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Early recurrence and ongoing 
parietal driving during elementary 
visual processing
Gijs Plomp1,2, Alexis Hervais-Adelman3, Laura Astolfi4 & Christoph M. Michel1

Visual stimuli quickly activate a broad network of brain areas that often show reciprocal structural 
connections between them. Activity at short latencies (<100 ms) is thought to represent a feed-forward 
activation of widespread cortical areas, but fast activation combined with reciprocal connectivity 
between areas in principle allows for two-way, recurrent interactions to occur at short latencies after 
stimulus onset. Here we combined EEG source-imaging and Granger-causal modeling with high 
temporal resolution to investigate whether recurrent and top-down interactions between visual and 
attentional brain areas can be identified and distinguished at short latencies in humans. We investigated 
the directed interactions between widespread occipital, parietal and frontal areas that we localized 
within participants using fMRI. The connectivity results showed two-way interactions between area 
MT and V1 already at short latencies. In addition, the results suggested a large role for lateral parietal 
cortex in coordinating visual activity that may be understood as an ongoing top-down allocation of 
attentional resources. Our results support the notion that indirect pathways allow early, evoked driving 
from MT to V1 to highlight spatial locations of motion transients, while influence from parietal areas is 
continuously exerted around stimulus onset, presumably reflecting task-related attentional processes.

Visual cortex consists of numerous hierarchically organized areas that form a densely connected network. 
Anatomical projections between these areas are often reciprocal: when a lower-level area projects to a higher-level 
one, a projection back to the lower-level area often exists1,2. Such reciprocal connectivity allows not only for 
bottom-up influence from lower- to higher-level areas in visual processing, but also for fast feedback from higher 
to lower ones.

Quickly after stimulus onset, visual activity propagates from primary visual cortex (V1) to widespread occipital, 
parietal and frontal areas, like the frontal eye fields (FEF)3–5. The first evoked activity recorded with EEG at the scalp 
is the C1 component, starting from around 50 ms after stimulus onset and peaking between 80 and 90 ms6. The 
C1 component reflects V1 activity but also activity in widely distributed regions situated in the occipital, parietal 
and frontal lobes5,7. Stimulus-evoked activity at latencies before 100 ms is traditionally considered a bottom-up 
process8. Even at these short latencies, however, there is mounting evidence of fast recurrent interactions between 
visual areas, obtained from direct recordings of neural activity in animal models9–12.

In addition to recurrent processing between visual areas, the parietal cortex and FEF are known to exert 
top-down influences that help flexibly adapt behavior to changing task demands and context10,13–15. Top-down 
interactions reflect task-specific processing of stimuli which is thought to typically arise at longer latencies after 
stimulus onset. At latencies between 100 and 200 ms more complex object processing occurs in the lateral occipital 
complex (LOC) which involves both recurrent processes and top-down interactions16–19. In surface EEG, this object 
processing is reflected by a posterior negativity, the N1 component.

Effects of top-down influence on visual processing are well-documented by experiments in which participants 
view identical stimuli under changing task demands. Activity in motion- and color-sensitive areas like MT and V4 
depends on whether participants attend to stimulus motion or color, at latencies as early as 100 ms after stimulus 
onset20–22. Paying attention to motion increases activity throughout a network of areas involved in motion pro-
cessing23. The effects of such top-down influence are not restricted to higher-level visual areas, attention can also 
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affect activity in lower-level areas, including V1 around the C1 latency24–26. Even prior to stimulus onset a network 
of frontal and parietal areas is involved in switching between task demands27.

Top-down influence has thus been well studied by manipulating task-demands, but it is less clear what directed 
interactions from higher level areas take place in the absence of explicit, stimulus-related task demands in early 
visual processing. Here we use EEG and electrical source imaging to investigate the dynamics of recurrent inter-
actions between visual areas and of top-down influence from attentional areas in human observers. We presented 
task-irrelevant checkerboards in the lower left or right visual field, which elicit well-characterized activation pat-
terns in the EEG that can be accurately localized using EEG source imaging5,7,28.

To investigate the dynamics of two-way interactions in visual processing, directed connectivity measures with 
high temporal resolution are needed. Granger-causal modeling is an established statistical method to estimate the 
strength of directed interactions between brain areas29,30. Granger-causal methods quantify how well activity in 
one measured signal predicts future activity in the other measured signals. These methods can correctly identify 
the directed connectivity in model data and synthetic EEG signals31–34 and has found ample application in EEG 
recorded from humans35–38. We have recently validated a Granger-causal modeling approach based on multivar-
iate autoregressive modeling that has high temporal resolution, spectrally weighted Partial Directed Coherence: 
(wPDC)39.

