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Properties of skyrmions and multi-
quanta vortices in chiral p-wave 
superconductors
Julien Garaud & Egor Babaev

Chiral p-wave superconducting state supports a rich spectrum of topological excitations different 
from those in conventional superconducting states. Besides domain walls separating different chiral 
states, chiral p-wave state supports both singular and coreless vortices also interpreted as skyrmions. 
Here, we present a numerical study of the energetic properties of isolated singular and coreless 
vortex states as functions of anisotropy and magnetic field penetration length. In a given chiral 
state, single quantum vortices with opposite winding have different energies and thus only one kind 
is energetically favoured. We find that with the appropriate sign of the phase winding, two-quanta 
(coreless) vortices are always energetically preferred over two isolated single quanta (singular) 
vortices. We also report solutions carrying more flux quanta. However those are typically more 
energetically expensive/metastable as compared to those carrying two flux quanta.

Chiral p-wave superconducting state is an exotic state that, in addition to usual U(1) gauge symmetry, 
spontaneously breaks time-reversal symmetry. Higher broken symmetries there, implies a much richer 
spectrum of topological excitations as compared to conventional superconducting and superfluid states. 
Chiral p-wave pairing is realized in the A-phase of superfluid 3He, were variety of complex topologi-
cal defects were investigated1–8. In a superconducting p-wave state, due to the coupling to the vector 
potential, topological defects exhibit different properties. This coupling affects their energy and deter-
mines their role in the magnetic properties of such superconductors. Layered perovskite superconductor 
Sr2RuO4 is a candidate material where various experimental evidences suggest possible realization of a 
p-wave superconducting state9,10. Similar models were also considered in connection to the supercon-
ducting state of heavy fermion compound UPt3 11,12 (see e.g.13,14 for recent discussion of superconducting 
state in that material).

Spontaneous breaking of time-reversal symmetry for chiral p-wave state, implies the existence domain 
walls that separate regions with two different time-reversal symmetry broken (TRSB) ground-states. These 
domain walls, support spontaneous supercurrent that can generate magnetic fields15–20. The domain walls 
in chiral p-wave superconductors could be created via Kibble-Zurek mechanism, and these properties 
can be used for their control21. However, in Sr2RuO4 no indication of such a field was found in magnetic 
imaging microscopy experiments22–24. Besides domain walls, chiral p-wave superconductors feature rich 
spectrum of topological defects including various vortices and skyrmions. Note that Skyrmions were also 
discussed in other kinds of p-wave superconductors25,26. Related topological defects were also discussed 
in the context of heavy fermion superconductor UPt3 27.

In zero field, both chiral (ground-)states are degenerate in energy and this degeneracy is lifted by 
an externally applied magnetic field along the c-axis. For a given sign of the magnetic field parallel to 
the c-axis, only one of the chiral states is stable and the time-reversed state is energetically penalized. 
Likewise, vorticity of the superconducting condensates lifts the degeneracy between both chiral states. 
When the dominant component forms a vortex, it induces the time-reversed (subdominant) chiral com-
ponent, in the vicinity of the core. The winding of the induced component is not independent of that of 
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the dominant component. It has a 4π winding of the relative phase between components, that follows 
from the Cooper pairs having nonzero internal orbital momentum28. Since the magnetic field lifts the 
degeneracy between chiralities, vortices and anti-vortices have different properties29.

It is experimentally seen that in an applied external field, Sr2RuO4 exhibits vortex lattices with square 
symmetry at high fields30–32, and a transition to triangular lattice in lower fields32,33. Earlier theoretical 
calculations based on Ginzburg-Landau model for chiral p-wave superconductivity in Sr2RuO4 34–36, are 
consistent with these observed transitions of the vortex lattice structure.

