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Choosing between strategies to control HIV transmission with antivirals requires understanding both the
dynamics affecting those strategies’ effectiveness and what causes those dynamics. Alternating episodes of
high and low contact rates (episodic risk) interact with increased transmission probabilities during early
infection to strongly influence HIV transmission dynamics. To elucidate the mechanics of this interaction
and how these alter the effectiveness of universal test and treat (UT&T) strategies, we formulated a model of
UT&T effects. Analysis of thismodel shows how andwhy changing the dynamics of episodic risk changes the
fraction of early transmissions (FET) and the basic reproduction number (R0) and consequently causes
UT&T to vary from easily eliminating transmission to having little effect. As the length of risk episodes
varies from days to lifetimes, FET first increases, then falls. Endemic prevalence varies similarly. R0, in
contrast, increases monotonically and is the major determinant of UT&T effects. At some levels of episodic
risk, FET can be high, but eradication is easy because R0 is low. At others FET is lower, but a high R0 makes
eradication impossible and control ineffective. Thus changes in individual risk over timemust be measured
and analyzed to plan effective control strategies with antivirals.

T he ultimate goal of Treatment as Prevention (TasP), the complete elimination of HIV transmission, will be
achieved if the number of transmissions made by a ‘‘typical’’ infected individual over the course of his
infection can be reduced to less than one1. There are three major factors that affect how difficult it is to

achieve this goal through Universal Test and Treat (UT&T): (1) The series of steps that must be traversed from
diagnosis to viral suppression (the treatment cascade), (2) the fraction of transmissions that occur early in the
transmitter’s infected period (which is determined by both biological and social factors), and (3) the basic
reproduction number of the virus within the population of interest (which is also affected by both biological
and social factors). The basic reproduction number (R0) and the fraction of early transmissions relate to two
dimensions of difficulty in achieving elimination through UT&T: The basic reproduction number is closely
related to the fraction of transmissions that must be prevented through diagnosis and treatment in order to

achieve elimination (which is 1{
1
R0

), and early transmissions aremore difficult to prevent withUT&T than later

ones.
The importance of the treatment cascade and the fraction of transmissions from early infection have been

extensively discussed, but the importance of the basic reproduction number (R0), although touched on in some
articles2,3, has received significantly less attention.We show that behavioral dynamics can result in a wide range of
R0s even at a fixed endemic prevalence and a fixed fraction of transmissions from early infection. These variable
R0s, in turn, cause elimination through UT&T to range from easy to realistically impossible. In particular, we
explore conditions where, even though a relatively high fraction of transmissions come from early HIV infection
(EHI), transmission can still be stoppedwith a relatively low effective treatment rate, because only a small fraction
of transmissions must be interrupted in order to get the system below the endemic threshold of R0 5 1. This
accords with and extends existingmodeling work that found that the relative transmissibility during EHI has little
effect on the expected reduction in incidence thirty years after the initiation of an antiretroviral therapy (ART)
intervention4,5.

In this paper we seek to make the complex phenomena behind these relationships more understandable, so
they can better inform policy decisions. This paper seeks to generate qualitative understandings that will ulti-
mately advance quantitative assessments. Toward this end, we use deterministic compartmental models (DCMs)
to model population dynamics. Such models do not account for stochastic features of real-world population

OPEN

SUBJECT AREAS:
HIV INFECTIONS

EPIDEMIOLOGY

Received
7 August 2014

Accepted
3 March 2015

Published

Correspondence and
requests for materials

should be addressed to
C.J.H. (chrishen@

umich.edu)

SCIENTIFIC REPORTS | 5 : 9467 | DOI: 10.1038/srep09467 1

2      April        20152

mailto:chrishen@umich.edu
mailto:chrishen@umich.edu


dynamics, but they allow for a simpler analysis. Although a DCM
does not directly model individuals, it can be understood as the
limiting case of an individual-based model of an arbitrarily large
population, and flows between compartments can therefore be con-
ceptualized in terms of changes in the states of (large numbers of)
individuals. We will make frequent use of this abstraction through-
out this paper.
We make our points by examining and explaining the behavior of

a model for HIV transmission among men who have sex with men
(MSM) closely based on the model developed by Zhang et al.6 This
model greatly simplifies the treatment cascade and the natural his-
tory of infection, while at the same time adding details about tem-
poral patterns of behavior that other models often omit. In order to
focus on the effects of these dynamics, we simplify the natural history
of infection to a relatively brief early phase (early HIV infection, EHI)
followed by a longer chronic phase. In 14.4 of the Supplementary
Results, we show that our qualitative results continue to hold if this
simplified natural history is replaced with a more realistic one, based
on results from a study of HIV transmission in Lilongwe, Malawi7.
Similarly, we collapse the treatment cascade into a single para-

