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The brain antigen-specific B 
cell response correlates with 
glatiramer acetate responsiveness 
in relapsing-remitting multiple 
sclerosis patients
Damiano M. Rovituso1, Cathrina E. Duffy2, Michael Schroeter3, Claudia C. Kaiser3, 
Christoph Kleinschnitz4, Antonios Bayas5, Rebecca Elsner6 & Stefanie Kuerten1

B cells have only recently begun to attract attention in the immunopathology of multiple sclerosis 
(MS). Suitable markers for the prediction of treatment success with immunomodulatory drugs are 
still missing. Here we evaluated the B cell response to brain antigens in n = 34 relapsing-remitting 
MS (RRMS) patients treated with glatiramer acetate (GA) using the enzyme-linked immunospot 
technique (ELISPOT). Our data demonstrate that patients can be subdivided into responders that 
show brain-specific B cell reactivity in the blood and patients without this reactivity. Only in patients 
that classified as B cell responders, there was a significant positive correlation between treatment 
duration and the time since last relapse in our study. This correlation was GA-specific because it was 
absent in a control group that consisted of interferon-ß (IFN-β)-treated RRMS patients (n = 23). These 
data suggest that GA has an effect on brain-reactive B cells in a subset of patients and that only this 
subset benefits from treatment. The detection of brain-reactive B cells is likely to be a suitable tool 
to identify drug responders.

Multiple sclerosis (MS) is a chronic, inflammatory demyelinating disease of the central nervous system 
(CNS) characterized by an initial inflammatory phase, followed by selective demyelination and neurode-
generation1. Recently published studies support the hypothesis that inflammatory cortical demyelinating 
processes are closely related to the onset of the disease and that disease progression could be explained 
by myelin-laden macrophages that leave the CNS compartment to enter the cervical lymph nodes where 
they perpetuate inflammation2. Studies of early active MS lesions reported interindividual heterogene-
ity, but intraindividual homogeneity in the patterns of demyelinating plaque pathology3,4, where the 
most frequently observed pattern was selectively associated with immunoglobulin and complement 
deposition3. Contrasting this notion, it has been proposed that all MS lesions begin with oligodendro-
cyte apoptosis, followed by antibody deposition and complement activation5. Breij et al. reported that 
antibody- and complement-mediated myelin phagocytosis was the dominant mechanism in all chronic 
MS lesions6. Moreover, it has been suggested that heterogeneity of disease was found in early stages of 
lesion formation, but was absent in established MS6. The role of B cells in the pathology of MS has largely 
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been underestimated in the past. Recently, Disanto et al. delineated that the current knowledge on B cell 
involvement in MS nearly fulfilled all nine Hill’s criteria for causation7. Indeed, throughout the disease 
course B cells and antibodies play a pivotal role. On the one hand, the presence of anti-myelin antibodies 
predicted the second clinical episode within three years after the first demyelinating event8. On the other 
hand, meningeal germinal center-like structures were associated with a more severe disease course, an 
earlier age at MS onset and a more rapid conversion to progressive disease and death9,10.

Glatiramer acetate (GA) is an approved first-line drug for the immunomodulatory treatment of MS 
and composed of alanine, glutamic acid, lysine and tyrosine. It is thought to act as an altered peptide 
ligand to inhibit myelin basic protein-specific T cells11. A pivotal mechanism of action is the induction 
of anti-inflammatory cytokines, produced by T helper (TH) cells and B cells, leading to “bystander sup-
pression” at the site of focal inflammation12. Furthermore, GA-specific antibodies have been identified in 
GA-treated MS patients13,14. Remarkably, the level of GA-specific antibodies of the TH2-associated IgG4 
isotype was inversely correlated with the number of relapses, but only in long-term treatment15. These 
results suggest that GA treatment responsiveness could be monitored by an antibody assay. GA therapy 
was shown to remodel the composition of the B cell compartment and to influence cytokine secretion 
and immunoglobulin production16. These aforementioned effects on B cells could help to characterize a 
more B cell-driven MS phenotype and elucidate a novel mechanism of action. Additionally, biomarkers 
that predict the therapeutic benefit of a MS drug need to be developed in order to accurately differentiate 
between treatment responders and non-responders. However, to date there is no such biomarker.

