component analysis (PCA) was conducted on 
the mean-centered 1H HRMAS NMR data from 50 pairs of CRC tumor and ANIT samples to generate an over-
view of the dataset and detect possible outliers. A clear indication of separation was observable between ANIT 
and CRC tumor tissues (Fig. 2A). Using orthogonal project to latent structure-discriminant analysis (OPLS-DA), 
we further analyzed the metabonomic profiles of CRC tumors at four different stages (I-IV). The results showed 
that stage I tumors were not distinguishable from stage II ones (Q2 =  − 0.36, p =  1), nor were stage III tumor 
tissues from stage IV ones (Q2 =  0.01, p =  1), though the limited number of samples from stage IV could be one 
potential reason for this observation (Fig. 2B and Figure S1). We then pooled the data together to consider them 
as low-grade tumor tissues (stages I-II) and high-grade one (stages III-IV) in the subsequent analyses. Receiver 
operating characteristic (ROC) analysis further confirmed clear differentiations between stage I tumor and ANIT 
as well as between stage II tumor and ANIT. Low-grade CRC tumors (stages I-II) were also successfully distin-
guished from the high-grade ones (stages III-IV) (Fig. 3).

OPLS-DA showed significant inter-group metabonomic differences between CRC tumors and ANIT, and 
between low-grade and high-grade CRC tumors (Fig. 4). Further evaluation using the CV-ANOVA method con-
firmed the statistical significance (p <  0.05) of these models (Fig. 4). Compared with ANIT, the CRC tissues 
contained relatively higher levels of lactate, choline, phosphorylcholine (PC), glycerophosphocholine (GPC), 
phosphoethanolamine (PE), scyllo-inositol, glutathione (GSH), taurine, uracil, cytosine, isocytosine, inosine and 
a range of amino acids, but lower levels of lipids (Fig. 4A, Table 1). Interestingly, when these 24 metabolites hav-
ing significant differences between ANIT and CRC tissues were employed for inter-group differentiations, the 
resulting ROC model showed a good diagnostic power with an area under curve (AUC) of 0.965 (Figure S2A). 
Furthermore, the high-grade (stages III-IV) tumor tissues contained higher levels of lipids but lower levels of 
choline, PC, GPC, PE, GSH, taurine, uracil, isocytosine, inosine and some amino acids (glutamine, glutamate, 
aspartate, asparagine, glycine and cysteine) than the low-grade (stages I-II) tumor tissues (Fig. 4B, Table 1). Of 
note, the ROC curve generated from 15 significantly differentiated metabolites showed an AUC of 0.904 for dis-
tinguishing the low-grade tumors from the high-grade tumors (Figure S2B).

In order to obtain metabonomic phenotypes associated with CRC at various stages, tumor samples of each 
stage (I-IV) were compared with their corresponding ANIT using the OPLS-DA strategy (Figure S3) with the 
differentiated metabolites from the different pathological stages identified (Fig. 5). Amongst all these CRC tis-
sues, stage I tumors exhibited the largest differences from their corresponding ANIT samples in terms of their 
metabonomic phenotypes. This was signified by the higher levels of choline, PC, GPC, PE, scyllo-inositol, taurine, 
uracil, cytosine, isocytosine, GSH and most of amino acids but lower levels of lipids in these tumor tissues. Such 
differences became less for the high-grade samples (stages III-IV) with exception of lactate, whose level continued 
to increase in the higher grade tumor tissues (Fig. 5A–D).

Fatty acid compositions in the CRC-related tissue samples.  To obtain the detailed information 
about these lipids showing inter-group differences, we analyzed the fatty acid composition in these tissues using 
GC-FID/MS. The low-grade tumor tissues had significantly lower levels of C18:1n9, C20:1n9, C18:2n6, C20:2n6, 
C18:3n3 than ANIT (Fig. 6 and Table S2). The levels for unsaturated fatty acids (UFA), monounsaturated fatty 
acids (MUFA), polyunsaturated fatty acids (PUFA) and total fatty acids (ToFA) were also lower than in ANIT 
(Fig. 6 and Table S2). In the higher-grade tumors (stages III-IV), only C20:1n9 level was significantly lower than 
that in the corresponding ANIT samples. Furthermore, the high-grade tumor tissues contained higher C20:2n6 
level than the low-grade ones.