meter measuring the rate at which infected individuals are tested,
treated, and rendered permanently non-transmitting, which we refer
to as the effective treatment rate. Each individual is therefore clas-
sified as effectively treated or untreated. The untreated category
includes undiagnosed; diagnosed, but untreated; and treated, but
not virally suppressed individuals. In addition, all sexual partner-
ships are treated as instantaneous symmetrical contacts. Although
all of these simplifications will affect some of the quantitative results
that we obtain, we do not believe that any of them affect our qual-
itative conclusions. Formore details about themodel used, see 13.1 of
the Supplementary Methods.
The purpose of these simplifications is to highlight the effect that

different patterns of contact rates over time can have on the response
of transmission systems to universal test-and-treat interventions,
even when other aspects of those systems are identical. Our take-
home message is that populations can differ with regard to patterns
of contact rates in ways that drastically affect the effort required to
achieve elimination of ongoing transmission through UT&T. We
illustrate this with a simplified model of HIV transmission among
MSM that is designed to highlight certain aspects of behavioral com-
plexity. From thismodel we gain insights that suggest other aspects of
real-world transmission systems that could generate similar effects.

Results
Characteristics of interest. The primary characteristics of sexual
contact patterns that we examine in this paper are risk
heterogeneity and episodic risk. Risk in our model is only
determined by contact rates, which are in turn determined by
which of two risk groups an individual belongs to. Our key results
still hold with more than two risk groups, but for the sake of
simplicity, we focus on a model with only two, which we will refer
to as the higher risk group and the lower risk group.
Inmodels where individuals always remain in the same risk group,

we say there is static risk heterogeneity. In models where individuals
transition between risk groups, we say there is episodic risk.
We model episodic risk by selecting risk groups for individuals

newly entering the sexually active population, and then reselecting
their risk groups at intervals corresponding to a fixed rate of reselec-
tion (v). The probability of being selected to the higher or the lower
risk group is always the same. Consequently, the fraction of the
population that is in the higher risk group at the disease-free equi-
librium is unaffected by whether there is static risk heterogeneity or
episodic risk. The average length of an individual’s stay in a risk group
is therefore determined by both the re-selection rate and the prob-
ability of being assigned to that risk group at each point when they are
re-randomized to risk groups. Thus, for example, if the probability of

being assigned to the high risk group were 0.2, the average stay in the
lower risk group would be four times the average stay in the higher
risk group if no one left the sexually active population.
Note that this parameterization of the episodic risk formulation is

the major way that this episodic risk model differs from the model in
Zhang et al.6 Instead of rates of transitioning between risk groups, we
have this single re-selection rate parameter. This parameterization is
chosen because it simplifies the mathematical analysis of the system
and makes the origin of episodic risk effects clearer. It is not a causal
model of what generates episodic risk, but an abstraction that allows
us to make important qualitative observations.
We parameterize differential transmissibility over the course of

infection with a parameter (f) that gives the ratio of per-act trans-
missibility during early HIV infection (EHI) to per-act transmissi-
bility during later/chronic infection. We will refer to this ratio as the
relative transmissibility during EHI.
We focus most of our attention in this paper on these two para-

meters (v and f) in order to highlight the interaction of biological
and behavioral factors in determining the difficulty of achieving
elimination through UT&T, with a particular focus on an aspect of
sexual behavior (episodic risk) that has received relatively little
attention.

Homogeneous transmission potentials and episodic risk. To
develop theory in a progressive fashion, we begin by considering a
behaviorally homogeneous population, and we examine how the
basic reproduction number changes when we add first static risk
heterogeneity, and then episodic risk. In order to achieve
maximum clarity, we first do this with a single-stage SI model, and
then show how the results extend naturally to models with multiple
stages of disease progression (such as the one used in this paper).
When the population is behaviorally homogeneous, and there is

only one stage of infection, the basic reproduction number is simply
the product of the (average) contact rate (x), the per-contact trans-
missibility (b), and the average duration of infection (D). We will
refer to this basic reproduction number, calculated under conditions
of behavioral homogeneity, as the (total) homogeneous transmission
potential, and denote it by H:

R0~H~xbD ð1Þ
This behavioral homogeneity will be achieved if the ‘‘higher’’ and
‘‘lower’’ risk groups actually have the same contact rate (x) and there
is only one transmission probability (b) over the entire duration of
infection (D).
We elaborate this model by introducing static risk heterogeneity, i.

e. by allowing the two risk groups to have different contact rates, but
requiring that the re-selection rate be 0, so that individuals stay in the
same risk group for their entire sexually active lives. We assume here
that risk groups mix proportionately8, except where otherwise noted.
In 13.6 of the Supplementary Methods, we analyze a model of assort-
ativemixing between risk groups and show that ourmajor qualitative
results still hold. Given static risk heterogeneity, the basic reproduc-
tion number increases in proportion to the square of the coefficient
of variation of contact rates (equation adapted from May and
Anderson9):