We hypothesized that by combining EEG source imaging and Granger-causal modeling in human observers, 
feedback and top-down influence can be identified and distinguished at short latencies. We first localized a network 
of 12 ROIs in each observer that included areas in occipital, parietal and frontal cortex for each observer using fMRI. 
We then applied wPDC to time-series of estimated current densities obtained from separate EEG measurements to 
identify the major drivers at the C1 and N1 peak latencies and determine whether they selectively targeted other 
areas. The results showed the expected bottom-up driving in the first 100 ms (i.e. from V1 to higher-level areas like 
MT and LOC), but in addition, we found fast recurrent interactions between MT and V1 in response to stimulation 
and a large, ongoing influence from parietal cortex already around stimulus onset.

Results
EEG results. We briefly presented checkerboard stimuli in the lower left or right visual field while partici-
pants detected a color change at the center of the screen. Visual evoked potentials on the scalp time-locked to 
checkerboard onset showed typical C1 and N1 components over the hemisphere contralateral to checkerboard 
presentation, peaking at 76 and 146 ms after stimulus onset (Fig. 1).

Twelve ROIs were successfully identified for each individual participant using data recorded in a separate 
fMRI session. The ROI locations are illustrated in Fig. 2 and their coordinates in MNI space are listed in Table 1.

To obtain activity estimates for each ROI from the EEG signal we used a distributed linear inverse solution 
(WMN) based on individual headmodels, thus taking into account each participant’s unique anatomy in the forward 
model (for further details, see Methods below)40,41. To determine the frequencies at which stimulus-specific pro-
cessing was maximally present we subtracted for each ROI the normalized Power Spectral Density (PSD) response 
to checkerboards presented in the ipsilateral visual field from the PSD response to contralateral checkerboards.

The C1 component is to a large extent generated by activity in lower-level visual areas of the contralateral 
hemisphere5–7. PSD analysis of V1/V2 at the C1 peak latency (76 ms) showed more activity for contra- than ipsi-
lateral stimuli in the alpha (8–13 Hz, 95% CI 0.01–0.09, d =  0.13) and beta band (13–30 Hz; 95% CI 0.01–0.06, 
d =  0.24), see Fig. 3. We focused the subsequent connectivity analysis at the C1 latency on the beta band because 
of the larger effect, compared to the alpha band. Furthermore, the beta band effect peaked around the C1 latency 
(Fig. 3), whereas the alpha band effect peaked at longer latencies. The N1 component is typically generated by 
extra-striate areas, including the LOC5,42. PSD analysis of LOC at the N1 peak latency (146 ms) showed increased 
activity in the alpha band only (95% CI 0.01–0.11, d =  0.24).

Functional connectivity at the C1 latency, beta band.  To analyze the total influence from each ROI 
we summed its outgoing functional connectivity strengths (wPDC) to all other ROIs. This summed driving 
reflects the total influence of the ROI on the network at a given time and frequency. At the C1 peak latency, V1, 
MT and LOC showed larger summed driving in the beta band for contralateral than ipsilateral stimulation. This 
stimulus effect selectively occurred around the peak latency of summed driving from these areas, coinciding with 
the peak latency of the C1 component (Fig. 4a,b).

Overall, lateral intraparietal cortex (LIP) in both hemispheres showed the largest summed driving at the C1 
peak latency (Fig. 4b,c), and this driving was similar for contra- and ipsilateral stimuli.

We next analyzed whether the areas showing a stimulus effect showed specific driving toward other ROIs. We 
found that the main targets of contralateral V1 (cV1) were cLOC and cMT, in line with a feed-forward informa-
tion flow from V1 toward higher-level visual areas (Fig. 4c). The main targets of cMT were cLIP and cV1, while 
cLOC specifically targeted cFEF, but also iLIP and iV1. The influence from MT and LOC back to V1 indicates that 
feedback to primary areas already occurs at short latencies. The dynamics of the two-way cV1-cMT interaction is 
plotted in Fig. 4d, showing that both peak just before the peak of the C1 component.