Discussion
Prognostic treatment strategies largely depend on the stage of cancer and thus developing new screening methods 
with high sensitivity and specificity is critical for the early diagnosis of CRC. Most cancers have a long asymp-
tomatic period and are difficult to detect during the early stages of cancer, few methods are able to detect the 

Figure 2.  PCA scores plots obtained from NMR data of CRC tumor tissues at different stages (I–IV) with (A) 
or without (B) ANIT. ANIT ( ), stage I ( ), stage II ( ), stage III ( ), and stage IV ( ).
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molecular events that underlie the initiation and progression of tumors. Pathological TNM stage has limita-
tions and shortfalls in its own way since such approaches are at best confirmative rather than early discovering. 
Recently, an intriguing technology, called “intelligent knife” (iKnife), has been developed for clinical application, 
which detects the subtle differences of smoke between cancerous and healthy tissue generated from surgical knife 
within seconds in the surgery38. In order to obtaining information on cancer development and progression, in 
this study, we employed a holistic metabonomics approach to investigate the detailed metabolic phenotypes of 
CRC tissues at different stages, together with their corresponding ANIT. Based on their metabonomic phenotypic 
features, we have successfully discriminated CRC tumors, especially low-grade ones, from their ANIT, and dis-
tinguished the low-grade tumors from the high-grade ones with high specificity and sensitivity in both cases. Our 
data also showed that detailed metabolic compositions in tumors differed significantly from their corresponding 
ANIT, with the greatest differences observed between the low-grade tumors and their corresponding ANIT.

The differences in energy metabolisms were clearly observable between the CRC tissues and ANIT, with an 
significant increase in glycolytic capacity in the CRC tissues as compared with ANIT. Tumor cells are typified 
with “Warburg effect” by maintaining high aerobic glycolytic rates and high levels of glucose uptake together with 
lactate production39. Significantly higher alanine concentration in CRC tumors occurs during glucose utilization 
showing high glycolytic rates related to tumor malignancy40. Recent studies have also shown that the conversion 
of pyruvate to alanine occurs predominantly in precancerous tissues prior to observable morphologic or histolog-
ical changes41. The alteration of lipid metabolism has also been observed in CRC tissues with enhanced lipogene-
sis as one of the most important feature in tumor tissues42. However, recent studies have found that tumor tissues 
can utilize both lipogenic and lipolytic pathways to acquire fatty acids for tumor cell proliferation43.

Figure 3.  ROC curves determined using the cross-validated predicted Y-values of the 1H NMR OPLS-DA 
models from CRC tumor and ANIT. (A) ANIT vs CRC tumor, (B) stages I-II tumor vs stages III-IV tumor, (C) 
stage I tumor vs ANIT, (D) stage II tumor vs ANIT.
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In our studies, a significantly lower level of lipids indicated that lipolysis and fatty acid oxidation are the dom-
inant bioenergetic pathways in CRC tissues. In addition, we also detected altered fatty acid composition in the 
CRC tumor tissues. Significantly lower levels of n3- and n6-type PUFA were observed in CRC tumor tissues as 
compared with ANIT, suggesting an association of inflammation with CRC. Association of lower levels of PUFAs 
in CRC tumor could be attributed to the pro-tumor genesis of cyclooxygenase 2 (COX-2), an enzyme converting 
PUFAs to prostaglandins during inflammatory and tumorigenic reactions44. In our study, we also found higher 
levels of a range of amino acids in the CRC tumors as compared with ANIT. A growing tumor needs, more so 
than any normal tissues, a good supply of energy. Many of these amino acids can enter the tricarboxylic acid cycle 
(TCA) to provide energy for fast tumor growth, particularly when anaerobic metabolism is inefficient. Compared 

Figure 4.  OPLS-DA scores (left) and coefficient-coded loadings plots (right) showing the discrimination 
between (A) ANIT ( ) and CRC tumor ( ) (n =  50, |r| >  0.29) and (B) stages I-II tumor ( ) and stages III–IV 
tumor ( ) (n =  22, |r| >  0.41). Metabolite keys are given in Fig. 1 and Table S1.

