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Novel quantum description 
for nonadiabatic evolution of 
light wave propagation in time-
dependent linear media
Halim Lakehal1, Mustapha Maamache1 & Jeong Ryeol Choi2

A simple elegant expression of nonadiabatic light wave evolution is necessary in order to have a deeper 
insight for complicated optical phenomena in light science as well as in everyday life. Light wave 
propagation in linear media which have time-dependent electromagnetic parameters is investigated by 
utilizing a quadratic invariant of the system. The time behavior of the nonadiabatic geometric phase of 
the waves that yield a cyclic nonadiabatic evolution is analyzed in detail. Various quantum properties 
of light waves in this situation, such as variances of electric and magnetic fields, uncertainty product, 
coherent and squeezed states, and their classical limits, are developed. For better understanding of our 
research, we applied our analysis in a particular case. The variances of the fields D and B are illustrated 
and their time behaviors are addressed. Equivalent results for the corresponding classical systems are 
deduced from the study of the time evolution of the appropriate coherent and squeezed states.

If electromagnetic parameters of the media, such as permittivity, magnetic permeability, and conductivity, change 
as time goes by, the media are classified as time-dependent media. Recently, great attention has been paid to 
achieving the accurate and efficient description for light wave propagation in time-dependent linear and ran-
dom media; this is partly due to the concern to quantum optics processes in modern optical materials such as 
optical fibers1–9. The light waves in such media are described by a time-dependent Hamiltonian on account of 
the time-dependence of parameters. It is interesting to note that, even if the time-dependence of parameters 
disappears, the Hamiltonian of an electromagnetic field is time-dependent as long as the conductivity exists7,10.

There exist generally accepted approaches for developing the quantum theory of light waves of which the 
corresponding Hamiltonian is explicitly time-dependent. Some of us8,9, studied the geometric phase of quantized 
light waves in time-dependent linear media, where the parameters of the system undergo adiabatic change. They 
considered the eigenstates of a time-dependent Hamiltonian in order to derive the adiabatic geometric phase 
change under the assumption that the parameters of the system vary sufficiently slowly with time. Their research 
is principally based on Berry’s report appearing in his classic paper11, which states that the wave function acquires 
a geometric phase (now known as Berry’s phase) in addition to the usual dynamical phase when a physical system 
evolves in a cyclic and adiabatic fashion.

In contrast to the adiabatic process of phase change treated in the previous works8,9, we, in this paper, investi-
gate the dynamical properties of nonadiabatic geometric phase accumulated by a somewhat fast change of con-
trol parameters of the medium for a light wave propagating in time-dependent linear media. For this reason, we 
introduce a quadratic invariant of Lewis and Riesenfeld12 and consider the eigenstates of this invariant (instead 
of those of the Hamiltonian) in order to study the features of the geometric phase. Then the quantum description 
of electromagnetic field whose Hamiltonian is time-dependent can be achieved on a fundamental level by taking 
advantage of the invariant formulation of quantum electrodynamics.

The importance of Berry’s finding of the geometric phase and its impact on various areas of physics have 
naturally led to arousing the interest in the generalizations of geometric phases. One of the most significant 
contributions in this direction is the nonadiabatic generalization of Berry’s phase firstly fulfilled by Aharonov 
and Anandan13. This generalization employs a geometric picture of quantum dynamics and shows that 

1Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des Sciences, Université Ferhat Abbas Sétif 1, 
Sétif 19000, Algeria. 2Department of Radiologic Technology, Daegu Health College, Buk-gu, Daegu 41453, Republic 
of Korea. Correspondence and requests for materials should be addressed to J.R.C. (email: choiardor@hanmail.net)

received: 05 October 2015

accepted: 17 December 2015

Published: 05 February 2016

OPEN

mailto:choiardor@hanmail.net


www.nature.com/scientificreports/

2Scientific Reports | 6:19860 | DOI: 10.1038/srep19860

the nonadiabatic geometric phase can be defined for any closed curve in the space of (pure) quantum states. 
Perhaps one of the most important research studies connected to these is the classic seminal paper of Lewis and 
Riesenfeld12 on dynamical invariants. The correspondence of Berry’s phase and Lewis’s phase has been pointed 
out by Morales14. The classical counterpart of Aharonov-Anandan quantum geometric phase is the nonadi-
abatic Hannay angle15,16. Since the invariant action proposed by Lewis12 exists independently of whether the 
Hamiltonian is changed slowly or not, the geometric angle can be defined on constant-action tori for a cyclic 
evolution, independently of whether the evolution is adiabatic or not. The appropriate interpretation of the angle 
obtained in this way is the classical counterpart (Hannay angle) of the geometric phase of the Aharonov and 
Anandan13. For light waves described by the generalized harmonic oscillator, the adiabatic-approximation-results 
can be obtained from an asymptotic theory of nonadiabatic process.