Besides single-quanta vortices, there also exists vortices carrying multiple quanta of the magnetic 
flux and that, as they are coreless, are essentially different from single-quanta vortices. For example as 
discussed in more details below, the component induced by a doubly quantized vortex in the dominant 
component has zero winding in subdominant one29. In this paper we demonstrate that the two-quanta 
(coreless) vortices, which can also be denoted as skyrmions, are energetically favoured as compared to 
(isolated) single-quanta vortices. Earlier works in the context of UPt3, even claim that lattices of similar 
two-quanta vortices may be energetically favoured as compared to those of single quanta37,38. The possi-
ble existence of lattices of different coreless vortices carrying single flux quantum in UPt3 was also dis-
cussed recently14. It was also recently shown in the context of Sr2RuO4, based on solutions of microscopic 
Eilenberger equations, that lattices of two-quanta vortices are favoured for certain parameter sets39. Yet, 
such lattices of two-quanta vortices were never observed in Sr2RuO4. This motivates this work to further 
investigate the thermodynamic stability of skyrmions for broad parameter range.

In a previous work40, we reported isolated skyrmion solutions in a model for chiral p-wave super-
conductor. For the studied case of one of the chiralities, skyrmions can be energetically favoured as 
compared to vortices [Note that the Ginzburg-Landau model which was used in ref.  40 had slightly 
different coefficients in the potential terms compared to the standard GL model which follows from 
the weak-coupling mean-field theory. In this paper we use the same model as in ref.  36]. The skyrmi-
ons carrying two flux quanta are directly related to the two-quanta vortices mentioned above. However 
it was also demonstrated in ref.  40 that there are (meta-)stable skyrmions carrying larger number of 
flux quanta. In this model the energy and structure of vortices and skyrmions depends on the chiral-
ity. Equivalently, for a given chiral state, vortex/skyrmion solutions are not the same as anti-vortex/
anti-skyrmion. It thus calls for further investigation of vortex and skyrmion solutions (carrying two and 
more quanta), which we present below.

Model
In the coordinate system where the crystal anisotropy axis is c z, the order parameter of the px +  ipy state 
is described by a complex two-dimensional vector η =  (ηx, ηy)10,11,41. Introducing the chiral order param-
eter components ( )η η η= ± /± i 2x y , the dimensionless Ginzburg-Landau free energy reads as (see 
e.g.34–36):
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There we use dimensionless units were the free energy is normalized to the condensation energy, and 
the lengths are given in units of ξ α= ( ( − ))− /T Tc0

1 2. The magnetic field ∇= ×B A is in units of 
πλξ= Φ /( )B2 2c 0 . In these units, the gauge coupling g that appears in the covariant derivative 

D =  ∇ +  igA is related to the Ginzburg-Landau parameter g−1 =  λ/ξ. The free energy (1) was derived 
from the weak coupling microscopic theory34,35. The anisotropy parameter v determines the anisotropy 
in the xy-plane ( ν| |<1 for the energy to be positively defined). It measures the tetragonal distortions of 
the Fermi surface, which has cylindrical geometry for v =  0, and is defined as 
ν = (〈 〉 − 〈 〉)/(〈 〉 + 〈 〉)v v v v v v3x x y x x y

4 2 2 4 2 2  (where 〈 ⋅ 〉 denote average over the Fermi surface). In the 
model Eq. (1), the dependence on the third coordinate is not considered (i.e. assuming two-dimensional 
system or translational invariance along z-axis).

The ground-state that minimizes the potential terms in (1) is degenerate and the solutions are 
(η+, η−) =  (1, 0) and (0, 1). The theory (1) is invariant under the (discrete) time-reversal operations  , as 


η η, , −± 

⟹ ⁎B B{ } { }. This invariance is spontaneously broken by the ground-state. The spontaneous 
breakdown of the discrete time-reversal symmetry dictates that the theory allows domain wall solutions 
that interpolate between regions with different ground-states. Such domain walls, rather generically cre-
ated during phase transition where the discrete symmetry is broken21, carry a magnetic field perpendic-
ular to the xy-plane17,18. The discrete degeneracy of the ground state is lifted by the magnetic field. Thus, 
depending on the direction of the external field, only one state is stable. Likewise, the vorticity of the 
superconducting condensates lifts the degeneracy between chiral (ground-)states.



www.nature.com/scientificreports/

3Scientific Reports | 5:17540 | DOI: 10.1038/srep17540

As the components η+ and η− behave differently for different sign of the winding, a complete study 
requires to consider both situations of counter-clockwise (positive) and clockwise (negative) vorticities. 
Note that this is equivalent to considering only positive vorticity but for both chiral states. For example, 
the configuration with a winding n+ =  + 1 on the ground-state (η+, η−) =  (1, 0) can be obtained by apply-
ing the time-reversal operation  on the configuration whose ground state is (η+, η−) =  (0, 1) with the 
winding n− =  − 1. In the following, we choose to fix the dominant component of the order parameter 
to be η− [i.e. the ground state is (η+, η−) =  (0, 1)] and thus need to investigate both positive and negative 
vorticities.