R0~H 1zcV xð Þ2� � ð2Þ
This occurs because members of the higher risk group will have both
an elevated propensity to become infected and (once infected) an
elevated propensity to transmit. This equation depends on the aver-
age contact rate (which determines H) and on the coefficient of
variation of contact rates, but not on other features of the distribution
of contact rates. Consequently, it still holds if the model is extended
to have more than two risk groups, or to have a continuous distri-
bution of contact rates.
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We now further elaborate the model by introducing episodic risk,
i.e. by allowing the re-selection rate to be greater than 0. In this
formulation, an individual who is in the higher risk group at the time
of infection will now have an elevated propensity to transmit only
until their risk group is re-selected. Because the (multiplicative)
increase to the basic reproduction number is a result of the same
individuals who have an elevated propensity to become infected also
having an elevated propensity to transmit, it will therefore only be
applied to that fraction of the homogeneous transmission potential
which represents transmissions occurring before we re-select the
contact rate of the transmitter. This is simply the fraction of time
infected that is, on average, spent prior to our re-selection of the
infected individual’s contact rate. We denote that fraction (which
we call the (overall) fraction of heterogeneity effect) byy. This leads to
the following generalization of equation 2:

R0~ 1{yð ÞH 1ð ÞzyH 1zcV xð Þ2� �

~H 1zycV xð Þ2� � ð3Þ

Now we go back to the situation without risk heterogeneity and
examine the situation with multiple stages of infection, each with its
own per-contact transmission rate. In this case the total homogen-
eous transmission potential (and therefore the basic reproduction
number) will be the sumof the homogeneous transmission potentials
from each stage (Hi):

R0~H~
X

i

Hi~
X

i

xbiDi ð4Þ
Note that in this case Di is the average duration of stage i for all
infected individuals, including (for later stages) those who do not
survive long enough to enter stage i (i.e., it incorporates the prob-
ability of not reaching stage i at all). Although the focus of this paper
is on a model with only two stages of infection (and therefore the
above summation is from i 5 1 to i 5 2), equation (4) does not
depend on that fact, nor do any of the subsequent equations in this
section. Consequently, they will still hold if a model with a more
realistic natural history of infection is used, as is the case in 14.4 of
the Supplementary Results.
Given static risk heterogeneity, the contributions of each stage of

infection to the basic reproduction number will be increased by the
same multiplicative factor (relative to behavioral homogeneity), and
so equation (2) still applies. But when we introduce episodic risk, this
will no longer be the case: Because the stages of infection come in
order, one after the other, the average fraction of an infected indivi-
dual’s time spent in the i-th stage of infection that occurs before his
contact rate is re-selected (the fraction of heterogeneity effect for stage
i, which we will denote yi) will be smaller for larger i. In particular,
the fraction of heterogeneity effect for chronic infection (y2) will
always be less than the fraction of heterogeneity effect for EHI
(y1). Therefore, the basic reproduction number will now be:

R0~
X

i

Hi 1zyicV xð Þ2� � ð5Þ
Equation (3) still applies; however, the overall fraction of heterogeneity
effect (y) is no longer simply the fraction of an individual’s time
infected that occurs prior to the re-selection of his contact rate, because
one month of chronic infection and one month of EHI do not con-
tribute equally to the total homogeneous transmission potential (H).
Consequently, the overall fraction of heterogeneity effect is now a
weighted average of the fractions of heterogeneity effect for each stage:

y~

P
i
yiHi

P
i
Hi

ð6Þ

Combining equation (6) with equation (3), we obtain two major
implications: First, the more episodic that risk heterogeneity is (i.e.
the higher the re-selection rate), the smaller y will be, and therefore

the lower R0 will be. Second, because the fraction of heterogeneity
effect during EHI (y1) will always be greater than the fraction of
heterogeneity effect during chronic infection (y2), episodic risk
reduces transmissions from EHI less than it reduces transmissions
from chronic infection. Consequently, episodic risk raises the frac-
tion of transmissions from early infection while it lowers the basic
reproduction number.
The above analysis relates to the potential for transmissions during

exponential growth. Under these conditions, when the prevalence of
infection is negligible in both risk groups, episodic risk has a strictly
negative effect on transmissions. The effects of episodic risk on trans-
missions when the prevalence is not negligible (such as at the
endemic equilibrium), are more complex, as seen in the next section.