Interferon-β  (IFN-β ) is also a first-line disease modifying drug for the treatment of RRMS17. Its 
mechanisms of action are not fully understood yet, but it has been shown that IFN-β  alters cytokine 
production in T cells18, enhances apoptosis of TH17 cells in vitro and reduces the percentage of TH17 cells 
in relapsing-remitting MS (RRMS) patients19. B cells are also targeted by IFN-β  in their cytokine produc-
tion in a way that inhibits TH17 cell differentiation20. Furthermore, it was shown that B cell survival and 
differentiation are affected through IFN-β -mediated induction of the B cell activating factor of the TNF 
family (BAFF)21. Recent findings indicate that IFN-β  increases the number of CD19+CD24++CD38++ 
transitional B cells, which in turn suppress the differentiation of CD4+ T cells22,23.

We have previously introduced an enzyme-linked immunospot technique (ELISPOT) assay for the ex 
vivo detection of brain-specific B cells24,25. Brain-reactive B cells were only detected in patients with clin-
ically isolated syndrome or MS, but were absent in healthy subjects or in patients with other neurological 
or autoimmune diseases24,25. We have now used this bioassay to investigate whether GA treatment has 
an influence on the presence of autoreactive B cells in the blood of RRMS patients, and vice versa. First, 
we addressed the question if the presence of a brain-specific B cell response in the ELISPOT assay was 
reflective of GA treatment responsiveness. Second, to evaluate whether these findings were specific for 
GA we also included IFN-β -treated patients in our study. Finally, we compared the brain-specific B cell 
response in patients with a different disability status.

Results
Characteristics of the MS patient population. All patients in this study were diagnosed with 
RRMS. We classified patients with spot counts > 4.5 as ELISPOT responders and patients with spot counts 
≤ 4.5 as ELISPOT non-responders as described before24. In the GA-treated group, the mean (± standard 
deviation) age was 38.50 (± 11.75) years and the mean treatment duration was 20.35 (± 14.73) months 
(Table  1). We characterized n =  22 GA-treated RRMS patients as ELISPOT responders and n =  12 as 
ELISPOT non-responders. We separately examined GA treatment duration, the brain-reactive B cell 
response and the time since last relapse with respect to the disability score of the patients. In addition, 
we tested n =  23 RRMS patients that were treated with IFN-β (Table  2). The mean (± standard devia-
tion) age was 41.09 (± 9.59) years and the mean treatment duration was 29.35 (± 28.58) months. N =  10 

RRMS patients
RRMS patients 
“Responders”

RRMS patients 
“Non-responders”

Number of patients 34 22 12

Female: male sex ratio 1.84 1.5 3.3

Female 22 12 9

Male 12 8 3

Mean time since last relapse (months) ±  SD 16.55 ±  12.30 (n =  33) 18.50 ±  13.83 12.64 ±  7.54 (n =  11)

Mean EDSS score ±  SD 2.23 ±  1.56 (n =  33) 2.30 ±  1.74 2.09 ±  1.20 (n =  11)

Mean GA treatment duration (months) ±  SD 20.35 ±  14.73 19.23 ±  14.65 22.42 ±  15.29

Table 1.  Characteristics of glatiramer acetate (GA)-treated relapsing-remitting multiple sclerosis 
(RRMS) patients. Abbreviations: GA glatiramer acetate; MS multiple sclerosis; RRMS relapsing-remitting 
multiple sclerosis; SD standard deviation; EDSS expanded disability status scale; Responders/Non-
responders: presence/absence of brain-specific antibody production as measured by ELISPOT.
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IFN-ß-treated RRMS were ELISPOT responders, while n =  13 patients were non-responders. Following 
Leray et al. we used an expanded disability status scale (EDSS) >  3 as a threshold of irreversible disability 
and subsequently we classified a disability score from EDSS 0 to 2.5 as “mild” and from 3 to 6 as “severe” 
disability (Table 3)26.