Functional connectivity at the N1 latency, alpha band.  At the N1 peak latency stimulus effects were 
most pronounced in the alpha band (Fig. 3). Granger-causal modeling results in the alpha band showed signifi-
cantly larger driving from LOC and V1 for contralateral than ipsilateral stimuli (Fig. 5a,b) at this latency. Overall, 
bilateral LIP showed the largest summed driving at this latency. The LIP driving exceeded the driving from MT 
or FEF and did not show a stimulus effect. Figure 5c illustrates the 5% strongest directed connections at the N1 
latency, suggesting a dominant influence from LIP in visual processing around the N1 latency.

The main directions of influence from cV1, cLOC and cLIP are shown in Fig. 5d. The main target of cV1 was 
cLOC while the main targets of cLOC were contra-and ipsilateral FEF, iLIP and iV1. This connectivity from 
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stimulus-specific areas is summarized in Fig. 5e. The main targets of cLIP were cV1 and iFEF. Large driving to 
iLIP was also seen, in line with known structural connectivity between homologues.

Discussion
To study the dynamics of recurrent interactions and top-down influence in early visual processing of human observ-
ers we combined EEG source imaging and Granger-causal modeling in a network of twelve ROIs that included 
visual and attentional areas in occipital, parietal and frontal cortex. The directed functional connectivity results at 
the C1 peak latency showed a pattern of driving largely in line with feed-forward information flows from V1 and 
MT. However, recurrent driving from MT toward V1 was also observed at short latencies. In addition, the results 
suggest that LIP is an important network driver at both the C1 and N1 peak latencies, particularly in the alpha band.

Previous studies using directed functional connectivity measures have shown evidence for top-down inter-
actions in visual processing. Early PET and fMRI studies used structural equation modeling to show a role for 
directed interactions from lateral frontal areas in visual processing43,44. Simultaneous recordings from area MT and 
parietal areas in monkeys has shown that activity increases in parietal areas precede those in MT during top-down 
attention, suggesting that parietal areas drive the activity increases in MT45. Top-down influence from parietal 
cortex and FEF onto V4 was demonstrated in a spatial attention task with fMRI and Granger-causal modeling14. 
The directed connectivity between areas in the dorsal attention network has been shown to correlate with response 
times46. Granger-causal modeling has been applied to investigate object processing using limited number of ROIs 
and a non-time-varying approach across the evoked response37. This work showed two-way interactions between 
infero-temporal, parietal and frontal areas in object processing.

Figure 1. Paradigm and evoked response. (a) illustrates the stimulus presentation sequence. Checkerboards 
were presented for 200 ms in the lower left or right visual field while the task for participants was to maintain 
fixation on the center of the screen and respond when the fixation point changed to red (target). (b) shows the 
grand-average visual evoked response potential across 13 subjects. Each line reflects the average amplitude of 
one of the 204 electrodes used for analysis. (c) shows the topographic distributions across the scalp of visual 
evoked potentials at the C1 (76 ms) and N1 (146 ms) peak latency. Grand-average data projected onto the co-
registered electrode positions of one participant.
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These past studies, however, have been unable to provide a dynamic characterization of top-down influence 
because they used fMRI or PET recordings that have insufficient temporal resolution, or analyzed interactions 
across time. Here, we used Granger-causal modeling with high temporal resolution to investigate two-way inter-
actions in visual processing.

At the C1 latency, stimulus effects in the PSD were largest in the beta band, whereas at the N1 latency, stimulus 
effects appeared in the lower alpha band (Fig. 3). Activity in the alpha band is associated with thalamo-cortical 
loops and top-down interactions reflecting attention47,48. The functional significance of beta band activity in vision 
is less well understood, but is thought to reflect both local cortical activity and cortical feedback in large-scale 
networks48–51. Although functional differences between frequency bands were not the focus of our investigation, 
and we selected frequency bands for analysis in a data-driven way, our results are broadly in line with recent pro-
posals that top-down processing may occur at lower frequencies while feedback and recurrent processing occurs at 
higher frequencies51,52. In line with this, the driving from LIP was most pronounced in the alpha band and showed 
no bottom-up stimulus effects, while stimulus effects and recurrent processing were most pronounced in the beta 
band. Nevertheless, our data also showed stimulus-specific effects in the alpha band, even in V1/2 where there can 
only be feedforward driving. In addition, area MT exerted simultaneous bottom-up influence to LIP and top-down 
influence to V1 in the beta band, suggesting that in our data at least, frequency cannot be equated with function.

