
A strategy to design novel structure
photochromic sensitizers for
dye-sensitized solar cells
Wenjun Wu, Jiaxing Wang, Zhiwei Zheng, Yue Hu, Jiayu Jin, Qiong Zhang & Jianli Hua

Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, 130 Meilong
Road, Shanghai, 200237, China.

Two sensitizers with novel structure were designed and synthetized by introducing photochromic
bisthienylethene (BTE) group into the conjugated system. Thanks to the photochromic effect the sensitizers
have under ultraviolet and visible light, the conjugated bridge can be restructured and the resulting two
photoisomers showed different behaviors in photovoltaic devices. This opens up a new research way for the
dye-sensitized solar cells (DSSCs).

A
mong the various processes to utilize solar energy, DSSCs that are based on highly porous nanocrystalline
films of titanium dioxide (TiO2) have received considerable attention due to their high power conversion
efficiency, low cost, and high semiconductor stability1–8. To further improve their energy conversion

efficiencies, much effort has been devoted to the optimization of components (e.g. sensitizers, electrolyte and
counter electrodes) and to the design of creative novel structures of DSSCs9–24.

Pure organic dyes, as a major candidate of the sensitizers for DSSCs25–52, have been extensively explored with
the basic D-p-A structure. The energy level of these dyes exerts a significant influence on the photovoltaic
performances53. The conventional methods to adjust the orbital levels were to change their donors, p-bridges
or acceptors46–56. It is well-known that photochromic compounds based on bisthienylethene (BTE) unit are one of
the most promising materials because of their excellent fatigue resistance and thermal stability in both isomeric
forms. The open- and closed-ring isomers of BTE differ from each other not only in their absorption but also in
optical data storage and optical signal processing. In this work, we herein incorporated the photochromic BTE
unit into D-p-A sensitizers in order to develop optical switching sensitizers for dye-sensitized solar cells. As
shown in Figrue 1, the photochromic dyes based on BTE moiety (BTE-CA and BTE-CN) can form two photo-
isomers (coded as CNO and CNC or CAO and CAC with different acceptor) with the open or closed-ring by
alternating irradiation with UV and visible light57–60. Therefore, the photoelectric conversion efficiency (PCE) of
the DSSCs based on these dyes can be changed with the structure of the sensitizers tuned reversibly under
irradiation of UV or visible light.

In Figure S1, CAO/CAC and CNO/CNC represent the open-ring/closed-ring forms of compounds BTE-CA
and BET-CN, respectively. As shown in Figure 2a, upon alternating irradiation with UV and visible light, the
sensitizers showed typical photochromic properties. When irradiated at 365 nm, the compounds showed a
reduction in intensity of the absorption around 380 nm and a rise of a new absorption at 574 nm and 694 nm
for BTE-CA and BTE-CN, respectively (Figure 2a and Figure S2). The low energy band appeared at 574 nm for
CAC or 694 nm for CNC, arising from the charge-transfer transition, suggests the formation of large D-p-A
conjugated closed-ring diarylethene, which corresponds to the colour change of the solution from colourless to
bluish-purple or yellow to green (inset in Figure 2a). Comparing to CAC, the absorption spectrum of CNC
extended into the near infrared region due to the stronger electron-withdrawing character of cyanoacetic acid
group. Upon irradiation with visible light (l . 500 nm), the bluish-purple or green solution bleached to
colourless or yellow, indicating that the retrieving of open-ring isomer (CAO or CNO). After anchoring on
TiO2 film, thelmax of CAC and CNC hypsochromically shifted to 560 nm and 589 nm, respectively, which can be
ascribed to the deprotonation and aggregation of the dyes (Figure 2b).