The presence of brain antigen-specific B cells in the blood of RRMS patients correlates with GA 
responsiveness. In two randomized, placebo-controlled studies GA reduced the annualized relapse 
rate and progression of disability, as measured by the EDSS in patients with RRMS27,28. As expected, we 
were able to assess a strong positive correlation between the treatment duration and the time since last 
relapse in GA-treated RRMS patients in our study (rs =  0.53, P <  0.002; Fig. 1A). Considering the B cell 
response to brain antigen as a categorical variable, we looked for a correlation between the aforemen-
tioned clinical parameters and found that the ELISPOT responders (n =  22) showed a strong positive 
correlation between the treatment duration and the time since last relapse (rs =  0.66, P <  0.001; Fig. 1B). 
On the contrary, there was no correlation between treatment duration and the time since last relapse in 
the ELISPOT non-responder group (n =  12, rs =  0.28, P =  0.35; Fig. 1C). Moreover, we evaluated the asso-
ciation between treatment duration and the presence of brain-reactive B cells in the ELISPOT responder 
group (n =  22). We observed no correlation between these two parameters (rs =  0.007, P =  0.97). The 
same applied to the association between the time since last relapse and the brain-reactive B cell response 
in the ELISPOT responder group (rs =  − 0.159, P =  0.48). When comparing the time since last relapse, 
EDSS, treatment duration and age no differences between ELISPOT responders and non-responders 
were evident (TSLR P =  0.379; EDSS P =  0.847; treatment duration P =  0.212 and age P =  0.376). In 
several studies it was shown that GA treatment induced GA-specific antibodies. Brenner et al. reported 
that GA-treated MS patients with high GA-reactive antibody titers were more likely to be relapse-free 

RRMS patients
RRMS patients 
“Responders”

RRMS patients 
“Non-responders”

Number of patients 23 10 13

Female: male sex ratio 1.56 1 5.5

Female 14 5 11

Male 9 5 2

Mean time since last relapse 
(months) ±  SD 29.13 ±  31.55 20.80 ±  23.29 35.54 ±  36.27

Mean EDSS score ±  SD 1.73 ±  1.25 (n =  11) 2 (n =  1) 1.70 ±  1.32 (n =  10)

Mean IFN-β  treatment 
duration (months) ±  SD 29.35 ±  28.58 19.20 ±  5.69 37.15 ±  36.36

Table 2.  Characteristics of interferon-β (IFN-β) treated relapsing-remitting multiple sclerosis (RRMS) 
patients. Abbreviations: IFN-β  interferon-β ; MS multiple sclerosis; RRMS relapsing-remitting multiple 
sclerosis; SD standard deviation; EDSS expanded disability status scale; Responders/Non-responders: 
presence/absence of brain-specific antibody production as measured by ELISPOT.