To investigate the problem of the nonadiabatic geometric phase for quantized light waves propagating through 
homogeneous conducting linear media, we use Coulomb’s gauge and assume that the medium has no free charge 
for simplicity. We reduce the problem to that of a generalized time-dependent harmonic oscillator Hamiltonian 
and we examine the geometric character of light waves with the help of the dynamical invariant. From Maxwell’s 
equations, we obtain the classical Hamiltonian for the light waves propagating through homogeneous conducting 
linear media without charge density and we survey the basic results of the dynamical invariants and their rela-
tionship with geometric angles. In particular, the expression of electromagnetic fields in terms of the nonadiabatic 
geometric angle will be derived. We will address the characteristics of the geometrically equivalent quantum sys-
tems and, through a construction of annihilation and creation operators, we will investigate the quantum prop-
erties of light in time-dependent linear media. The coherent and squeezed states of the generally described light 
wave will be investigated and the adiabatic limit of our results will be compared to the previously known ones.

Materials and Methods
In this section, we investigate the nonadiabatic geometric phase of light waves in time-dependent linear media 
using invariant theory developed for time-dependent Hamiltonian systems. Since the Hamiltonian is noncon-
servative in this situation, the invariant related approach for the geometric phase is useful now.

In time-dependent linear media, the relations between fields and current are given by

ε µ σ= ( ) , = ( ) , = ( ) , ( )t t tD E B H J E 1

where ε( )t , µ( )t , and σ ( )t  are time-dependent electric permittivity, magnetic permeability, and conductivity, 
respectively. Due to the time-dependence of the parameters, the speed of a light wave varies with time and is given 
by µ ε( ) = ( ) ( ) − /c t t t[ ] 1 2. In the Coulomb gauge, Maxwell’s equations in time-dependent linear media give a 
damped wave equation for the vector potential such that4,8 µ ε σ εµ∇ − ( + )∂ /∂ − ∂ /∂ = . t tA A A 02 2 2  To sep-
arate ( , )tA r  into mode function ( )u rl  and time function ( )T tl , we put
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where σ ε( ) = Ω ( ) − Λ ( ) − ( )/ ( )


W t t t t t[2 ]l l
2 2 2 , Ω ( )tl  is a time-dependent natural frequency, = ( )c c 00 , and 

ω = Ω ( )0l l . From the fact that the wave number ω(= = / )k ckl l l 0  does not vary with time, we have 
ωΩ ( ) = ( ) /t c t cl l 0.

The mode function is determined by geometry and boundary conditions. For instance, the mode function for 
a light wave traveling under periodic boundary condition is given by ( ) = /ν ν

± ⋅ˆ e Vu rl l
ik rl  where V is the vol-

ume of a sector and νˆl  ν( = , )1 2  are unit vectors that indicate the direction of the polarization for the electro-
magnetic field.

Considering Eq. (3), we can easily show from Hamilton’s equations that ( )q tl  is described by a classical gener-
alized harmonic oscillator (GHO) Hamiltonian of the form8

ε
ε( , , ) =

( )
+ Λ( ) + ( )Ω ( ) ,
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H q p t
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t p q t t q
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1
2 4l l l

l
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where pl is the canonical conjugate variable of ql. By summing all of the Hamiltonian associated to each mode 
function, we have the total Hamiltonian = ∑H Hl l. Because the scalar potential disappears in charge free space, 
the electric and the magnetic fields are represented only in terms of the vector potential such that

= −
∂
∂
, = ∇ × . ( )t

E A B A 5

Using the first relation in the above equation along with Eqs. (2) and (4), we see that the electric field can be rep-
resented in the form
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Let us recall that the general method to introduce geometric angles related to invariants is valid regardless of 
whatever form of the time dependence for the parameters16. For a system specified by a time-dependent 
Hamiltonian ( )H tl , a nontrivial invariant ( )I tl  obeys the equation ∂ /∂ + , = .I t I H{ } 0l l l PB

 A remarkable prop-
erty of this Hamiltonian system is that any initial tori in phase space, which are surfaces of constant action 
( , , )I q p 0l l l  parameterized by the angle θ ( , , )q p 0l l l  at initial time t0, evolve into the tori identified with 

constant- ( , , )I q p tl l l  surfaces, according to a flow produced by the Hamiltonian ( , , )H q p tl l l . θ∆ l is the angle by 
which any phase point on the torus is shifted at time t from its value at =t 0.