The asymptotic vorticity of the dominant component η− determines the sign of Bz, as well as the 
vorticity of the subdominant component η+ 35, according to:

η η∝ , ∝ = + , ( )
θ θ

− + + −
− + n ne e and 2 2in in

where θ is the polar angle. The relative phase between η+ and η− (2), follows from the internal orbital 
momentum of Cooper pairs. In the Ginzburg-Landau model (1), this is the structure of mixed gradient 
that constraints the relative phase. Note that since the subdominant component η+ vanishes asymptoti-
cally [i.e. it recovers its ground state value η+ =  0], the winding n+ can be located only in a close vicinity 
of the vortex core. Note also that the winding of the subdominant component does not affect the overall 
flux quantization, because the density of that component vanishes away from the vortex. From (2) it is 
rather straightforward to see that the vortex with the vorticity (n+, n−) =  (+ 3, + 1) and the (anti-)vortex 
with (n+, n−) =  (+ 1, − 1) have different core structures and thus different energy.

Results
In order to investigate the energetic properties of vortex matter, the fields η± and A are discretized using 
a finite-element framework42 and the free energy (1) is minimized using an nonlinear conjugate gradient 
algorithm (see the section Methods for details). In simulations of chiral p-wave superconductors on a 
finite domain, a special attention is required for boundary conditions in order to yield edge currents 
(see for example discussions in19,41,43). Here, we are interested in the intrinsic energetic properties of 
isolated defects. Thus vortex configuration is created by an initial guess and placed them at the center 
of a large domain, with open boundary conditions, letting the fields freely reach the ground-state. By 
choosing a sufficiently large domain, this ensures that within numerical accuracy vortices will not inter-
act with boundaries and thus we are able to probe their intrinsic structure and energy properties, without 
effects of boundary conditions. As it specifies the topological sector, a starting configuration with a given 
winding n− of the dominant component η− leads, after convergence of the algorithm, to a configuration 
that behaves as expected from (2). We systematically construct vortex solutions carrying one to four 
flux quanta for parameter space defined by wide range of values of the g and v. Figure 1 shows typical 

Figure 1.  Vortex states for the windings (n+, n−) of the components η+ and η−. Note that the winding of 
the dominant component (here η−), specifies the flux carried by the vortex configuration. The parameters of 
the Ginzburg-Landau functional are g =  0.3 and v =  0.2. The first line shows the magnetic field B, while 
second and third line respectively display η−  and η+

. The fourth line shows the relative phase ϕ− −  ϕ+ 
between η+ and η−. Winding of the relative phase indicates the position of the cores of η+ and η−. The first 
block shows vortex solutions carrying one to four flux quanta with Bz >  0, while the second block shows the 
corresponding vortices with Bz <  0.
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vortex solutions with different vorticities. Along this paper we also refer to vortices carrying multiple flux 
quanta, as skyrmions. The reason for that terminology is that they have additional topological properties, 
as compared to single quanta vortices. This is explained in more details by the end of the paper.

The first and second blocks in Fig. 1 respectively show vortex solutions with Bz >  0 and Bz <  0. Vortices 
carrying from one to four flux quanta are displayed within each block. As expected from Eq. (2), single 
winding of the dominant component induces core structure of the subdominant component with dif-
ferent winding depending on that of η− (see the first column of each block). It is instructive to consider 
the last row in Fig. 1, that displays the relative phase between η− and η+. In agreement with (2), asymp-
totically the relative phase ϕ− −  ϕ+ =  − 2θ, reflecting the orbital angular momentum difference between 
η− and η+. Moreover, the relative phase also indicates the position of the singularities of the components 
of the order parameter. Remarkably single quanta vortices are singular defects, since singularities in 
both components overlap (and thus η+ =  η− =  0). On the other hand, since both components never 
simultaneously vanish, two-quanta vortices are coreless defects. Interestingly the n− =  − 2 configuration 
features a π jump of the relative phase when going outward from the vortex core. Inside the vortex core 
the time-reversed chiral state (η+, η−) =  (1, 0) is induced, while the (η+, η−) =  (0, 1) state is recovered 
asymptotically. The two quanta vortices thus feature a ringlike domain wall when going away from the 
center. The π jump of the relative phase for the n− =  − 2 is located at this domain wall.