RRMS patients 
EDSS < 3

RRMS patients 
EDSS > 3

Number of patients 16 6

Female: male sex ratio 1.7 1

Female 10 3

Male 6 3

Mean age (years) ±  SD 35.13 ±  12.97 44 ±  8.53

Mean time since last 
relapse (months) ±  SD 18.06 ±  13.34 19.67 ±  16.37

Mean EDSS score ±  SD 1.47 ±  0.86 4.5 ±  1.55

Mean GA treatment 
duration (months) ±  SD 16.25 ±  11.72 27.17 ±  19.64

Table 3.  Characteristics of glatiramer acetate (GA)-treated relapsing-remitting multiple sclerosis 
(RRMS) patients with mild and severe disability score. Abbreviations: GA glatiramer acetate; MS multiple 
sclerosis; RRMS relapsing-remitting multiple sclerosis; SD standard deviation; EDSS expanded disability 
status scale.
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than patients with lower GA-reactive antibody titers13. Controversial findings reported no association 
between GA-specific antibody titers and clinical outcomes29. In addition, new data suggest that the effects 
of GA on cytokine production by human B cells are donor-specific and that the interaction with the B 
cell receptor is required for GA efficacy at least in a murine model30. Based on these previous results we 
set out to investigate if our findings were GA-specific and therefore we also tested IFN-β -treated RRMS 
patients. As expected, our data demonstrate a strong positive correlation between treatment duration and 
the time since last relapse in RRMS patients (n =  23) that were treated with IFN-β  (rs =  0.62, P <  0.002; 
Fig.  2A). In contrast to the GA-treated cohort, the ELISPOT non-responders displayed a very strong 
correlation (n =  13, rs =  0.93, P =  0.0001; Fig.  2B) between the aforementioned parameters, while the 
ELISPOT responders did not show any relationship between treatment duration and the time since 
last relapse (n =  10, rs =  0.01, P =  0.97; Fig. 2B). When comparing the time since last relapse, treatment 
duration and age no differences between ELISPOT responders and non-responders were evident in the 
IFN-β -treated cohort (TSLR P =  0.352; treatment duration P =  0.619 and age P =  0.437).

GA treatment affects the frequency of brain-specific B cells in the periphery only during an 
early stage of MS. It has been reported that relapses during the first two years of disease were predic-
tive of the late disease outcome, whereas late relapses did not seem to affect the prognosis31. Accordingly, 
the exacerbation rate at an early phase of the disease was demonstrated to enhance the accumulation of 
disability32. The assumption that MS follows a two-stage process was further supported by Leray et al. 
(2010). Leray et al. reported that disability progression during the late phase was independent of that 
during the early phase. However, relapses during the first two years in the early phase were independent 
predictive factors of disability progression26. When we analyzed the number of brain-reactive B cells 
in GA-treated RRMS patients with a mild disease course (EDSS ≤  3; n =  16) and more severe disease 

Figure 1. Correlation between glatiramer acetate (GA) treatment and the time since last relapse. 
(A) Correlation between the treatment duration (months) and the time since last relapse (months) in all 
patients with relapsing-remitting multiple sclerosis (RRMS) (n =  34, P <  0.002). (B) Correlation between the 
treatment duration (months) and the time since last relapse (months) in RRMS patients with brain-specific 
B cells in the blood (ELISPOT responders, n =  22, P <  0.001). (C) Absence of correlation between treatment 
duration (months) and the time since last relapse (months) in RRMS patients without brain-specific B cells 
in the blood (ELISPOT non-responders, n =  12, P =  0.35).

Figure 2. Correlation between interferon-β (IFN-β) treatment and the time since last relapse. (A) 
Correlation between the treatment duration (months) and the time since last relapse (months) in all patients 
with relapsing-remitting multiple sclerosis (RRMS) (n =  23, P =  0.0015). (B) Absence of correlation between 
the treatment duration (months) and the time since last relapse (months) in RRMS patients with brain-
specific B cells in the blood (ELISPOT responders, n =  10, P =  0.973). (C) Correlation between treatment 
duration (months) and the time since last relapse (months) in RRMS patients without brain-specific B cells 
in the blood (ELISPOT non-responders, n =  13, P =  0.0001).
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(EDSS ≥  3; n =  6), we did not find any difference (P =  0.44; Fig. 3A). However, when we evaluated the 
ELISPOT responder group in the light of their disability status we found a strong association between 
the treatment duration and the time since last relapse in the cohort with a mild course (n =  16, rs =  0.79, 
P <  0.001; Fig. 3B), while we could not observe a correlation between the aforementioned parameters in 
patients who suffered from a more severe disease course (n =  6, rs =  0.37, P =  0.49; Fig. 3C).