Metabolite (no.) CRC vs ANIT
stages III-IV vs 

stages I-II

Lipid (19) − 0.62 0.62

Lactate (4) 0.58 —

Leucine (2) 0.44 —

Valine (3) 0.41 —

Isoleucine (1) 0.39 —

Alanine (6) 0.32 —

Glutamine (12) 0.32 − 0.50

Glutamate (10) 0.89 − 0.65

Aspartate (20) 0.54 − 0.55

Aspargine (21) 0.51 − 0.80

Cysteine (23) 0.49 − 0.53

Glycine (15) 0.60 − 0.47

Tyrosine (16) 0.46 —

Phenylalanine (17) 0.43 —

Choline (14) 0.37 − 0.46

PC/GPC (24) 0.37 − 0.50

PE (27) 0.76 − 0.65

Scyllo-inositol (18) 0.61 —

GSH (22) 0.54 − 0.75

Taurine (25) 0.79 − 0.67

Uracil (28) 0.61 − 0.75

Cytosine (29) 0.62 —

Isocytosine (30) 0.76 − 0.63

Inosine (33) 0.60 − 0.62

Table 1.   Correlation Coefficients for Metabolites having significantly differences between CRC tumors 
and ANIT, and between stages III-IV and stages I-II tumors. The coefficients were from OPLS-DA results; 
positive and negative signs indicate positive and negative correlations, respectively.
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with ANIT, we further observed higher levels of cysteine and GSH in CRC tumors, which has also been observed 
in human esophageal cancer45. The rate-limiting precursor for GSH synthesis, cysteine, was present in higher lev-
els concurrently with GSH in CRC tissues than in ANIT indicating a redox status shift in the CRC tumor tissues. 
GSH is essential for cell growth and therefore low levels of GSH promotes apoptosis, whereas high levels of GSH 
have been associated with resistance to chemotherapy46.

We further observed higher levels of nucleotides, nucleosides and nucleobases in CRC tissues as compared 
with ANIT. These metabolites are key components of DNA and RNA structures and their biosynthetic dys-
regulations have some profound effects on cellular physiology, which can lead to neoplastic transformation of 
cells47. Higher uracil level in CRC tumors than in ANIT observed in our study has also been reported previously 
in CRC and hepatocellular carcinoma due to reduced dihydropyrimidine dehydrogenase (DPD) activity48,49. 

Figure 5.  The ratios of metabolite changes for CRC tumor tissues at different stages (I-IV) against ANIT. 

Figure 6.  Fatty acid levels in ANIT and CRC tumor tissues.  *p < 0.05 when compared to the ANIT, Δ p < 0.05 
when compared to low-grade (stages I-II) tumor tissues.



www.nature.com/scientificreports/

7Scientific Reports | 6:20790 | DOI: 10.1038/srep20790

Down-regulation of DPD expression may therefore create a favorable environment for tumor cell proliferation, 
leading to decrease uracil catabolism50,51. Furthermore, up-regulation of cytosine and its isomer isocytosine in 
CRC tumors found in our study has been observed previously in leukaemia52.

Higher levels of choline metabolites such as choline, PC, GPC and PE observed here in CRC tissues than in 
ANIT have been reported in other malignant tumors35,53,54. This is consistent with high activity of both biosyn-
thetic (choline kinase) and catabolic (phosphatidylcholine-PLC/PLD) enzymes observed in ovarian carcinoma 
contributing to the observed choline-containing compounds accumulation in CRC tumor55. Our observation of 
the higher levels of taurine and scyllo-inositol in CRC tissues than in ANIT was indicative of a localized change in 
osmotic regulation in CRC tumor tissues since both these metabolites may function as osmotic regulative metab-
olites35 though taurine could have multiple functions.