Connectivity results around the C1 latency showed larger summed driving from V1, MT and LOC for con-
tralateral stimuli. MT is activated quickly after stimulation, in line with known bottom-up spread of activity in the 
contralateral hemisphere. Activity in LOC can also occur at short latencies3,8,53. It is therefore plausible that these 
areas exert more influence after contra- than ipsilateral stimuli already at short latencies. At the N1 latency, driving 
from MT no longer showed a stimulus effect, indicating that stimulus-specific driving from MT is confined to 

Figure 2. ROI localization in a representative individual participant, determined using three functional 
localizers. The blue cross indicates the location of the minimal p-value of the statistical contrast indicated. 
Source-space activity was estimated at these loci using EEG recorded in a separate session. See Methods for 
further details.

ROI x (s.d.) y (s.d.) z (s.d.)

L V1 − 14 (5) − 100 (3) 7 (7)

R V1 17 (5) − 97 (3) 9 (4)

L MT − 48 (6) − 69 (8) 7 (6)

R MT 50 (7) − 66 (9) 11 (9)

L LIP − 31 (7) − 54 (7) 60 (4)

R LIP 30 (9) − 51 (10) 61 (4)

L FEF − 39 (7) − 7 (4) 56 (8)

R FEF 40 (10) − 4 (4) 55 (10)

L LOC − 49 (8) − 80 (7) − 5 (5)

R LOC 46 (4) − 76 (10) − 8 (8)

L FG − 40 (4) − 51 (6) − 18 (3)

R FG 43 (4) − 48 (10) − 17 (4)

Table 1.  Average x, y, z coordinates of ROI locations in MNI space (mm).
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earlier latencies, in line with its fast response properties. In contrast, LOC and V1 continue to exert more influence 
for contra than ipsilateral stimuli at longer latencies, in line with their greater role in processing visual content.

The main targets of cV1 at the C1 latency were cLOC and cMT, in line with a feed-forward spread of activity 
from V1 toward higher-level visual areas (Fig. 4c,e). At this latency cMT predominantly targeted cLIP, in agree-
ment with known structural and functional connectivity of the dorsal attentional network, which aids fast visual 
processing of spatial properties and motion3,13.

The results also showed a fast two-way interaction between cV1 and cMT around the C1 peak latency (76 ms 
after stimulus onset). Direct interactions between MT and V1 are possible through monosynaptic, reciprocal pro-
jections1,12,54. The current results indicate that V1 activity is already co-determined by MT activity at short latencies 
after stimulus onset, suggesting that the fast propagation of activity from V1 to MT is not a uniquely bottom-up 
process but includes feedback from MT onto V1. The coupling between V1 and MT peaked around the C1 latency 
and diminished afterwards (Fig. 4d). The results are in line with a previous study showing top-down influence 
from MT to V1 at latencies before 100 ms55. This work used motion stimuli to show that MT top-down influence 
was specific for low-contrast moving stimuli, it did not occur for high-contrast stimuli.

How could driving from MT to V1 arise at these short latencies? In primates, initial MT activation can co-occur 
with the initial activation of V13,53, through two distinct mechanisms. First, through fast magnocellular connections 
from V1 to MT12,54. Or alternatively through the direct koniocellular pathway from the LGN to MT, a pathway 
that enables rapid detection of motion56–58. In our results driving from MT to V1 occurs at similar latencies and 
without being systematically delayed with respect to the V1 to MT driving. This favors the interpretation that a 
route bypassing V1 allows MT to directly influence afferent activity in V1.

Evidence for the importance of fast MT–V1 interactions in human comes from a TMS study that showed that 
interference with V1 can abolish phosphene percepts elicited by TMS over MT, but only when TMS over V1 fol-
lows the TMS over MT at short latencies59. What could be the function of the early influence from MT? In animal 
models, feedback from MT has been shown to increase the responsiveness of V1 neurons, particularly for small, 
low-salience, signals60,61. Early recurrent processing may thus serve to disambiguate suboptimal visual input10,62. 
MT provides a fast, but coarse interpretation of the scene or the changes therein, a coarse scene analysis is fed 
back from MT to V1, the M signal that informs the later P-signal63. In our data the MT driving may help process 
the transients caused by stimulus onset.

We found a second instance of feedback influence around the C1 latency in the driving from cLOC toward iV1 
(Fig. 4). This driving toward lower level-areas in the other hemisphere is in line with callosal projections from V1 
to extrastriate areas including V4 have been shown in monkey64, under the assumption that these connections are 
reciprocal, possibly relating information about global stimulus content.