Endemic prevalence and the basic reproduction number as func-
tions of the relative transmissibility during EHI and the re-
selection rate. In Figure 1, we illustrate the effects of the relative
transmissibility during EHI (f) and the re-selection rate (v) on the
basic reproduction number (R0) and the endemic prevalence (P),
while fixing the total transmission potential across the course of
infection, and keeping most other parameters the same (full details
in 13.4 of the Supplementary Methods).
In Figure 1, both the basic reproduction number (R0) and the

endemic prevalence (P) are monotonically increasing with respect
to the relative transmissibility during EHI, even though the overall
transmission potential is fixed. This is a consequence of the fact,
noted above, that episodic risk reduces the boost in transmissions
caused by risk heterogeneity less for transmissions during EHI than
for transmissions during chronic infection. Consequently, if the total
transmission potential is fixed, increasing transmissions from EHI at
the expense of transmissions from chronic infection results in an
increase in transmissions, leading to an increase in both R0 and P.
Unlike the relative transmissibility during EHI, the re-selection

rate has a drastically different effect on the basic reproduction num-
ber and the endemic prevalence. As noted in the previous section, the
basic reproduction number is monotonically decreasing with respect
to the re-selection rate, because re-selection attenuates the increase in
the average contact rate of infected individuals that results from risk
heterogeneity. In contrast, the endemic prevalence has a non-mono-
tonic dependence on the re-selection rate, peaking at a relatively high
value of the latter. This is a product of the combined effects of the
attenuation of the average contact rate of infected individuals (which
works to reduce the endemic prevalence, just as it does the basic
reproduction number) and the increased replenishment of higher
risk susceptibles, which works to increase the endemic prevalence6.
That episodic risk can increase endemic prevalence relative to the
basic reproduction number at a given observed degree of (instant-
aneous) risk heterogeneity may explain the difficulty that modelers
have experienced in reconciling estimates of the coefficient of vari-
ation in contact rate and the basic reproduction number with
observed prevalence of HIV infection among MSM10.

System determinants of key epidemiological measures. We now
introduce a third outcome of interest: the effective treatment rate
required to achieve elimination (tE). As noted in the introduction, we
collapse the treatment cascade into a single parameter, which we
refer to as the effective treatment rate and denote t. We then define
the effective treatment rate required to achieve elimination (tE) as the
minimum value of the effective treatment rate (t) at which
elimination is (deterministically) achieved, i.e. the minimum value
that reduces the basic reproduction number (R0) to or below the
endemic threshold of R0 5 1. In practice, achieving elimination in
a reasonable timeframe may require that R0 be brought significantly
below 1. Consequently, if this model or one like it were to be used to
set goals for a particular UT&T campaign, it would likely be desirable
to target a lower basic reproduction number. Rather than fixing
realistic targets, here we merely seek to provide qualitative insights.

www.nature.com/scientificreports
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In Figure 2, we consider the effects on the basic reproduction
number (R0), fraction of transmissions from early infection (w),
and effective treatment rate required to achieve elimination (tE) of
the same parameters examined in Figure 1, the relative transmissi-
bility during early infection (f) and the re-selection rate (v). In this
case, however, instead of fixing the total transmission potential over
the course of infection, we fix the endemic prevalence, at 0.2.We vary
the total transmission potential (by varying b1 and b2, proportion-
ally) in order to achieve this fixed endemic prevalence. This provides
the common perspective in risk factor and prevention effects for HIV
infection, where the prevalence is known, but what is determining
that prevalence is unknown.
An important aspect of these relationships is that both factors have

strong effects on the effective treatment rate required to achieve elim-
ination as shown in panel (a) of Figure 2. Increasing the re-selection
rate from 0.1 per year (relatively static risk groups) to 10.0 per year
(strongly episodic risk) while holding the relative transmissibility dur-
ing early infection constant at 9 results in a reduction of the required
effective treatment rate from 1.47 to 0.101. This is over a 14-fold
difference, without any change in the biological parameters, nor in
any behavioral parameters that could be readily measured cross-sec-
tionally. Likewise, reducing the relative transmissibility during early
infection from 9 to 1 (while holding the re-selection rate constant at

0.1) results in a reduction of the necessary effective treatment rate to
0.442 – over a three-fold difference.
To understand what is generating these effects, it is useful to

understand how the effective treatment rate required to achieve
elimination (tE) is affected by changes in the basic reproduction
number (R0, shown as the outcome in panel (b) of Figure 2) and
the fraction of transmissions from early infection (w, shown as the
outcome in panel (c) of Figure 2). As can be seen in Figure 2, the effect
on tE of the parameters v (the re-selection rate) and f (the relative
transmissibility during EHI) is essentially a combination of their
effects on R0 and w. This combination of effects is attributable
to the fact that, as mentioned in the introduction, R0 and w each
represent a different aspect of difficulty in eliminating trans-
missions through UT&T: The higher R0 is, the larger the fraction

Figure 1 | Heatmaps plotting (a) the basic reproduction number (R0),
and (b) equilibrium prevalence (P) against the relative transmissibility
during early HIV infection (f) and re-selection rate (v). The per-act
transmissibilities during EHI and chronic infection for each parameter set

were chosen based on the constraints that (1) their ratio must be f and (2)

the total transmission potential in a homogeneous system must be the

same for all parameter sets. This transmission potential was chosen by

setting the endemic prevalence for the lower-left parameter set to be 0.2.