Like in conventional superconductors, the magnetic field for single quanta vortices is localized at the 
vortex core and screened at length scales determined by the penetration depth λ. Interestingly, the mag-
netic field for two-quanta vortices, and especially for n− =  − 2, is not homogeneously distributed in the 
core. Rather it is localized at a given distance from the center and spread along the ring of the domain 
wall. Note that similar vortex configurations were also found to exist in the context of two-component 
model with ( ) × ( ) ×U 1 U 1 2 symmetry44. The ring-like distribution of the magnetic field for the 
two-quantum vortex can be understood as follows: B outside the vortex is screened by the (partial) cur-
rents in η− that run counter-clockwise, while inside the vortex currents in η+ are responsible for the 
screening. Since η+ vanishes away from the vortex core, it cannot contribute to the screening asymptot-
ically. Conversely, η− vanishes at the vortex core and this is the induced subdominant component η+ that 
screens B close to the center of the vortex core. The reason it can contribute to screening (inside the 
vortex) without having vorticity on its own, is only due to supercurrent produced by the vector potential 
(like the Meissner currents on the boundary of ordinary superconductors). Since those currents circulate 
clockwise, they compensate with the currents in η− so that at a certain distance (at the domain wall) 
there is no screening current. The magnetic field is thus localized at the domain wall. Although the core 
structure of single-quanta vortices are different depending on the sign of n−, their profile of the magnetic 
field looks quite similar. When considering vortices with > −n 1, both the core structure and the mag-
netic field profile are strikingly different and the skyrmions with negative n− do not resemble those with 
positive n−. Apart from the n− =  − 2, − 3 skyrmions, the configurations that carry multiple flux quanta 
are far from being axially symmetric. Note that the n− =  − 4 skyrmions resembles as some kind of bound 
state of two n− =  − 2 skyrmions. As we will discuss below, this makes their decay into two n− =  − 2 
vortices rather easy.

Since the core structure is different, it is quite natural to expect that, unlike in conventional super-
conductors, vortices with opposite winding (and thus opposite directions of the magnetic field) are 
non-degenerate in energy. The (n+, n−) =  (+ 3, + 1) vortex has more total vorticity than the 
(n+, n−) =  (+ 1, − 1). Thus one could naively expect that the n− =  − 1 vortices would be favoured as 

Figure 2.  Left panel shows the ratio of the energies E(n− = −1) of n− = −1 single quanta vortices and 
E(n− = +1) of n− = +1 vortices, as functions of the anisotropy parameter v and of the gauge coupling 
g. This ratio is always smaller than 1 implying that (n+, n−) =  (+ 1, − 1) are always less energetic than 
(n+, n−) =  (+ 3, + 1). The right panel displays the ratio of the energies 2E(n− =  − 1) of two n− =  − 1 single-
quanta vortices and E(n− =  − 2) of one n− =  − 2 vortex, as functions of the anisotropy parameter v and of 
the gauge coupling g. This ratio is always larger than 1 implying that two-quanta vortices are less energetic 
than two isolated single-quanta vortices.
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compared to n− =  + 1. We systematically compared the energies of both single-quanta vortices for all 
values of the anisotropy parameter v and of the gauge coupling g. The diagram in Fig. 2(a), shows that 
the ratio of the energies of the single quanta vortices with n− =  − 1 and n− =  + 1, is always less than one. 
This implies that vortices n− =  − 1 are always energetically favoured, as compared to those with n− =  + 1. 
The first critical field of a vortex carrying a flux Φ  is Hc1 =  E/2Φ , where E is its energy. As a result, 
Fig. 2(a) also implies that the n− =  − 1 vortices also have lower first critical field Hc1 in agreement with 
refs 36,45. Although both n− =  ± 1 are perturbatively stable (i.e. they are minima of  ), only n− =  − 1 is 
absolutely stable.