The fast interactions described here support the view that even simple, task-irrelevant visual stimuli evoke fast, 
two-way interactions between multiple areas9,10,54,62. Reciprocal interactions among visual areas at short latencies 
may help to disambiguate visual objects, both in terms of their spatial location or motion, and in terms of their 
content10. Our stimuli were clearly visible checkerboards occurring at unpredictable intervals. The early driving 
from MT may therefore inform V1 of where in the visual field a change has happened. Whether this MT driving of 
V1 depends on disambiguation effort should be tested in future experiments that vary the visibility of the stimuli 
or the uncertainty about their content.

Figure 3. Stimulus-specific processing in the time-frequency domain. Time-frequency plots of the difference 
in evoked response to contra- and ipsilateral stimuli for each ROI (Fig. 2), based on EEG source-imaging (see 
Methods and text). V1 showed increased responses for contralateral stimulation in the beta and alpha band and 
LOC showed increased responses in the low alpha band. Scales are identical across plots.
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In addition to specific recurrent interactions between visual areas, our findings also demonstrate interactions 
involving LIP and FEF, whose activity is known to reflect attentional processes13–15. We found that targets of 
LOC driving involve LIP and FEF, at both the C1 and N1 latencies (Figs 4c,5d), including some in the ipsilateral 
hemisphere. These functional connections are in line with known interactions between the dorsal and ventral 
visual streams54. We could speculate that this effect may be due to the nature of our stimulus paradigm. To ensure 
attention to the center of the screen and reduce eye-movements, participants were instructed to maintain fixation 
on a central dot and report its color change while checkerboards were presented in the periphery. The central fix-
ation task was designed to minimize top-down processes like expectations about and attention to the content of 
the checkerboard stimuli. That LOC predominantly relayed information to areas associated with attention could 
possibly reflect processing of the spatial location of the stimuli, which were randomly presented in the left or right 

Figure 4. (a) Dynamics of summed driving from each ROI in the beta band, for stimuli in the contralateral and 
ipsilateral (semi-transparent colors) visual field. The red line indicates the peak latency of the C1 component, 
the blue one the peak latency of the N1 component. (b) shows the summed driving (wPDC) per ROI at the C1 
peak latency (76 ms). (c) depicts driving from the stimulus-selective ROIs cV1, cMT and cLOC toward all other 
ROIs at the C1 peak latency. The color-codings are the same as those in (a). Error bars denote bootstrapped 95% 
confidence intervals around the mean, asymmetrically computed. (d) shows the functional interactions between 
V1 and MT after stimulus onset; the reciprocal nature of the interaction is reflected by the matching dynamics. 
(e) Shows a schematic top-view of the 12 individually localized brain areas (ROIs). Circle sizes reflect the 
relative summed driving per area, and arrow widths reflect relative driving strength at the C1 peak latency.
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visual field. Had the task demands required a detailed inspection or disambiguation of visual content we would 
have expected LOC to interact more with other visual areas10,54.

The results identified surprisingly strong and ongoing driving from LIP, already at stimulus onset. LIP is a key 
area of the dorsal attention network for top-down control of visual attention13. Although we did not directly manip-
ulate task-demands, successfully detecting color changes at the center of the screen requires sustained attentional 
processes. Given that attention had to be maintained, and the known role of LIP in top-down allocation of atten-
tion, a likely interpretation of the strong and persistent driving from LIP is that it reflects task-related top-down 
influence. This interpretation is in line with a previous connectivity study that showed increased pre-stimulus con-
nectivity between parietal, frontal and occipital areas in anticipation of a difficult task27, and with a Granger-causal 
modeling study showing the role of parietal cortex in top-down control14.

In addition, LIP driving did not change with stimulus location and was strongest in the alpha band. LIP plays 
a role in spatial attention which are known to manifest in the alpha band47. During focal attention, increased 

Figure 5. (a) Dynamics of summed driving (wPDC) from each ROI in the alpha band, for stimuli in the 
contralateral and ipsilateral (semi-transparent colors) visual field. Identical color-coding is used for the barplots; 
significant differences are indicated with an asterisk, see Methods. (b) Shows the summed driving at the N1 
peak latency for each ROI. Panel (c) illustrates the 5% strongest connections at this latency. (d) Shows the 
driving from cV1, cLOC and cLIP to the other ROIs. (e) summarizes the directed connectivity from stimulus 
selective ROIs at the C1 peak latency. Plotting conventions are the same as those in Fig. 4.
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alpha-band power has been shown to suppress activity in unattended locations65. The driving from LIP may thus 
function to suppress activity in the receptive fields of the bilateral stimulus locations while participants maintained 
central fixation.