It follows from the Hamilton’s equations that the rate of change of the angle of a phase point is determined 
from the sum of contributions produced by its motion in phase space and by the changing coordinates θ( , )I l l :
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where θ θ θ( , , ) = ( ( , , ), ( , , ), )H I t H q I t p I t tl l l l l l l l l l . By integrating Eq. (7), we obtain θ∆ l , which does not 
depend on θl; however, the sum in each term does depend on θl. These dependences can be eliminated by averag-
ing over each contour of constant action, thus ∫ ∫θ∆ = ′ + ′,

θ θ∂ ( , , ′)
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l  where  denotes the 

average over θl at a fixed time. The first term is the dynamical angle θ∆ l
d and the second is the classical geometric 

angle θ∆ l
g .

For the GHO, exact calculations of a Hamiltonian-like quadratic invariant can be made and the explicit form 
of the resultant invariant and of the associated angle are found, for example, in refs 16–20. Such invariant is read 
as
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where ρ ( )tl  is a c-number solution of the auxiliary equation
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and performing some algebra for the angle with Eq. (7) leads to
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Then, the exact solution for ql is given by
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This oscillates in time with a time-dependent phase increment.

Results
Effects of Geometric Phase on Radiation Fields.  Now let us see the effects of the nonadiabatic geomet-
ric phase for the light wave propagating under a periodic boundary condition. If we replace the classical variables 
( , )q pl l  with operators ( , )ˆ ˆq pl l  where = − ∂/∂p̂ i ql l, it is possible to investigate this problem in view of quantum 
mechanics. Each mode of the electromagnetic field behaves like a time-dependent harmonic oscillator whose 
quantum features are clearly understood through the introduction of annihilation and creation operators associ-
ated with the invariant presented in the previous section. If we consider an annihilation operator and a creation 
operator that are given by
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the invariant, Eq. (8), reduces to a simple form:
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One can easily verify that ( )â tl  and ( )ˆ†a tl  satisfy the boson commutation relation ( ), ( ) =ˆ ˆ†a t a t[ ] 1l l . From the 
result of the direct differentiation of ( )â tl  with respect to time:
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we see that the time evolution of the annihilation operator is given by
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In terms of the canonical variable

ρ= ( + ), ( )
ˆ ˆ ˆ†q a a

2 17l l l l


obtained from the inverse representation of âl and ˆ†al  (given in Eqs. (12) and (13)), the vector potential given in 
Eq. (2) can be completely described as
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for the traveling light waves, where
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Then, from the basic relations given in Eq. (5) and the first term of Eq. (1), we see that the electric displacement 
and the magnetic field operators are represented in the form
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Due to the existence of the exponential factor ∫− Λ( ′) ′e t dtt
0  in these equations, both the electric and the magnetic 

fields decrease with time according to the electromagnetic energy dissipation produced by the conductivity σ ( )t  
in media. We can confirm from this that the time behavior of the amplitude of the fields are the same as that of the 
classical fields. Of course, similar behavior appears in the case of adiabatic change of geometric phase8,9. In the 
limit σ ( ) →t 0, the fields no longer dissipate with time as expected.

We are able to understand the geometric character of the light wave from the phase factor θ θ− (∆ +∆ )e i l
d

l
g

. As 
you can see, the light waves undergo geometric phase change θ∆ l

g  as well as familiar change of dynamical phase, 
θ∆ l

d. The interference fringe, produced when two or more light waves with different modes meet from different 
paths, would be altered more or less by the existence of the geometric phase. This concept is important for accu-
rate prediction of interference pattern in interferometers.

Adiabatic Limit: Phase Splitting into Dynamical and Geometrical Parts.  One can find the adiaba-
tic limit of the expressions presented up to now by using the following argument. In the adiabatic regime, the 
differentiation of ρl with respect to time induces a multiplication by a small adiabatic parameter , i.e., ρ


~l . 