Note that the naive estimates based on counting the total vorticity provide the correct picture that 
(n+, n−) =  (+ 1, − 1) vortices are less energetic than (n+, n−) =  (+ 3, + 1) ones. It thus makes sense to apply 
the same arguments to configurations carrying more than one flux quantum. In the sector with negative 
n−, there are two possibilities to make a configuration that carries two flux quanta. Either to create two 
isolated (n+, n−) =  (+ 1, − 1) vortices carrying one flux quantum each or to create one (n+, n−) =  (0, − 2) 
two-quantum vortex. It turns out that a two-quantum vortex with smaller number of singularities is 
favoured as compared to two isolated single-quanta vortices. Figure 2(b) displays the ratio of the energies 
of two (isolated) n− =  − 1 vortices and one n− =  − 2 vortex. This ratio is always larger than one, thus 
implying that two-quanta vortices are energetically favoured as compared to two isolated single-quanta 
vortices. Note that the quantity displayed in Fig. 2(b), is actually also the ratio of first critical fields asso-
ciated with single and double quanta vortices Hc1(n− =  − 1)/Hcl(n− =  − 2). Note also that smaller Hc1 for 
a higher-flux vortex does not necessarily imply that such vortices will nucleate first in low magnetic field. 
That is, due to higher winding they carry larger magnetic flux and thus can have a higher potential bar-
rier to enter the sample (compared with the discussion of Bean-Livingston barrier in single component 
superconductors46). The vortices (n− =  − 1) and (n− =  − 2) should interact differently with the Meissner 
currents and image charges, and thus even if the (n− =  − 2) vortices have lower Hcl, the interaction with 
the boundary may instead favour the entry of the vortices with (n− =  − 1).

We also calculated the energy diagram similar to that in Fig.  2(b), but for vortices carrying three 
flux quanta n− =  − 3 (data not shown). We found that unlike for n− =  − 2, the n− =  − 3 are not always 
stable. That is, in some regions of the parameter space the n− =  − 3 is found, but in some other regions 
it decays into one single-quantum plus one double-quantum vortex. We find that for n− <  0, the n− =  − 2 
skyrmions are all energetically favoured. This behaviour can already be anticipated from the last column 
in Fig. 1 where the four quanta n− =  − 4 skyrmion seems to be a bound state of two n− =  − 2 vortices. 
As the skyrmions with n− <  − 2 are more energetic than those with n− =  − 2, one can easily see that the 
n− =  − 4 configuration can decay into two n− =  − 2 vortices and thus reduce its total energy. We find 
that in the regions where the n− =  − 3 vortices exist, they are more energetic than three isolated single 
quanta vortices (or one single plus one two-quantum vortex).

Although being energetically unfavoured, it is still instructive to consider the properties of vortices 
carrying multiple flux quanta, with n− >  0. Diagrams in Fig. 3 show the ratio of the energies of multiple 
quanta vortices with n− >  0, compared to that of isolated vortices carrying smaller flux. The situation for 
n− >  0 is actually very different from that with n− <  0. Panels (a) and (b) in Fig. 3 display the ratio of the 
energies of isolated single-quanta vortices with that of vortices carrying two and three flux quanta. 
Depending on the anisotropy parameter v and on the gauge coupling g this ratio can either be smaller 
or larger than one and the solid lines on the diagram show when these are degenerate in energy. Below 
the solid line, isolated single-quanta vortices are energetically favoured as compared to multi-quanta 
vortices. Above this line, these are the vortices carrying two or three flux quanta which are favoured. 
Thus tetragonal distortions of the Fermi surface (i.e. larger ν| |) tend to favour n− =  + 2 (and to a lesser 

Figure 3.  Ratio of the energies of multiple quanta vortices with n− > 0 compared to isolated vortices 
carrying smaller number of flux quanta, as functions of the anisotropy parameter v and of the gauge 
coupling g. The solid line separates the regions where isolated vortices with smaller flux are preferred over 
single vortex carrying more flux quanta. Panel (a) and (b) respectively show the energetic behaviour of 
double (resp. triple) quantum vortex compared to isolated vortices with single flux quantum. Below the solid 
line, that is for more isotropic (small ν ) or more type-2 (small g), isolated single quanta vortices are 
energetically favoured. Panel (c) shows the energy ratio of two (isolated) triple-quanta vortices compared to 
three double quanta. This indicates subtle sublinear energy scaling with the number of flux quanta.
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extend n− =  + 3), as compared to isolated n− =  + 1 vortices. Note that the solid lines in panel (a) and (b) 
do not coincide. The panel (c) shows the comparison between three isolated double quanta and two 
isolated triple quanta vortices. Here again, depending on v and g, either can be preferred. This suggests 
complicated sublinear scaling of the energy with the number of flux quanta.