In summary, tissue metabonomic analyses using the combined HRMAS and GC-FID/MS techniques have 
revealed significant differences in terms of metabolic phenotypes between 50 human CRC tumor tissues and 
their corresponding adjacent non-involved tissues. Amongst all CRC tissues, the stage I CRC tumor tissues 
showed greatest metabonomic differences from their corresponding adjacent non-involved tissues. Using the 
same approach, such differences were also readily observable between the low-grade (stage I-II) and high grade 
(stage III-IV) CRC tissues. The differentiated metabolites involved in energy metabolism (glycolysis), osmotic 
regulations, membrane biosynthesis/degradations together with metabolisms of proteins and nucleotides. The 
combination of these significantly differentiated metabolites were powerful molecular phenotypic features for 
differentiating CRC and adjacent non-involved tissues as well as for distinguishing low-grade and high grade 
CRC. These findings provided crucial details for insights into CRC biology and demonstrated tissue metabo-
nomic phenotyping as a potentially important molecular pathological approaches for diagnosis and prognosis 
of solid tumors.

Materials and Methods
Ethics statement.  This study was approved by the local ethic committee of Zhongnan Hospital of Wuhan 
University with an informed consent form signed by all participants. All experimental protocols were in accord-
ance with the approved guidelines for safety requirements of Wuhan Institute of Physics and Mathematics, 
University of Chinese Academy of Sciences.

Chemicals.  Deuterium oxide (D2O, 99.9% D) was obtained from Cambridge Isotope Laboratories, Inc. 
(Miami, USA.). Methanol, hexane, and K2CO3 were obtained all in analytical grade from Sinopharm Chemical 
Reagent Co. Ltd. (Shanghai, China). Methyl heptadecanoate, methyl tricosanate, and acetyl chloride (99.0%) were 
purchased from Sigma-Aldrich (St. Louis, MO) whereas 3,5-Di-tert-butyl–4-hydroxytoluene (BHT) and a mixed 
standard methyl esters of 37 fatty acids were obtained from Supelco (Bellefonte, PA).

Clinical sample collection.  CRC tumors including 16 colon cancer and 34 rectal cancer together with the 
corresponding adjacent non-involved tissues (ANIT) were collected from 50 CRC patients (aged 42–70 years) at 
different stages (Table 2). ANIT samples were taken at least 5–10 cm away from the edges of the tumor. Both CRC 
and ANIT were diagnosed with clinical histopathological approaches at the Department of Pathology, Zhongnan 
Hospital of Wuhan University, and cancer stages were determined according to TNM classification. All tissues 
were snap-frozen in liquid nitrogen after resection at surgery and stored at − 80 °C until further analysis.
1H HRMAS NMR spectroscopic analysis.  All HRMAS NMR experiments were carried out at 283 K on a 
Bruker AVIII 600 MHz spectrometer (Bruker Biospin, Germany) using a triple-resonance HRMAS probe with a 
sample spin rate of 5000 Hz. Each tissue sample (about 15 mg) was individually placed in D2O saline and inserted 
into a 4 mm diameter zirconium oxide rotor for all NMR acquisitions. In order to attenuate NMR signals of 
macromolecules, a Carr-Purcell-Meiboom-Gil (CPMG) spin-echo spectrum was collected for each sample with 
the spin-spin relaxation delay (2nτ ) set to 70 ms for all samples. The 90° pulse length was adjusted to  about 10 μ s 
for each sample and a total of 128 transients were collected into 32k data points with a spectral width of 20 ppm.