The other parameters used are summarized in Supplementary Table 1 in 12

of the Supplementary Information. Each panel has a scale that runs

from the lowest to the highest value observed in that panel.

Figure 2 | Heatmaps plotting (a) the effective treatment rate required to
achieve elimination (tE), (b) the basic reproduction number (R0), and (c)
the fraction of transmissions from early HIV infection (w) against the
relative transmissibility during early HIV infection (f) and re-selection
rate (v). The other parameters used are summarized in Supplementary

Table 1 in 12 of the Supplementary Information. Each panel has a scale that

runs from the lowest to the highest value observed in that panel.

www.nature.com/scientificreports
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of transmissions that must be prevented, and the higher w is, the less
effective UT&T is at preventing transmissions. A more detailed con-
sideration of how R0 and w affect tE can be found in 14.1 of the
Supplementary Results.
In panel (c) of Figure 2, we can see that the fraction of transmis-

sions from EHI (w) is, unsurprisingly, strongly positively dependent
on the relative transmissibility during EHI (f). What is more striking
is the strong, but non-monotonic, dependence on the rate of

risk-group re-selection (v), peaking whenv< 1/year. The explana-
tion for this phenomenon is that the fraction of transmissions from
EHI is maximized when the difference in average contact rates
between EHI and chronic infection is maximized, and this happens
at a moderate re-selection rate: At very low re-selection rates, there is
little difference, because the vast majority of infected individuals still
have the same contact rate as when they were infected, regardless of
their stage of infection. At very high re-selection rates, there is again
little difference, because the vastmajority of infected individuals have
had their contact rate re-selected since they were infected, again,
regardless of their stage of infection. It is only at intermediate re-
selection rates that individuals in chronic infection are substantially
more likely to have had their contact rates re-selected since being
infected than individuals in EHI. Further details are included in 14.2
of the Supplementary Results.

Endemic Prevalence as a function of R0. In order to illustrate the
importance of various aspects of the model in determining the basic
reproduction number R0, we plotted curves relating R0 to the
endemic prevalence (P) for several related models. We derived a
maximal model (parameter set given in Supplementary Table 1 in
12 of the Supplementary Information) from our primary model by
adding assortative mixing (m 5 0.5), in which individuals in a
particular risk group are more likely to form contacts with other
individuals in that risk group8,11, to our primary model. We
derived static risk heterogeneity sub-models from both the
maximal model and our primary model by setting the re-selection
rate (v) to 0.We further derived a behavioral homogeneity model by
setting the ratio of the contact rates of the two risk groups (rHL) to 1.
Further details are included in 13.5 of the Supplementary Methods.
The results are shown in Figure 3.
It is particularly instructive to consider what effect transitioning

between these submodels has when the prevalence is fixed, as it is in
Figures 2 and 4. Because Figure 3 depicts prevalence as a function of
R0, this amounts to selecting a horizontal line (such as the black
dashed line, indicating a prevalence of 0.2), and examining how
transitioning between curves changes the value of R0 at which the
curve intersects that horizontal line. By doing so, we can see how
drastically an estimated R0 can vary at a single prevalence, depending

Figure 3 | Curves showing the prevalence as a function of R0 when all
parameters except the overall transmissibility are held constant. The
curves shown are for the full (maximal) model (episodic risk, with

assortative mixing (m5 0.5) – EA), and several reduced models: Episodic

risk, with proportional mixing (EP, the primary model in this paper);

Static risk heterogeneity, with assortativemixing (m5 0.5) (SA); Static risk

heterogeneity, with proportional mixing (SP), and Behavioral

Homogeneity (BH). The formulation of these reduced models is discussed

in more detail in 13.5 of the SupplementaryMethods. The dashed black line

indicates a constant prevalence of 0.2, illustrating the drastically different

values of R0 that are possible when the prevalence is fixed.

Figure 4 | The basic reproduction number (R0) and effective treatment rate required to achieve elimination (tE) as a function of the re-selection rate
(v). The prevalence is fixed at 0.2, and the fraction of transmissions from EHI (w) is fixed at 0.44714. To achieve this, the transmissibilities from

each of acute and chronic infection are allowed to vary; all other parameters are fixed. Details are presented in 13.7 of the Supplementary Methods.