Discussion
As previously reported, we were able to identify MS patients with a brain-reactive B cell response in the 
blood24,25. We hypothesized that the identification of brain-specific B cells in RRMS patients is as crucial 
at an early stage of the disease as the identification of treatment responders at the onset of GA therapy. 
GA treatment does not only induce antibodies against GA, but it also increases anti-histone antibodies33. 
There have been several efforts to identify drug responders and non-responders by using a standard pro-
liferation assay combined with ELISPOT14. The immunological response profile, including the ELISPOT 
response to IFN-γ  and IL-4, correlated with the clinical response to GA treatment34. More importantly, 
an increased IL-4/IFN-γ  ratio was associated with a milder clinical response in stimulated peripheral 
blood mononuclear cells (PBMC) of GA-treated patients35.

In this report, the major new observation is that the presence of brain-specific B cells is a categorical 
variable to identify GA responders. First, we found that the therapeutic benefit from GA treatment was 
greater in RRMS patients who displayed brain antigen-reactive B cells in the blood compared to patients 
without. Second, a brain-antigen specific response in our bioassay was associated with drug respon-
siveness only in GA-treated patients, while this association was absent in the IFN-β -treated cohort. 
Interestingly, in the IFN-β -treated group the patients characterized by the absence of brain-reactive B 
cells showed a benefit from the treatment, suggesting that IFN-β  effectiveness might be compromised in 
patients with brain-reactive B cells. We assume that the B cells that produce brain-reactive antibodies are 
distinct from the B cell subpopulations that are susceptible to IFN-β  treatment. One mechanism of action 
of IFN-β  on B cells is the downregulation of CD4020 resulting in impaired cognate B-T cell interaction. It 
is conceivable that the brain-reactive B cells as detected by our assay are not affected by this mechanism, 
while they are modulated by GA treatment.

Overall, our data also strongly support the concept of heterogeneity in the immunopathology of 
MS as described before3. Histological analysis revealed that lesions within one patient were similarly 
composed, while four general subtypes were identified among different patients3. Patients with the most 
frequent lesion pattern that was characterized by antibody deposition and complement activation pos-
itively responded to therapeutic plasma exchange in acute relapses, whereas patients without antibody 
deposition failed to do so36. These findings imply that the heterogeneity found histologically reflected a 
similar heterogeneity in the pathophysiology of the disease. Conversely, recent studies suggested that het-
erogeneity of the disease was mostly found in the early stages of lesion formation, while being absent in 
established MS6. Third, we focused on the disability status and compared patients with a mild and severe 
disability status. Our data may provide evidence that once a clinical threshold of irreversible disability 
has been reached GA does not have the same benefit as for patients at an early stage of disease. In this 
context it is of note that in two former trials in RRMS GA was more effective in patients with an EDSS 
score between 0 and 227,28. GA efficacy in patients with more severe disease might indeed be affected by 
the natural history and progression of the disease. We do not question this possibility. However, it was 
our aim to show that treatment with GA at an early disease stage is very important for its clinical efficacy, 
while the EDSS is not as suitable to categorize drug responsiveness as our B cell ELISPOT. Yet, we are 

Figure 3. Association between the disability status and the brain-reactive B cell response in relapsing-
remitting multiple sclerosis (RRMS) patients. (A) Comparison of the spot counts between GA-treated 
RRMS patients with a disability status < 3 (n =  16) and > 3 (n =  6). The graph displays means and standard 
deviations. (B) Correlation between the treatment duration and the time since last relapse in RRMS patients 
with a brain-reactive B cell response and a mild disability status (EDSS <  3; P <  0.001). (C) Correlation 
between treatment duration and the time since last relapse in RRMS patients with a brain-reactive B cells 
response and a severe disability status (EDSS >  3; P =  0.49).
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aware of the fact that the assumption of a correlation between GA responsiveness, the brain-reactive B 
cell response and disease activity is not necessarily a causal one. At this point, our data are limited in 
that they do not show a direct effect of GA on B cells. Nevertheless, the B cell response should still be a 
discriminating factor for treatment responsiveness as demonstrated in this study and not solely an indi-
cator of disease activity, while the EDSS will be useful to investigate the two-stage history of RRMS. We 
suggest that combining the information on both the disease stage and responsiveness to brain antigens 
will be crucial for an accurate and individual MS therapy. Our data support the notion of a two-stage 
disability process as suggested by Leray et al.26. We hypothesize that B cells could play a role in a more 
progressive disease as reported before9 and one could hypothesize that MS patients who display brain 
antigen-reactive B cells in the blood are more likely to show disease progression. We also suggest that 
B cells from patients with a more severe disability status are less likely to be remodelled in contrast to 
B cells from patients with a milder disability status. In addition, we postulate that RRMS patients dis-
playing brain-reactive B cells are likely to benefit from GA treatment through a novel recently described 
mechanism of action that targets anti-inflammatory B cell properties16. In summary, we have introduced 
a simple bioassay to identify GA-treated MS patients that show B cell responsiveness to brain antigens 
in the blood. These results could have far-reaching implications for future treatment strategies of MS.