Our results, LIP appears to modulate activity in various, broadly distributed areas, in line with its widespread 
structural connectivity66. Although the largest influence from LIP targeted ipsilateral LIP and FEF, the targets of 
LIP driving were less specific than those from e.g. V1 (Fig. 5d). This suggests that LIP orchestrates spatial attention 
by modulating activity throughout the network, and not by specific targeting of a limited number of areas, at least 
under the current task conditions.

The dominance of LIP over time (Fig. 5a) suggests that LIP driving is an ongoing process that plays an important 
part in shaping the evoked response. In our data driving from lower-level areas never exceeded that from LIP. This 
suggests that LIP driving plays an important part in the evoked response, and that the total influence of LIP can 
exceed the influence from early visual areas in the processing of simple stimuli. We note that our interpretation 
of LIP driving as a task-related top-down process is a tentative one; further experiments that directly manipulate 
the strength of top-down interactions under changing task conditions should help further clarify the targets of 
LIP driving and its timing.

In sum, our directed connectivity results distinguished a pattern of fast feed-forward driving in visual processes 
that co-exists with top-down driving from MT onto V1 at short latencies. LIP appears to play a considerable role in 
evoked visual responses through ongoing driving that most-likely reflects task-related processes. Our results sug-
gest that vision is best viewed as a fast, highly interactive processes distributed among cortical areas. That we were 
able to separate fast feedback and top-down attentional processing in human by combining EEG source imaging 
and Granger-causal modeling is a promising basis for future studies in which stimulus and tasks properties are 
independently varied to better understand the functional roles of feedforward, recurrent and top-down processing.

Methods
Participants. Sixteen right-handed participants took part in the experiment (mean age 31, range 20–33 years; 
5 female) with good visual acuity (mean 1.5, range 0.8–1.7), as measured by the Freiburg visual acuity test67. All 
participants gave informed consent before the experiment. All experimental methods and procedures complied 
with the Declaration of Helsinki and were approved by the ethics committee of the University of Geneva.

Stimuli and apparatus. The checkerboard stimulus was a circular wedge (70 degrees of arc), offset by 2 
degrees from the center of the screen and subtending 6 degrees of visual angle. Polarity changes (black/white) 
where spaced 3 cycles per degree radially, and 12 cycles per degree angularly (Fig. 1).

Object images came from the publicly available SVLO database68 and subtended about 3 degrees of visual 
angle. Luminance-matched control stimuli were created by fully randomizing the phases in the Fourier domain 
for each image69.

The same stimuli were used in the fMRI and the EEG session. Stimuli were back-projected onto a screen during 
fMRI recordings, and presented on a CRT monitor during EEG recordings. Stimulus generation, presentation 
and timing was controlled with PsychoPy software70,71 run under Python 2.7. Correct stimulus onset timing and 
duration were verified using a photo-diode.

fMRI data acquisition and pre-processing. We used MRI to acquire structural brain images and to func-
tionally localize bilateral regions of interest (ROIs) that respond to different aspects of visual processing, namely 
primary visual areas (V1/2), lateral occipital cortex (LOC), frontal eye fields (FEF), lateral intraparietal area (LIP) 
and the middle temporal motion area (MT).

Participants were scanned on a whole-body Tim Trio system (3T; Siemens Healthcare), at the Brain and 
Behaviour Laboratory at the University of Geneva, with a radio-frequency (RF) body transmitter and a 32-channel 
receiver head coil. Each scanning session consisted of an initial localizer scan, enabling appropriate centering of 
the field of view for subsequent scans. Three T2*-weighted echo-planar-imaging (EPI) functional runs (axial ori-
entation, 3*3 mm in-plane resolution, 3.2 mm slice-thickness, TR =  2100 ms, TE =  30 ms, angle of flip =  80°) were 
acquired, followed by a T1-weighted structural image (sagittal orientation, 1 mm isotropic voxels, TR =  1900 ms, 
TE =  2.27 ms, TI =  900 ms, FoV =  256*256). The three functional localizer runs are described below.