Thus, concerning the expression of the invariant given in Eq. (8), one can neglect the term involving ρ
 l and 

replace ρ ( )tl
2  in the remaining ones by the zeroth-order solution of Eq. (9) with respect to ; that is, ερ ϖ( ) = −tl l0

2 1 
where ϖ = Ω ( ) − Λtl l

2 2 . One finds the adiabatic invariant of the generalized harmonic oscillator (GHO):
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In the same way, for the phase, one can replace ερ ( )
−

t[ ]l
2 1 on the rhs of Eq. (10) by the approximate solution of Eq. 

(9), ερ ϖ σ εϖ( ) = − /( )
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2 1 , which is valid up to the first order in ; one then recovers the well known 
relation8
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The time derivative of the angle, θ ( ) tl , consists of two parts. The first one, θ ϖ= l l, which exists even for a system 
with fixed parameters, corresponds to the so-called dynamical component of the angle, while the second one, 
θ σ εϖ= − /( )


4l

H
l  is the (time derivative of the) geometrical Hannay’s phase.

For dielectric materials σ( ( ) = )t 0 , the geometric phase vanishes. Therefore, we see that the geometric prop-
erties of E and B fields vary depending on the characteristics of the medium. Moreover, the geometric phase 
appears when the medium becomes a conducting one with a slowly time-dependent conductivity while the elec-
tric permittivity is finite.

Classical Limit: Coherent and Squeezed States for the Generalized GHO Model.  The classical 
counterparts of the results developed up to now, i.e., the identity of the phase properties for the classical GHO 
and the expression of the classical GHO invariant (which is a generalized one of the results of refs 8,9 established 
under the restrictive adiabatic hypothesis), can be derived from classical limit of the quantum analysis. Indeed, 
the classical invariant and angle variables can be obtained by utilizing the quantum evolution of coherent states 
and squeezed states21,22. These states play the same role as the ordinary coherent states in the harmonic oscillator 
when considering the quantum-classical correspondence23,24.

The coherent state is an eigenstate of the annihilation operator âl:
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ρ
ρ ρ ερ ρ ρ ερ= − (Λ − ) + + (Λ − ) − .

( )
 

ˆ ˆ ˆ†p i a i a
2

{[ ] [ ] }
26

l
l

l l l l l l l l2

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These quantities oscillate like those in the classical states. Indeed, coherent state is very much the same as classical 
state so far as the quantum mechanics allows. Like the quantum case, the phase of oscillation is governed by the 
time-dependent factor ∫ ε ρ/ ( ′) ( ′) ′t t dt1 [ ]t

l0
2  that apparently involves the nonadiabatic part of the geometric 

phase.
The variances of q̂l and p̂l are
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By multiplying the above two equations, we have the corresponding uncertainty product as
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Now let us see the squeezed state. For this purpose, it is necessary to introduce an operator b̂l which is

µ ν= + , ( )ˆ ˆ ˆ †b a a 32l l l

where μ and ν are complex parameters that follow µ ν− = 12 2 . We can easily check that b̂l and its hermitian 
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†
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b b[ ] 1l l . If we represent the eigenvalue equation for b̂l in the form

β β β= , ( )b̂ 33l l l l

then βl  is the squeezed state. In general, the squeezed state is obtained by first squeezing the vacuum state and 
then displacing it25. The expectation value of canonical variables in the squeezed state, 

β
ql

 and 
β

pl
, are identical 

to those in the coherent state given in Eqs. (27) and (28). Hence, the corresponding characteristics of the geomet-
ric phase for the canonical variables are very much the same as those of the coherent state.

However, the variances are different and their straightforward evaluations yield

ρ ν µν µ ν(∆ ) = ( + − − ), ( )β
⁎ ⁎q

2
1 2 34l l

2 2 2


ρ

ρ ρ ε ρ ν µν ρ ρ ερ

µ ν ρ ρ ερ

(∆ ) = (Λ − ) + ( + ) − (Λ − ) +

− (Λ − ) − . ( )

β
 



⁎ ⁎

p i

i

2
{[ 1] 2 1 [ ]

[ ] } 35

l
l

l l l l l l

l l l

2
2

2 2 2 2 2

2

It is well known that one can make the size of (∆ )
β

ql
2  sufficiently small at the expense of a relative increase of the 

value (∆ )
β

pl
2  or vice versa. Consequently, the uncertainty product is

 ν µν µ ν

ρ ρ ε ρ ν

µν ρ ρ ερ µ ν ρ ρ ερ

∆ ∆ = + − −

× Λ − + +

− Λ − + − Λ − − .