www.nature.com/scientificreports
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on the model used to estimate it. Failing to account for risk hetero-
geneity at all, or for assortative mixing, can result in a drastic under-
estimate ofR0, while failing to account for episodic risk can result in a
drastic overestimate. Such an error can easily result in incorrect
inferences about the feasibility of achieving control or elimination
with a given intervention.
Consistent with the discussion in the section Endemic prevalence

and the basic reproduction number as functions of the relative trans-
missibility during EHI and the re-selection rate, static risk heterogen-
eity dramatically increases R0 at a given prevalence, but this increase
is reduced (though not eliminated) when episodic risk is introduced.
Assortative mixing increases the basic reproduction number at a
given prevalence for both static risk heterogeneity and episodic risk,
by causing the most frequently transmitting infected individuals
(those in the higher risk group) to transmit preferentially to higher
risk susceptibles.
It has previously been observed that static risk heterogeneity and

assortative mixing both decrease prevalence at a given R012,13. To this
we now add that episodic risk increases prevalence at given R0, rela-
tive to static risk heterogeneity. In fact, all three of these observations
reflect different manifestations of the same basic phenomenon:
Provided that the dynamics of behavior and disease are independent
(e.g. there is neither serosorting nor faster disease progression among
certain behavioral groups), static risk heterogeneity and assortative

mixing will decrease prevalence at a given R0 to the extent that they
cause transmissions to disproportionately occur into a subgroup that
saturates with infection more rapidly than the population as a whole.
They do this by concentrating transmissions into the higher risk
group, which consequently can become saturated with infection even
when the prevalence in the population as a whole is still quite low.
Episodic risk (partially) counteracts this effect (and thus increases
prevalence at a given R0) by causing a net replacement of higher risk
infecteds by (formerly) lower risk susceptibles, thereby reducing the
saturation of the higher risk group, and by moving infected indivi-
duals into the lower risk group, where assortative mixing will
increase the fraction of their contacts that are with susceptible
individuals.

Re-selection rate effects when the fraction of transmissions from
EHI (w) is fixed. In Figure 4, we illustrate the dramatic effects that the
re-selection rate can have on the ease of elimination, even when the
fraction of transmissions from early infection is fixed. In order to
obtain the results in Figure 4, we fixed the endemic prevalence at 0.2
and the fraction of transmissions from early infection (w) at 0.447,
varying the per-contact transmission rate during chronic infection
(b2) and the relative transmissibility during EHI (f) in order to do so.
This value for phi was chosen based on the results of a recent
phylodynamic analysis14. In this figure, changing the re-selection
rate can be seen to result in R0 values that range from 1.27 to 3.28
and tEs that range from 0.0635/year to 0.891/year.
To get a sense of the magnitude of the latter difference, let us

suppose (1) that time from infection to diagnosis, time from dia-
gnosis to linkage to care, and time from linkage to care to viral
suppression are all exponentially distributed, and (2) that the effec-
tive treatment rate is the rate of (also exponentially distributed)
single-step diagnosis, treatment, and viral suppression that generates
a distribution of times from infection to suppression that has the
same mean as the actual distribution. Using published estimates for
the time from diagnosis to linkage to care (77.2% initiating care with
3 months)15 and the time from linkage to care to suppression (med-
ian of 1.03 years for all patients)16, we find that a tE of 0.0635/year
corresponds to a diagnosis rate of only 0.0710/year. In contrast, a tE
of 0.891/year would not be achievable at all with current times from
linkage to care to viral suppression (median of 0.87 years even when

Figure 5 | Dynamics of acquisition, progression, and treatment of infection. Themeanings of symbols representing subpopulations are given in Table 1,

and the meanings of symbols representing parameters (including derived parameters) are given in Table 2. Note that only re-selections resulting in

transition to the other risk group are shown; loops depicting re-selections that place the individual in the same risk group (and therefore same

compartment) they were in prior to re-selection are not included.

Table 1 | Symbols representing (sub) populations

Symbol Meaning

L Total population of lower risk individuals
SL Susceptible, lower risk
AL,U Early-infected, lower risk, untreated
AL,T Early-infected, lower risk, treated
CL,U Chronically infected, lower risk, untreated
CL,T Chronically infected, lower risk, treated
H Total population of higher risk individuals
SH Susceptible, higher risk
AH,U Early-infected, higher risk, untreated
AH,T Early-infected, higher risk, treated
CH,U Chronically infected, higher risk, untreated
CH,T Chronically infected, higher risk, treated

www.nature.com/scientificreports
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restricted to patients with perfect retention in care)16, even if both
diagnosis and linkage to care were instantaneous, and retention in
care were perfect. Details of this calculation are presented in 14.3 of
the Supplementary Results.
From these results, we can see that inferences about the feasibility

of achieving control or elimination through UT&T are extremely
dependent on assumptions about if and how individuals’ contact
rates change over the course of their lives, even when the prevalence,
fraction of transmissions from EHI, and (instantaneous) distribution
of contact rates are all known.