The coreless nature of the two-quanta vortices implies that these have additional topological proper-
ties that are absent for single-quanta vortices. If the order parameter η η η= ( , )+ −

 does not vanish 
η( ≠ ) 0 , a pseudo-spin (unit) vector n can be defined as the projection of the order parameter on spin-

1/2 Pauli matrices σ: η η η ησ= /   

† †ni i  (see detailed discussion of the pseudo-spin formalism for 
multi-component GL models in47). Figure 4 shows pseudo-spin texture for vortex solutions correspond-
ing to those displayed in Fig. 1. Note that n is ill-defined for singular vortices, since there η = 0 at the 
core (i.e. singularities in both components overlap). Coreless vortices on the other hand have well defined 
pseudo-spin projection which is a map →n S: R2 2. Since at spatial infinity, n =  (0, 0, − 1), the plane R2 
can be compactified to S2 so that the pseudo-spin becomes a map →n S S: 2 2. The homotopy invariants 

π ( ) ∈S2
2  associated with such maps defines the integer-valued topological charge

 ∫
π

= ⋅ ∂ × ∂ , ( )n n n dxdy1
4 3x yR2

which can be used to classify various field configurations. Heuristically,  counts the number of times 
that the target sphere S2 is wrapped while covering the xy-plane. Singular configurations for which the 
pseudo-spin is not everywhere well-defined, have  = 0. Non-singular solutions on the other hand, and 
in particular coreless vortices, have  π= Φ/ ∈g 2  (where Φ is the flux). For example the two-quanta 
vortices, which are coreless, are characterized by  = 2. The fact that  = 0 for singular vortices can 
easily be seen from the plot of the pseudo-spin texture Fig. 4. There n never reaches the north pole and 
thus do not fully cover the unit sphere.

Discussion
Here, we reported a large-scale numerical investigation of the energy properties of isolated single and 
multiple quanta vortices/skyrmions in a Ginzburg-Landau model of chiral p-wave superconducting state. 
As pointed out previously, for a given ground-state chirality, vortices and anti-vortices are inequivalent. 
Thus we performed study for both orientations of the winding. The vortices with winding n− =  − 1 in the 
dominant component are always preferred to those with winding n− =  + 1. We also found that vortices 
carrying two flux quanta with n− =  − 2 are always energetically favoured as compared to two isolated 
single-quanta vortices. Vortices with higher flux and negative n−, on the other hand, are either unstable 
or have higher energies per flux quantum. We also reported the structural and energetic properties of 

Figure 4.  Pseudo-spin texture n defined as the projection of superconducting degrees of freedom onto 
spin-1/2 Pauli matrices. Different panels correspond to the solutions with different vorticity displayed in 
Fig. 1. First line shows vortices with Bz >  0 and the second line is for Bz <  0. The multi-quanta skyrmions are 
characterized by the topological charge (3)  = −n . Single quanta vortices on the other hand, do not cover 
the whole sphere (i.e ≤ <n n 1z z

max ) thus they have vanishing charge  = 0.
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(meta-)stable skyrmions with various topological charge (i.e. for n− >  + 1). The calculations show com-
plicated sublinear scaling of the energy with the number of flux quanta that qualitatively agrees with 
previous works for a smaller parameter set in a related model40. Due to their very characteristic profiles 
of the magnetic field, their experimental observation, in e.g. scanning Hall and scanning SQUID exper-
iments would provide a strong evidence of chiral p-wave superconductivity in the candidate materials 
described by the model (1). Note however that various aspects of microscopic physics may alter the 
form of the Ginzburg-Landau model (1), and in particular the balance between the different coefficients 
entering the free energy. This is currently a subject of ongoing studies, in connection with Sr2RuO4 (see 
e.g.19,20). Note added: after the completion of this work a study appeared reporting stable skyrmions as 
well as vortices, in this model, affected by mesoscopic effects in small samples48.