β β



 

⁎ ⁎

⁎ ⁎

q p

i i

( ) ( ) 4 (1 2 )

{[( ) 1](2 1)

[( ) ] [( ) ] } (36)

l l

l l l

l l l l l l

2 2
2

2

2 2 2 2

2 2

For μ =  1 and v =  0, the above equation reduces to that of the coherent state presented in Eq. (31).

Behavior of Fields in the Coherent State.  It is very interesting to analyze the expectation values and 
variances of the field operators in the coherent state. Using Eqs. (18)–(21), we derive the expectation values of 
lth-mode field operators:

∫ ρ α θ( , ) = Θ ( , ) − ( ) ,
( )α

− Λ( ′) ′
,A t

V
e tr r2 cos[ 0 ] 37l

t dt
l l l l0

t

0


∫ ρ α Λ
ρ

ρ
θ

ερ
θ

( , ) =












−






Θ ( , ) − ( )

− Θ ( , ) − ( )







,

( )

α
Λ− ( ′) ′

,


D t
V

e t

t

r r

r

2 cos[ 0 ]

1 sin[ 0 ]
38

l
t dt

l l
l

l
l l

l
l l

0

2

t

0


 ∫ ρ α θ( , ) = − Θ ( , ) − ( ) ,
( )α

− Λ( ′) ′
,B t

V
e tr k r2 sin[ 0 ] 39l

t dt
l l l l l0

t

0

Notice that these expectation values in the coherent state oscillate sinusoidally according to the increment of 
phase angle Θ ( , )trl . The amplitudes of such oscillations decrease with time on account of the presence of the 
time-dependent phase ∫− Λ( ′) ′e t dtt

0 .
Further, we can derive the variances of the field operators by means of methods similar to those of the previous 

evaluations for canonical variables:

 ∫ ρ∆ ( , ) = ( ), ( )α
− Λ( ′) ′A t

V
e tr[ ]

2 40l
t dt

l
2 2 2

t

0
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∫
ρ

ρ ρ ε ρ∆ ( , ) =
( )

+ Λ( ) ( ) − ( ) ( ) ( ) ,
( )

α
− Λ( ′) ′


D t

V
e

t
t t t t tr[ ]

2
1 {1 [ ] }

41
l

t dt

l
l l l

2 2
2

2 2 2
t

0


 ∫ ρ∆ ( , ) = ( ). ( )α
− Λ( ′) ′B t

V
e tr k[ ]

2 42l
t dt

l l
2 2 2 2

t

0

Considering the exponential term ∫− Λ( ′) ′e t dt2 t
0 , we can see that these variances also decrease with time.

For better understanding of the characteristics of light wave propagations developed here, let us consider for 
a particular case that ε( )t  is given by

ε ε( ) = ( + ), ( )−t b e1 43b t
0 1

2

where b1 and b2 are real constants with the condition that b 11 . We further assume that μ and σ are real con-
stants: µ µ( ) =t 0 and σ σ( ) =t 0. Then, it is possible to approximate

µ ε
( )




−



, ( )

−
c t b e1 1

2 44
b t

0 0

1 2

µ ε
( ) ( − ),

( )
−

c t b e1 1
45

b t2

0 0
1

2

ε
ε
( )
( )

− .
( )

−�
�

t
t

b b e
46

b t
1 2

2

In this case, the equation for ( )q t  given in Eq. (3) becomes

∂ ( )

∂
−

∂ ( )

∂
+ − ( ) = , ( )

− −q t
t

b b e
q t

t
b F e G q t[ ] 0 47

l b t l
l

b t
l l

2

2 1 2 1
2 2

where

σ
ε

ω
µ ε

σ
ε

ω
µ ε

= − , = − .
( )

F
c

G
c2 4 48

l
l

l
l0

2

0
2

2

0
2

0 0

0
2

0
2

2

0
2

0 0

For convenience we consider only the case where Fl  and Gl  are positive which corresponds to the case 
σ ω ε µ> /( )c4 l0

2 2
0 0

2
0 . Then, through the transformation τ = −b e b t

1
2 , Eq. (47) becomes

τ

τ
τ
τ

τ

τ τ τ
τ

∂ ( )

∂
+
+ ∂ ( )

∂
+




−



 ( ) = .

( )

q q
b

F G q1 1 0
49

l l l l
l

2

2
2
2 2

If we consider long time behavior ( t 1, τ ) 1 , we easily have τ τ τ( + )/ /1 1 . Then, the solution of  
Eq. (49) in this approximation is given by

τ
τ τ

( ) =










+


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






,

( )
ν νq C J

F
b

C N
F

b
2 2

50l
l l

1
2

2
2

where νJ  and νN  are Bessel functions of the first and the second kinds, respectively, while ν = /G b2 l 2. This 
equation can be rewritten in terms of t as

( ) =











+












.