Methods
Study participants. PBMC were obtained from MS patients that were treated with GA (n =  34) or 
IFN-β  (n =  23) for at least six months. MS diagnosis was established according to the 2005 McDonald 
criteria. All patients additionally fulfilled the 2010 revised criteria37. Patients with a history of other 
autoimmune diseases and severe accompanying systemic or psychiatric disorders were excluded from the 
study. Likewise, patients that had undergone plasmapheresis, B cell depletion therapy, intravenous immu-
noglobulin or immunosuppressive treatment 12 months prior to the inclusion into the study were also 
excluded. Characteristics of the cohorts are listed in Tables 1, 2 and 3. All experimental protocols were 
approved by the ethical review committees of the University Hospitals of Cologne and Würzburg, the 
Charité-Universitätsmedizin Berlin and the Bavarian Chamber of Physicians for the Klinikum Augsburg 
(approval numbers 10–221, 65/10, 149/11 and mb BO 14043). Written informed consent was obtained 
from each patient. Disability was graded using the EDSS38. The methods were carried out in accordance 
with the approved guidelines.

Isolation of PBMC and polyclonal stimulation. PBMC were separated from heparinized blood by 
density gradient centrifugation and cultured at a concentration of 3 ×  106 cells/ml in complete RPMI-
1640 supplemented with IL-2 at 15 ng/ml (Peprotech), R-848 at 2.5 μ g/ml (Enzo Life Sciences, Inc.) and 
1 μ mol/L β -mercaptoethanol (Sigma) for 96 h at 37 °C and 7% CO2, according to the protocol described 
by Pinna et al.39.

ELISPOT assays. Ninety-six-well PVDF ELISPOT plates (MultiScreen HTS Millipore) were coated 
overnight with whole human brain lysate (30 μ g/ml; Novus Biologicals, Littleton, CO). Anti-human Igκ  
(SouthernBiothech Biozol) was used as a positive control at a concentration of 10 μ g/ml and 10% FBS was 
used as a medium control. Plates were blocked with sterile 10% FBS for 2 h at room temperature. Each 
sample was plated in duplicates with 1 ×  106 cells/well and incubated at 37 °C and 7% CO2 for 26 h. After 
culture, the plates were incubated with biotinylated anti-human IgG (Hybridoma Reagent Laboratory) 
at 0.2 μ g/ml in 1% BSA. Subsequently, all plates were developed with AP-KIT III substrate (Vector Blue; 
Vector Laboratories). Spots were counted on an Immunospot® Series 6 Analyzer (Cellular Technology 
Limited). Brain-reactive antibodies were mainly of the IgG1 and IgG3 isotype (data not shown).

Statistical analysis. Results were compared between two groups of GA-treated patients using the 
Mann-Whitney test. A value of P <  0.05 was considered as statistically significant. To investigate the rela-
tionship between GA treatment duration, ELISPOT response and the time since last relapse, Spearman 
correlation analyses between two variables were applied and a correlation coefficient (rs) of P <  0.05 
(two-sided tests) was considered as statistically significant.
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