To obtain and characterise the molecular orbital energy levels, cyclic voltammetry (CV) was employed to
measure the oxidation potential of the dyes in CH2Cl2; these CV curves are shown in Figure S3. The corres-
ponding electrochemistry data are given in Table S1, and the energy levels are demonstrated in Figure S4. The first
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two oxidation potentials (Eox) of different isomers, corresponding to
the highest occupied molecular orbital (HOMO) and HOMO-1
levels, were converted to a normal hydrogen electrode (NHE) with
ferrocene/ferrocenium (Fc/Fc1) as an external reference. The zeroth-
zeroth energy (E0–0) values, defined as the optical gap of the sensiti-
zers, were obtained from the absorption thresholds (Table S1). From
above data, we found that their HOMO and LUMO levels thermo-
dynamically matched well with the iodine/iodide redox potential
value (0.4 V) and Ecb of the TiO2 electrode (0.5 V vs. NHE).

Figure 3 shows the J-V and P-V curves with the corresponding
photovoltaic data summarized in Table S1. From Figure 3 and Table
S1, the photocurrent density vs. voltage curves for DSSCs based on

Figure 1 | The restructure of photochromic dyes under UV or visible light and its influence on J-V curve.

Figure 2 | (a) UV-Vis absorption spectra of different photoisomers. Inset:

Photographic images of interconversion between CAO and CAC or CNO

and CNC under the alternative irradiation with UV or visible light in

CH2Cl2 solution. (b) The absorption spectra of CAO, CAC, CNO and CNC

on TiO2 film.

Figure 3 | Photocurrent density and power vs. voltage curves of DSSCs
based on different isomer of CAO/CAC or CNO/CNC under irradiation
of AM 1.5 G simulated solar light (100 mW cm22). Solid line:

Photocurrent density vs. voltage; Dash line: Power vs. voltage.
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CAO, CAC, CNO and CNC were given and these cells have a solar
energy to electricity conversion efficiency of 0.87% (Jsc 5 2.00 mA
cm22, Voc 5 602 mV, ff 5 0.72), 0.30% (Jsc 5 0.91 mA cm22, Voc 5

500 mV, ff 5 0.65), 2.00% (Jsc 5 4.42 mA cm22, Voc 5 650 mV, ff 5
0.70), 0.59% (Jsc 5 1.61 mA cm22, Voc 5 540 mV, ff 5 0.68), respect-
ively. In these data, the short-circuit photocurrent (Jsc) and Voc are
critical parameters determining the energy conversion efficiency of
the cells. While Jsc is mostly controlled by the light-harvesting and
charge-injection efficiency of sensitizer, Voc is determined by the
difference between the quasi-Fermi level in the TiO2 and the energy
level of the redox couple in the electrolyte61. As we all know, the
charge recombination between injected electrons and oxidized spe-
cies in the electrolyte will result in a reduced Voc

62–71.
To analyse why the sensitizers with an open-ring give better

photovoltanic performances in DSSCs, the orbital distributions of
different isomers (Figure S4) were achieved by density functional
theory (DFT) calculations at the B3LYP/6-31G* level. As illustrated
in Figure S4, the HOMO orbitals in CAO and CNO are primarily
located at the p-framework of the donor part, while the electron
density of the LUMOs are delocalized over the BTE unit and anchor-
ing group. The distinct location of the HOMO and LUMO orbitals
enables a good charge separation. However, for CAC and CNC, the
electron density of HOMO or LUMO orbital locates at the conjunc-
tion bridges (BTE unit) and acceptors, suggesting the strong elec-
tron-donating ability of the closed-ring leads to a poor charge
separation.

In summary, two new D-p-A type sensitizers for DSSCs based on
BTE photochromic unit, BTE-CA and BTE-CN, were successfully
synthesized and their photovoltaic performances were characterised.
There are some elements for shaping their PCE performance includ-
ing the variation of absorption spectroscopy, orbital distribution, and
CB shift following the photochromic interconversion between the
different photoisomers by alternating irradiation with UV and visible
light. Using their tautomeric characteristics, we first attempt to
achieve a regulation of the photovoltaic performance of the sensitizer
with photons of different wavelengths.
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