( )
ν ν

− / − /q t C J
F b
b

e C N
F b
b

e
2 2

51
l

l b t l b t
1

1

2

2
2

1

2

22 2

Although we have considered the long time behavior of the system in this approximated evaluation, the solution 
Eq. (51) can also be a good result for any initial time because of the obvious relation τ ≈ b 1 which is generally 
valid for small t.

The solution of Eq. (9) can be represented in terms of the two linearly independent solutions of Eq. (3), i.e., in 
terms of νJ  and νN  given in Eq. (51) 26, such that

ρ ρ( ) =



















+




















,
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ν ν

− / − /

/

t J
F b
b

e N
F b
b

e
2 2

52
l l

l b t l b t0 2 1
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2 2 1

2

2

1 2

2 2

where ρl
0 is a constant.
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The time evolutions of ∆ ( , ) αD tr[ ]l  and ∆ ( , ) αB tr[ ]l  given in Eqs. (41) and (42) are plotted in Figs. 1 and 2 
respectively for this particular case. When we drew these figures, the following integral relation is used for evalu-
ating detailed numerical results:

∫
σ
ε

Λ( ′) ′ =




 − ( − )





. ( )

−t dt t b
b

e
2

1
53

t b t

0
0

0

1

2

2

From these figures, we see that both ∆ ( , ) αD tr[ ]l  and ∆ ( , ) αB tr[ ]l  decrease with time as previously predicted. The 
amplitude of electric and magnetic fields and their variances gradually disappear because the conductivity plays 
the role of a dissipation factor.

Discussion
Starting from the basic Maxwell’s equations, the GHO model of quantized light wave in time-dependent linear 
media was investigated with emphasis on its nonadiabatic evolution and accompanying properties of geometric 
phase. For convenience, we have considered charge free space and took advantage of the Coulomb gauge. Various 
quantum properties associated with light wave propagation in such situations and their adiabatic and classical 
limits were analyzed.

The vector potential ( , )tA r  was separated into position function ( )u rl  and time function ( )q tl  as shown in  
Eq. (2). In terms of ( )q tl  and its conjugate variable ( )p tl , the time-dependent Hamiltonian of the system was con-

Figure 1.  Time evolution of [ΔDl(r, t)]α given in Eq. (41) where ε(t) is given by Eq. (43) and μ and σ are 
constants [μ(t) =  μ0, σ(t) =  σ0]. Several values of σ0 are taken as indicated in the figure. All other values are 
common and given by = 1 , ω = 1l , ε = .0 20 , µ = 10 , = .b 0 11 , =b 12 , =V 1, and ρ = 1l

0 . All values are taken 
to be dimensionless for the sake of convenience. This convention will also be used in the subsequent figure.

Figure 2.  Time evolution of [ΔBl(r, t)]α given in Eq. (42) with the same choice of time functions ε(t), μ(t) 
and σ(t) as those of Fig. 1 for several different values of σ0. The values of σ0 for each graph are the same as 
those of Fig. 1. All other values and conventions are also identical to those of Fig. 1.
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structed. To derive quantum solutions of the system, a Hamiltonian-like quadratic invariant was introduced. We 
can see from Eq. (14) that this invariant is represented as a simple form in terms of the annihilation and the crea-
tion operators. If we consider Eq. (16), the absolute value of the annihilation operator does not vary with time 
even if ( )â tl  is an explicit function of time. With the use of the annihilation and the creation operators, full expres-
sions of the field operators ( , )tD r  and ( , )tB r  are derived and presented in Eqs. (20) and (21), respectively.

The expectation values of q̂l and p̂l and their variances in the coherent and the squeezed states have been inves-
tigated. In the limit µ = 1 and ν = 0, the corresponding uncertainty product in the squeezed state reduces to that 
of the coherent state. The expectation values of the field operators ( , )D trl  and ( , )B trl  have also been derived. We 
have confirmed that such expectation values in the coherent state oscillate sinusoidally according to the incre-
ment of phase angle Θ ( , )trl . This time behavior is exactly the same as that of the classical fields. Not only the field 
operators but also their variances decrease with time due to the existence of the conductivity. This analysis agrees 
with the characteristics of classical fields.