To facilitate assignments, a series of 2D NMR spectra were acquired and processed as described previ-
ously56,57 for some selected samples including 1H-1H correlation spectroscopy (COSY), 1H-1H total correlation 
spectroscopy (TOCSY), 1H J-resolved spectroscopy (JRES), 1H− 13C heteronuclear single quantum correlation 

patients for 
HRMAS NMR

patients for 
GC-MS

Number 50 16

Age (median, range) 56, 42–70 58, 45–64

Male/female ratio 30/20 11/5

Stage I 16 6

Stage II 12 4

Stage III 17 3

Stage IV 5 3

colon cancer 16 6

rectal cancer 34 10

Table 2.   Clinical information of CRC patients.
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spectroscopy (HSQC), and 1H− 13C heteronuclear multiple bond correlation spectroscopy (HMBC). For all spec-
tral acquisitions, water signal was suppressed with a weak continuous wave irradiation during recycle delay.

Spectral processing and multivariate statistical data analysis.  For all one-dimensional spectra, an 
exponential window function was applied with a line-broadening factor of 1.0 Hz prior to Fourier transforma-
tion. All NMR spectra were then phase- and baseline-corrected manually using Topspin (V3.0, Bruker Biospin, 
Germany). The chemical shifts of spectra were all referenced to the methyl protons of alanine (δ1.48). The spec-
tral ranges of δ 0.50–8.50 were divided into bins with an equal width of 0.004 ppm (2.4 Hz) using AMIX software 
package (V3.9.5, Bruker Biospin, Germany). The residual water signal in the regions of δ 4.20–5.20 was discarded 
prior to data analyses together with ethanol resonances (δ 1.14–1.18, δ 3.62–3.70), which were probably intro-
duced during sample collections. The bucketed spectral data were normalized to the sum of total integrals of each 
spectrum.

The datasets were then imported into SIMCA-P+  (V12.0, Umea, Sweden) for multivariate data analyses. PCA 
was carried out with the mean-centered data and the scores plots were employed to visualize group clusterings 
and to detect possible outliers. OPLS-DA was further conducted with a 7-fold cross-validation approach by using 
the unit-variance scaled data using NMR data as the X-matrix and group information as the Y-matrix58. The qual-
ity of these models was described by R2X representing the explained variations and Q2Y indicating the model pre-
dictability. CV-ANOVA methods were employed to assess the robustness of the model (to the level of p <  0.05)59. 
The back-transformed loadings were plotted with the correlation coefficients of metabolites color-coded using an 
in-house developed script to show these variables (or metabolites) contributed to the intergroup separations. The 
ratios of metabolite changes for CRC tumor tissues at different stages were also calculated against the correspond-
ing ANIT in the form of [Cm–C0]/C0, where Cm and C0 stood for the peak areas of a particular metabolite signal 
(having least overlapping) in tumor tissues and ANIT, respectively.

Receiver Operating Characteristic (ROC) Curve.  ROC curves were obtained from the Y-predicted val-
ues to evaluate the predicative ability of OPLS-DA models. AUC was computed using the performance curve 
algorithm from SPSS 18.0 (SPSS Inc., Chicago, IL, USA).

GC-FID/MS analysis of tissue fatty acid composition.  Tissue fatty acids were measured using a pre-
viously reported method60 with some minor modifications. Each 15 mg tissue sample was homogenized indi-
vidually in cold methanol using a TissueLyser (20 Hz, 90 s). After acetylchloride catalyzed methylation60, methyl 
esters of all fatty acids were separated, identified and quantified on a Shimadzu GCMS-QP2010Plus spectrometer 
(Shimadzu Scientific Instruments, USA) equipped with a GC system, a mass spectrometer with an EI source and 
a flame ionization detector (FID). An Agilent DB-225 capillary GC column (10 m, 0.1 mm ID, 0.1 μ m film thick-
ness) was employed with helium gas as carrier and makeup gas. Sample injection volume was 1 μ L with a splitter 
(1:60). The GC and detection parameters were set as previously reported60. Methylated fatty acids were identified 
by comparing with a mixture of known standards and confirmed with their mass spectral data from standard 
libraries. The results were expressed as μ mol fatty acids per gram tissue.
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