Methods
In this work we used the dimensionless two-component Ginzburg-Landau theory Eq. (1) that was pre-
viously microscopically derived in the weak coupling limit (see for example refs 34,35). In this work, we 
focus on the properties of vortex solutions in the xy-plane and neglect the dependence over the third 
coordinate z. This means that our solutions are either purely two dimensional, or describe bulk configu-
ration, assuming translation invariance along z-axis (and thus neglecting possible surface effects).

For the numerical investigation, the two-dimensional problem (1) is defined on a bounded domain 
Ω ⊂ R2. The boundary conditions for chiral p-wave superconductors can be very involved. Namely, in 
order to simulate chiral p-wave superconductors on a finite domain, a special attention has to be paid to 
boundary conditions to take into account edge currents properties. However, we are interested here in 
the intrinsic energetic properties of isolated defects. Thus we consider isolated vortices in large grids 
(such that there are no interactions with boundaries) and let the fields freely recover the ground-state. 
As a result, we probe the intrinsic structure and energy properties of vortices without any deformation 
originating from boundary behaviour. The simulation is run for a zero applied field (so that there are no 
Meissner currents), and the flux carrying solution is generated by a starting condition with a given wind-
ing of the dominant component. Because it enjoys topological protection, the (dominant) component 
cannot unwind by means of continuous transformations and thus topological properties (winding of the 
dominant component) are preserved by an energy minimization algorithm. Note that as simulations are 
run on a large but finite domain, there is still a possibility to change the topological sector, by moving 
the vortex across the boundary. This is possible, because without external fields there are no Meissner 
currents to prevent escape of a vortex. Note however that as we choose to work with large grids, the 
vortices in practice do not interact with boundaries, and thus they do not escape from the domain. The 
advantage of this choice is that it is guaranteed that obtained solutions are not affected by boundaries 
and that the calculated energies are those of isolated defects. The configurations displayed in the paper 
are close-up views of these defects.

For the actual numerical computation, the variational problem of minimizing the free energy is 
defined using a finite element formulation provided by the Freefem+ +  library42. Discretization within 
finite element formulation is done via a (homogeneous) triangulation over Ω, based on Delaunay-Voronoi 
algorithm. Functions are decomposed over a continuous piecewise quadratic basis on each triangle. The 
accuracy of such method is controlled through the number of triangles, (we typically used 3 ~ 6 ×  104), 
the order of expansion of the basis on each triangle (2nd order polynomial basis on each triangle), and 
also the order of the quadrature formula for the integral on the triangles. A nonlinear conjugate gradient 
algorithm is used to solve the variational nonlinear problem (i.e. to find the minima of  ). The algorithm 
is iterated until relative variation of the norm of the gradient of the functional   with respect to all 
degrees of freedom is less than 10−8 (we verified that for this value, the configuration does not evolve 
and the energy remains constant).

For the minimization procedure to lead to a configuration that has the expected topological proper-
ties, the starting field configuration should exhibit itself those desired topological properties. Although 
strictly speaking there is no infinite energy barrier between different topological sectors in finite domains, 
the barrier is finite but large enough to prevent any unwinding. Thus typically gradient minimization 
converges to the configuration that has the topological properties of the starting guess. In order to have 
efficient numerics, it is also important that the starting field configuration is the closest as possible to the 
minimal energy configuration. The initial field configuration carrying Nv flux quanta is prepared by using 
an ansatz which imposes phase winding of the dominant component (η−) around a given point (xk, yk):
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where  ( , ) = ( − ) + ( − )x y x x y yk k k
2 2  and ξa parametrizes the core size. The parametrization of 

η+, with nonzero density in the core enhances the convergence to form coreless defects. Finally, the 
starting configuration for the vector potential of the magnetic field A, is determined by solving Ampère’s 
law equation ∇ ×  B +  J =  0, for the supercurrent δ δ= /J A specified by the superconducting conden-
sates given by (4). Being an equation linear in A, this operation is rapidly solved. Once the starting 
configuration is constructed, all degrees of freedom are relaxed simultaneously.
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