We have studied the effects of time-varying parameters of the medium in nonadiabatic evolution of the 
geometric phase of a light wave. The geometric phase exhibits gauge structure relevant to a phase shift in nonadi-
abatic processes. There appears a classical analogue of this phase, which is the Hannay angle that can be formu-
lated using the theory of action variable in the canonical structure of light wave phenomena. The adiabatic limit 
of the phase factor was investigated and it is shown in this limit that the angle θl exactly recovers Eq. (23), where 
the first term is an ordinary dynamical component of the angle and the second one is the geometrical Hannay 
angle. We can see from the second term that the geometric phase change takes place when the conductivity varies 
slowly with time.

Finally, we note that there are several potential scientific applications of the results of this work, relevant to 
nonadiabatic geometric phase. One is a technique for quantum computation that can be carried out by using 
superconducting nanocircuits27 or nuclear magnetic resonance (NMR)28. For instance, a method to imple-
ment the Deutsch-Jozsa algorithm and Grover’s search algorithm using the nonadiabatic geometric phase in a 
two-qubit system has been suggested28. Our results can also be applied to the problem of shortcuts to adiabatic-
ity29 that are introduced for speeding up quantum adiabatic processes. If we consider the fact that adiabatic pro-
cesses are ubiquitous, the theory of shortcuts to adiabaticity can be employed to various fields in physics relevant 
to dynamical systems, ranging from the population inversion in two-level quantum systems30 to the trapping and 
control of Bose gases31. Another branch applicable to this work is to investigate the characteristics of quantized 
light waves in oscillating turbulent plasma, which is important for diagnosing and controlling the plasma state in 
a tokamak where nuclear fusion takes place32.

References
1.	 Choi, J. R. & Yeon, K. H. Quantum properties of light in linear media with time-dependent parameters by Lewis-Riesenfeld invariant 

operator method. Int. J. Mod. Phys. B 19, 2213–2224 (2005).
2.	 Choi, J. R. Coherent and squeezed states of light in linear media with time-dependent parameters by Lewis-Riesenfeld invariant 

operator method. J. Phys. B: At. Mol. Opt. Phys. 39, 669–684 (2006).
3.	 Cirone, M., Rzążewski, K. & Mostowski, J. Photon generation by time-dependent dielectric A soluble model. Phys. Rev. A 55, 62–66 

(1997).
4.	 Pedrosa, I. A. & Rosas, A. Electromagnetic field quantization in time-dependent linear media. Phys. Rev. Lett. 103, 010402 (2009).
5.	 Choi, J. R., Kim, D., Chaabi, N., Maamache, M. & Menouar, S. Zero-point fluctuations of quantized electromagnetic fields in time-

varying linear media. J. Korean Phys. Soc. 56, 775–781 (2010).
6.	 Cirone, M. A. & Rzążewski, K. Electromagnetic radiation in a cavity with a time-dependent mirror. Phys. Rev. A 60, 886–892 (1999).
7.	 Choi, J. R. Invariant operator theory for the single-photon energy in time-varying media. Chinese Phys. B 19, 010306 (2010).
8.	 Maamache, M., Chaabi, N. & Choi, J. R. Geometric phase of quantized electromagnetic field in time-dependent linear media. 

Europhys. Lett. 89, 40009 (2010).
9.	 Maamache, M., Chaabi, N. & Choi, J. R. Geometric phase of quantized electromagnetic field in time-dependent linear media 

(Erratum). Europhys. Lett. 90, 59901 (2010).
10.	 Choi, J. R. The decay properties of a single-photon in linear media. Chinese J. Phys. 41, 257–266 (2003).
11.	 Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. Roy. Soc. London A 392, 45–57 (1984).
12.	 Lewis, H. R. Jr. & Reisenfeld, W. B. An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in 

a time-dependent electromagnetic field. J. Math. Phys. 10, 1458–1473 (1969).
13.	 Aharonov, Y. & Anandan, J. Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987).
14.	 Morales, D. A. Correspondence between Berry’s and Lewis’s phase for quadratic Hamiltonians. J. Phys. A: Math. Gen. 21, L889–L892 

(1988).
15.	 Berry, M. V. & Hannay, J. H. Classical non-adiabatic angles. J. Phys. A: Math. Gen. 21, L325–L331 (1988).
16.	 Bhattacharjee, A. & Sen, T. Geometric angles in cyclic evolutions of a classical system. Phys. Rev. A 38, 4389–4394 (1988).
17.	 Gao, X., Xu, J. B. & Qian, T. Z. The exact solution for the generalized time-dependent harmonic oscillator and its adiabatic limit. 