In the localizer run for V1/2, participants were required to fixate a central dot and to indicate with a button-press 
(using their right index finger) when they detected a change in its color. A block design was employed in which 
checkerboard stimuli were presented successively in the lower left and right visual field. Checkerboards remained 
on screen for between 15 and 23 seconds (7–11 TRs) while their contrast polarity was flipped at random intervals 
(100–300 ms). Every pair of left-then-right checkerboards was followed by a period of variable duration (13–21 s), 
during which only the fixation dot remained on screen. A total of fifteen blocks were presented, with a total duration 
of 4.5 min (130 TRs) that remained identical over participants.

To localize LOC we presented object and scrambled stimuli in the center of the screen for 300 ms, ISI varied 
randomly (200–500 ms). Participants were instructed to press a button when a target picture (a red flag) was pre-
sented. This decoy task was employed to keep participants alert and focused on the content of the images. Stimulus 
presentation was blocked with blocks lengths varying between 15 and 23 seconds (7–11 TRs), and each block of 
stimulation was followed by a period of variable duration (10–21 s) during which only the fixation dot remained 
on screen. A total of twenty blocks were presented, with a fixed total duration of 6.5 min (165 TRs).

FEF, LIP area MT were localized using a saccadic pursuit task72. A fixation dot remained in a fixed location for 
a random period (0.5–1 s) and then appeared at a random location within 6 degrees horizontally and 4 degrees 
vertically of the center of the screen. A block design was used in which pursuit blocks lasting between 15 and 23 
seconds (7–11 TRs) alternated with periods of fixation lasting between 13 and 21 seconds (6–10 TRs). Five blocks 
of pursuit and five blocks of fixation were acquired, with a fixed total duration of 3 minutes (85 TRs).
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Analysis and preprocessing was carried out using SPM 8, running in Matlab R2010b (The Mathworks Inc., 
Natick, MA., USA). Preprocessing for each subject included: 1) rigid realignment of each EPI volume to the first 
in the session, 2) co-registration of the structural volume to the mean EPI image, and 3) spatial smoothing using 
a Gaussian kernel of 8 mm.

Fixed-effects analyses were carried out separately for each localizer, using a general linear model for each 
participant in which every scan was coded for condition, and null events were left unmodeled. The analysis was 
carried out in the participants’ native space in order to permit comparability of the single-subject fMRI results 
with the single-subject EEG results. In order to allow identification of functional activations according to existing 
templates, and to make the reporting of results comparable with the existing literature, the normalization param-
eters warping each participant’s T1 scan to MNI template space were calculated.

V1/V2, MT, FEF and LIP were localized using statistical contrasts with baseline. LOC was localized by a 
statistical contrast between images of objects and phase-scrambled versions of those objects. This localizer also 
separately identified fusiform gyrus (FG) in each subject.

The 12 ROIs were successfully localized in each participant. Where possible, a statistical threshold of p <  0.05, 
corrected for familywise-error was applied. Otherwise, the peaks were identified at a threshold of p <  0.001 uncor-
rected (saccadic pursuit localizer, seven participants, one or two ROIs per participant) or p <  0.01 (object localizer, 
one participant, single ROI).

EEG recording and processing. EEG was recorded on a separate day in an electrically shielded room with 
a 256 channel EGI Geodesic setup (EGI Eugene, OR, USA). Recordings were referenced against the Cz electrode, 
the impedances were kept below 50 kΩ, data were digitized at 1000 Hz.

Checkerboard patterns were presented for 200 ms in the lower left or right visual field (200 repetitions per 
location) with a random presentation order and randomly varying inter-stimulus intervals (500–1200 ms).

Participants sat at 1 m from the screen and were instructed to maintain fixation on a small disc (0.2 degree of 
visual angle) placed centrally on the screen during the entire recording block. Recording blocks lasted about 4 
minutes, breaks were offered in between.

To help maintain attention on the center of the screen participants were instructed to press a button when the 
fixation point occasionally changed to red. Color changes of the fixation point were correctly detected in 93% of 
cases (range across participants 68–100%), showing good task-compliance. For three participants intermittent 
response box failures precluded the collection of behavioral data during EEG recordings. In those cases we verified 
task-compliance immediately after the recording block.