Discussion
We have shown that episodic risk can have a dramatic effect on the
effort required to achieve elimination through treatment, even when
both the prevalence and the fraction of transmissions from early
infection are fixed. Moreover, we have shown that episodic risk
can have a major effect on the fraction of transmissions from early
infection itself, independent of biological factors that increase trans-
mission during EHI. We have also shown how differences in the
extent to which risk heterogeneity is episodic canmake the difference
between a transmission system that is extremely vulnerable to

Table 2 | Symbols representing parameters (including derived parameters)

Symbol Unit Value(s) Meaning

x 1/year 20 Average contact rate
c1 1/year 1 Rate of transition from EHI to chronic infection
c2 1/year 1/8.45 Rate of AIDS-related death or departure from the

sexually active population during chronic infection,
if untreated. Chosen to give a mean total duration
of infection of 9.45 years24.

c2T 1/year 0 Rate of AIDS-related death or departure from the
sexually active population during chronic infection,
if treated. Does not actually affect any results
presented in this paper.

m 1/year 1/40.28 Rate of death or departure from the sexually active
population unrelated to HIV infection; because the
population size is normed to be 1 at the disease-free
equilibrium, this is also the absolute rate of entry into
the sexually active population. From Supplementary
Text S3 of Volz et al.14.

t 1/year Variable Effective treatment rate
rHL - Variable Contact rate ratio between higher risk and lower risk

individuals
fH - Variable Fraction of the population that is at higher risk at the

disease-free equilibrium.
fL - 1 2 fH Fraction of the population that is at lower risk at the

disease-free equilibrium.
xL 1/year x

1z rHL{1ð ÞfH
Contact rate for lower risk individuals

xH 1/year rHLxL Contact rate for higher risk individuals
m - Variable (0–1.0) Fraction of an individual’s contacts that are reserved

for members of the same risk group. Throughout the
main text, it is 0 unless stated otherwise.

v 1/year Variable (0.01–10.0) Rate at which we randomly re-select which risk group
an individual is in (re-selection rate)

vH 1/year fLv Rate at which higher risk individuals transition to the
lower risk group

vL 1/year fHv Rate at which lower risk individuals transition to the
higher risk group

f - Variable (1.0–8.0) Relative transmissibility during EHI
b1 transmissions/contact fb2 Per-contact transmissibility during EHI
b2 transmissions/contact [used to fit the model to a

target prevalence or basic
reproduction number]

Per-contact transmissibility during chronic infection

H1 transmissions xb1
mzc1zt

The average number of secondary transmissions during
EHI per index case, under behavioral homogeneity.

H2 transmissions xc1b1
mzc1ztð Þ mzc2ztð Þ

The average number of secondary transmissions during
chronic infection per index case, under behavioral homogeneity.

H transmissions H1 1 H2 The average number of secondary transmissions, under
behavioral homogeneity.

y1 mzc1zt

mzc1ztzv
The average fraction of time spent in untreated EHI that
occurs prior to the first re-selection of that individual’s
contact rate after his infection.

y2 mzc1ztð Þ mzc2ztð Þ
mzc1ztzvð Þ mzc2ztzvð Þ

The average fraction of time spent in untreated chronic
infection that occurs prior to the first re-selection of that
individual’s contact rate after his infection.

y y1H1zy2H2

H1zH2

The average fraction of secondary transmissions (under
behavioral homogeneity) that occur prior to the first re-
selection of that individual’s contact rate after his infection.
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universal test and treat, and one for which no level of testing and
treating can ever be sufficient, by itself, to eliminate ongoing HIV
transmission. Others have illustrated how transmission during early
infection can affect the relationship between prevalence and the basic
reproduction number, and thus alter the population effects of early
diagnosis and treatment, sometimes in unexpected ways4,5. We have
illustrated here how episodic risk is likely to considerably amplify
those effects. Consequently, collecting more data on risk heterogen-
eity and episodic risk (or its continuous generalization, risk volatil-
ity17) is highly important in order to make the best possible decisions
about how to allocate finite HIV control resources.
Our models do not attempt to reproduce real-world transmission

dynamics. They dichotomize what are actually continuous phenom-
ena: transmissibility over the course of untreated infection, contact
rates, change in contact rates, and treatment success or failure. They
are kept simple in order to focus on the basic concepts of how
changes in contact rates over the course of individuals’ lives alter
the fraction of transmissions from early infection, R0, and the effec-
tiveness of UT&T. This understanding should affect how control
decisions are pursued in the face of ignorance about how individuals
change their contact rates over the course of their lives. It should also
affect both field studies and modeling studies designed to reduce our
ignorance. The simplicity of our models, however, mean that any
attempt to predict the effectiveness of UT&T in a particular popu-
lation based on our results is invalid in the absence of an assessment
of how realistic relaxation of our simplifying assumptions affects our
results. However, we have identified important qualitative phenom-
ena which will be highly relevant even in more realistic models.
In this paper, we have presented episodic risk abstractly, without