Ann. Phys. (N.Y.) 204, 235–243 (1990).
18.	 Maamache, M., Provost, J. P. & Vallée, G. Unitary equivalence and phase properties of the quantum parametric and generalized 

harmonic oscillators. Phys. Rev. A 59, 1777–1780 (1999).
19.	 Maamache, M. & Saadi, Y. Adiabatic theorem and generalized geometrical phase in the case of continuous spectra. Phys. Rev. Lett. 

101, 150407 (2008).
20.	 Maamache, M. & Saadi, Y. Quantal phase factors accompanying adiabatic changes in the case of continuous spectra. Phys. Rev. A 78, 

052109 (2008).
21.	 Pedrosa, I. A. Comment on “Coherent states for the time-dependent harmonic oscillator”. Phys. Rev. D 36, 1279–1280 (1987).
22.	 Yuen, H. P. Two-photon coherent states of the radiation field. Phys. Rev. A 13, 2226–2243 (1976).
23.	 Maamache, M., Provost, J. P. & Vallée, G. Berry’s phase, Hannay’s angle and coherent states. J. Phys. A: Math. Gen. 23, 5765–5776 

(1990).
24.	 Maamache, M., Provost, J. P. & Vallée, G. A unified approach to the classical and quantum adiabatic theorems. Eur. J. Phys. 15, 

121–125 (1994).
25.	 Vogel, W. & Welsch, D.-G. Lectures on Quantum Optics pp. 74–78 (Berlin, Akademie Verlag, 1994).
26.	 Song, D. Y. Geometric phase, Hannay’s angle, and an exact action variable. Phys. Rev. Lett. 85, 1141–1145 (2000).



www.nature.com/scientificreports/

1 0Scientific Reports | 6:19860 | DOI: 10.1038/srep19860

27.	 Zhu, S.-L. & Wang, Z. D. Geometric phase shift in quantum computation using superconducting nanocircuits: Nonadiabatic effects. 
Phys. Rev. A 66, 042322 (2002).

28.	 Das, R., Kumar, S. K. K. & Kumar, A. Use of non-adiabatic geometric phase for quantum computing by NMR. J. Magn. Reson. 177, 
318–328 (2005).

29.	 Torrontegui, E. et al. Shortcuts to adiabaticity. Adv. Atom. Mol. Opt. Phys. 62, 117–169 (2013).
30.	 Ruschhaupt, A., Chen, X., Alonso, D. & Muga, J. G. Optimally robust shortcuts to population inversion in two-level quantum 

systems. New J. Phys. 14, 093040 (2012).
31.	 Rohringer, W. et al. Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas. Sci. Rep. 5, 9820 

(2015).
32.	 Choi, J. R. A novel method for analyzing complicated quantum behaviors of light waves in oscillating turbulent plasma. Sci. Rep. 4, 

6880 (2014).

Acknowledgements
This research was supported by the Basic Science Research Program of the year 2015 through the 
National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No.: NRF-
2013R1A1A2062907).

Author Contributions
The study was conceived and schemed by M.M. The mathematical evaluations in the text were performed by H.L., 
M.M. and J.R.C. The paper was written by H.L. and M.M. and the final correction of the paper was done by J.R.C. 
The figures were plotted by J.R.C.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Lakehal, H. et al. Novel quantum description for nonadiabatic evolution of light wave 
propagation in time-dependent linear media. Sci. Rep. 6, 19860; doi: 10.1038/srep19860 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Novel quantum description for nonadiabatic evolution of light wave propagation in time-dependent linear media
	Introduction
	Materials and Methods
	Results
	Effects of Geometric Phase on Radiation Fields
	Adiabatic Limit: Phase Splitting into Dynamical and Geometrical Parts
	Classical Limit: Coherent and Squeezed States for the Generalized GHO Model
	Behavior of Fields in the Coherent State

	Discussion
	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Novel quantum description for nonadiabatic evolution of light wave propagation in time-dependent linear media
            
         
          
             
                srep ,  (2015). doi:10.1038/srep19860
            
         
          
             
                Halim Lakehal
                Mustapha Maamache
                Jeong Ryeol Choi
            
         
          doi:10.1038/srep19860
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep19860
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep19860
            
         
      
       
          
          
          
             
                doi:10.1038/srep19860
            
         
          
             
                srep ,  (2015). doi:10.1038/srep19860
            
         
          
          
      
       
       
          True
      
   