Individual electrode positions were digitized in 3D with a photogrammetry system (EGI Eugene, OR, USA). 
Off-line, recordings were DC-corrected, high-pass filtered at 0.1 Hz and divided into epochs between − 100 and 
400 ms around stimulus onset. We excluded the cheek and lower neck electrodes for the further analysis, keeping 
204 electrodes. Epochs were visually inspected and those with muscle or eye-movement artifacts and/or amplitudes 
over 75 μ V were excluded. On average 163 Left and 163 Right stimulation epochs per participant were kept for 
further analysis. Noisy channels were identified and interpolated using 3D spherical splines73. On average 7 out of 
204 channels were interpolated per participant. We removed 50 Hz line noise using a multitaper74.

We derived current density time-series for each epoch using a distributed linear inverse solution (weighted 
minimum norm), implemented in the freely available Cartool software40. We co-registered the digitized 3D elec-
trode layouts to each participant’s MRI and defined a solution space of about 5000 source points, evenly spaced 
within the participant’s grey matter. For each of the 12 ROIs we selected the source point closest to the minimum 
p-value, as obtained by the fMRI localizers. To calculate individual lead fields we used realistic, analytical head 
models constructed from individual MRIs using a manifold of locally adapted spheres40,41. Within ROIs, scalar 
current density values were obtained by projecting instantaneous 3D dipoles to the predominant evoked dipole 
direction in each ROI, determined between 50 and 400 ms after stimulus onset75,76.

Directed connectivity between the ROIs was estimated using Granger-causal modeling of z-scored single trial 
data in the 1–100 Hz range29,30,32. Specifically, we used time-varying MVAR estimation based on Kalman filter-
ing77 and row-normalized, spectrally weighted Partial Directed Coherence (wPDC;39,78). Instantaneous power 
spectral density (PSD) in the 1–100 Hz range was calculated for each ROI by inverting complex decompositions 
(S-transform) on the scalp28,79 at the single epoch level. PSD and PDC values were normalized within participants 
across contra- and ipsilateral ROIs before scaling.

For each ROI we summed the outgoing wPDC strengths toward the other 11 ROIs as a measure of the total 
driving influence on the network.

Statistical analyses. The analyses of the EEG and connectivity data aimed to limit the number of statistical 
tests by selecting a small number of ROIs from the more than 5000 possible source-points. In addition, we used 
a data-driven approach to restrict testing to the C1 and N1 peak latencies, as determined by the grand-average 
ERP (Fig. 1), and to three frequency bands critical to the evoked response, the alpha (8–13 Hz), beta (13–30 Hz) 
and gamma (30–60 Hz).

At the C1 and N1 latency we determined whether responses to contralateral stimuli were increased with respect 
to those of ipsilateral stimuli for each frequency band, using a non-parametric bootstrapping approach (n =  10000) 
to avoid unwarranted assumptions of normality. This analysis was carried out on normalized individual PSD 
responses, using the same data used for spectral scaling of the PDC. Subtracting ipsilateral from contralateral 
responses assures that the stimulus-driven response is isolated. Ipsilateral activity provides a good control because 
activity is not expected in the ipsilateral hemisphere until later on. It also controls against the limited spatial res-
olution (spatial leakage) of inverse solutions and provides a simple alternative to computationally intensive and 
competing surrogate data approaches31,80,81.
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At the C1 and N1 peak latency we bootstrapped 95% confidence intervals (CI) of the difference between evoked 
responses contra- and ipsilateral to stimulation. If the lower bound of the 95% CI exceeds zero, the contralateral 
response was deemed to exceed that of the ipsilateral response, and the null hypothesis of equal amplitudes 
for contra- and ipsilateral stimuli rejected. We calculated effect sizes using Cohen’s d with pooled s.d.s in the 
denominator82.

In the thus selected frequency bands we determined whether the summed wPDC from each contralateral 
ROI exceeded that of the corresponding ipsilateral ROI by bootstrapping 95% CIs of the difference between their 
summed wPDC values.

For the ROIs that showed increased driving for contralateral stimuli we calculated the average wPDC to all 
other ROIs and their 95% CIs. This way we explored the strengths of driving toward the other ROIs and determined 
whether specific ROIs were targeted, thus refraining from arbitrary testing between wPDC strengths toward the 
11 other ROIs and from comparing all possible connections in strength without theoretical motivation. The 95% 
confidence interval provides a useful estimate of the variability in the sample and the range in which the true 
values are most likely to fall83.

For connectivity plots, we adapted functions from the eConnectome toolbox84.
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