considering its determinants. As noted in a previous paper6, there are
numerous causal phenomena that can result in periods of more
frequent or riskier sexual activity than characterizes an individual’s
sexually active life as a whole, such as periods of recreational drug use
or alternation between a partnered state (with a low or zero rate of
outside sexual contacts) and an unpartnered state (with a higher rate
of casual sex). Higher rates of sexual activity at certain ages can also
produce similar phenomena, particularly when sexual activity shows
assortative mixing by age, as is generally the case. Some of these
effects have been captured in previous model analyses that have
explored the role of EHI on transmission in populations18,19. But
empirical work on these factors has not progressed. We hope that
our simple way of abstracting risk behavior fluctuations with our
episodic risk formulation helps to show why risk fluctuations are
so important. But we are not advocating that the episodic risk
abstraction should be the way that histories are obtained. How risk
fluctuation histories are taken should depend on what questions are
easiest to comprehend and validly answer and how well the answers
to those questions allow researchers to measure changes in risk
behavior over the course of an individual’s life.
One consistent pattern that we have observed across various para-

meters that we have examined is that changes to parameters tend to
make elimination through UT&T harder when they create or
strengthen the phenomenon of a distinct core group that transmits
heavily to itself. That this phenomenon is consistent across various
ways of strengthening such a group (increasing contact rate hetero-
geneity, decreasing episodic risk, and increasing assortativity) sug-
gests that it is likely to be robust to realistic relaxation of simplifying
assumptions. Under these conditions, UT&T becomes less effective.
These conditions, however, form a core group with persistent higher
risk behavior where Pre-Exposure Prophylaxis is more practicable
and effective.
One possible direction for further research is extending the various

dichotomized aspects of the model to polychotomous or continuous
measures. For example, dichotomized episodic risk can be replaced
by continuous risk volatility17,20. Another is incorporating important
aspects of sexual behavior that are not included in the present model,

such as long-termmonogamous or semi-monogamous partnerships,
temporal changes in insertive or receptive behavior21 or temporal
changes in condom use with different types of partners.
Episodic risk behavior/risk volatility has been understudied. Two

studies have found both between and within-individual volatility22,23.
However, due to limitations in the datasets that were available, these
were based on an analysis of data from the early 1990s, and therefore
may not be reflective of current behavioral dynamics.
There are three fundamental messages that we hope that other

researchers will take from this paper. First, we have presented a
new methodology for calculating the basic reproduction number in
the presence of episodic risk, which generalizes naturally to continu-
ous risk volatility, and which helps in creating understanding not
only of the reasons for the effects of episodic risk itself, but for its
interactions with other behavioral or biological phenomena. We
hope that this approach will be of service to other modelers.
Second, we have shown how episodic risk can increase prevalence
at the same time as it reduces the basic reproduction number and the
difficulty of eradication. Third, we have shown how strong these
effects can be. Consequently, they should be taken into account,
and the necessary data gathered in order to determine their mag-
nitude and better plan control activities using models that incorp-
orate the strong effects we have illustrated.

Methods
Throughout this paper, all sexual behavior is modeled as instantaneous, symmetric
contacts. All sexual contacts between an infected individual and a susceptible indi-
vidual are assumed to have a potential for HIV transmission that depends only on the
stage and treatment status of the infected individual. Per-contact transmissibility is in
general higher during EHI than during chronic infection, with the ratio between the
two transmissibilities being a parameter whose effects we explore.

The flow diagram for our primary model is depicted in Figure 5. More details,
parameter definitions and ranges, and a system of coupled differential equations are
presented in 13.1 of the Supplementary Methods.

All simulations were performed and numerical results obtained using the
Anaconda distribution (Continuum Analytics, version 2.1.0, 64-bit) of Python
(version 3.4.1). Apart from the standard library, we made use of the NumPy (version
1.9.0) and SciPy (version 0.14.0) packages for simulation and computation, and the
matplotlib (1.4.0) package for visualization and graphics production. All integration
of systems of ordinary differential equations (ODEs) was done using the scipy.
integrate.odeint function, with default solver and stepsize. Further details may be
found in the source code, which is attached at the end of the Supplementary
Information.

In general, we have three outcomes of interest: the basic reproduction number (R0),
the fraction of transmissions from EHI (w), and the effective treatment rate that is
necessary to completely eliminate ongoing transmission (tE). For the purposes of this
paper, we use the next-generation matrix (NGM) definition of R0 developed by
Diekmann et al.1 We define w as the fraction of transmissions from EHI made by all
individuals in a generation during exponential growth (under the same assumptions
used to define the next-generationmatrix), and solve for it using amodification of the
methods for finding R01, discussed in 13.6 of the SupplementaryMethods. Using these
definitions, we obtain an algebraic equation giving tE in terms of R0 and w for sub-
models without episodic risk. This equation is presented, along with its implications,
in 13.6 of the Supplementary Methods.

Except where otherwise noted, the endemic prevalence in the absence of treatment
was set to equal 0.2, and for each parameter set, a value of b2 that generated that
endemic prevalence was obtained numerically. All of the software listed above is free
to use. Source code is included as 15 of the Supplementary Information.
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